ASSESSMENT REPORT
ON THE
SOIL GEOCHEMISTRY PROGRAMME
ON THE
UNION 3 AND 4 CLAIMS

SLOCAN MINING DIVISION, BRITISH COLUMBIA

NTS 82F/10W
Latitude 49°43'N; Longitude 116°55'W

for
OWNER: WILBURN CARTER
OPERATOR: DAVID MINERALS LTD.

by
Paul W. Richardson, Ph.D., P.Eng.
David W. Rennie, B.A.Sc.

VANCOUVER, B.C. July 25, 1980
TABLE OF CONTENTS

SUMMARY 1
INTRODUCTION 1
LOCATION AND ACCESS 2
CLAIMS 2
HISTORY OF THE AINSWORTH CAMP 3
GEOLOGY OF THE AINSWORTH CAMP 4
EXPLORATION APPROACH 5
CONCLUSIONS 5
STATEMENT OF COSTS 6
REFERENCES 7
STATEMENT OF AUTHORS' QUALIFICATIONS 8

APPENDICES

APPENDIX I - RECORDS OF MINERAL CLAIMS
APPENDIX II - GEOCHEMICAL ANALYSIS CERTIFICATES
APPENDIX III - GEOCHEMICAL ANALYSIS METHODS

FIGURES

Figure 1 - LOCATION MAP (1:2,400,000) 2
Figure 2 - CLAIM MAP (1:50,000) 2
Figure 3 - Ag-Pb-Zn IN SOILS (1:1,000) In Pocket
SUMMARY

An exploration programme consisting of cutting lines and collecting and analysing soil samples was done on the UNION 3 and 4 claims. Additional detail soil sampling is contemplated.

INTRODUCTION

David Minerals Ltd. has bought a 150 tons per day mill which is on the shore of Kootenay Lake one kilometre south of Ainsworth, B.C. The intention is to process silver-lead-zinc ores from properties in the area. Toward this end, a large block of ground immediately west and southwest of Ainsworth was optioned. This ground includes the presently described two claims which were optioned from Mr. W.L. Carter. To date, the exploration programme has included cutting and flagging lines and collecting and analysing soil samples.
LOCATION AND ACCESS

The UNION 3 and 4 claims are in the Slocan Mining Division at latitude 49°43'N, longitude 116°56'W on NTS Sheet 82F/10W (Figure 1). The claims lie 2.5 km west of the west shore of Kootenay Lake and 2.5 km south of Ainsworth, B.C. Ainsworth is 19 km south of Kaslo on Highway No. 31, which is a paved, two-lane road along the west side of Kootenay Lake. Access to the Property is gained by a dirt and gravel road that leaves the highway at Ainsworth (Figure 2).

CLAIMS

The UNION 3 and 4 claims are located on Mineral Titles Reference Map M82F/10W, and are owned by Mr. W.L. Carter. They are held under option by David Minerals Ltd. Pertinent claim data are listed in the table below.

<table>
<thead>
<tr>
<th>CLAIM</th>
<th>RECORD NO.</th>
<th>NO. UNITS</th>
<th>ANNIVERSARY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNION 3</td>
<td>1209(5)</td>
<td>1</td>
<td>May 31, 1980</td>
</tr>
<tr>
<td>UNION 4</td>
<td>1210(5)</td>
<td>1</td>
<td>May 31, 1980</td>
</tr>
</tbody>
</table>

The above list conforms with the records of the Claim Recorder in Vancouver. The claims are shown on Figure 2, and are described in Appendix I.
HISTORY OF THE AINSWORTH CAMP

The first mineral claim in the camp was located in 1884, and most of
the productive claims were located and crown-granted between then and 1900
(Fyles, 1967). The first production was in 1889 when 300 tons averaging
100 oz/ton Ag were shipped. However, the rich silver ore was spotty, and
recent mining has been of lead-zinc ore relatively low in silver.

Production has come from about 50 properties, and has totalled
763,826 tons to 1964. Four properties, the Florence, Highlander, Highland
and No. 1, have each produced more than 40,000 tons of ore, and the
remainder have each produced 5,000 tons or less.

Between 1930 and 1935, almost all the mines were closed. In 1947, the
price of lead and zinc rose, and production was resumed on several properties
in the camp. In 1950, Yale Lead and Zinc Mines Ltd. built a mill below the
Highlander Mine, and operated it until 1961. During the same period,
Western Mines Limited bought and operated the Kootenay Florence mine and
mill. In this period, relatively little exploration was done beyond the
previously known ore-shoots with the exception that Cominco worked from
1952 to 1957 exploring for limestone replacement deposits similar to the
replacement ore of the Bluebell orebodies on the east side of Kootenay Lake.

The Yale Lead and Zinc Mines Ltd. mill was purchased in 1978 by
David Minerals Ltd.
The most recent and most complete description of the geology of the area is in Fyles' 1967 bulletin. The rocks strike north and dip at moderate angles to the west. The main rock types are grey, fine-grained mica schist and micaceous quartzite, greenish hornblende schists and grey and white crystalline limestone. These rocks are intruded by lenticular granitic sills and by lamprophyre sills and dykes. The rocks are divided by three strike faults into four elongate slices which also dip at moderate angles to the west.

In addition to the three main strike faults, other strike faults are present, especially in the westernmost fault slice. Also, small cross faults are significant, and are well known in the Ainsworth camp where they are mineralized.
EXPLORATION APPROACH

A baseline six km long has been cut from the south border of the Bald Eagle claim, which is south of Coffee Creek, northward to the north end of the Property. Cross lines totalling 59.5 km have been flagged and blazed 100 metres apart, and have been picketted at 25 m intervals (Richardson and Rennie). Parts of two lines, 9200 N and 9300 N, cross the UNION claims.

A base map with a scale of 1:5000 (approximately 1"=400') was prepared from available 1"=500' topographic maps that were made from air photographs in 1959. On these base maps the cut grid was plotted and adjusted to fit the roads and topography.

A total of 78 reconnaissance soil samples were collected on the UNION claims, one at each picket and one from each gulley encountered along the cross lines. The samples were analysed by Acme Analytical Laboratories Ltd. of Vancouver for silver, lead, zinc and copper (Appendix II). The silver, lead and zinc values were plotted on a 1:1000 map (Figure 3). The results were plotted on a large scale map so that there was room to plot the silver, lead and zinc results at each station so the amounts of each element could be compared conveniently. The copper values were uniformly very low, and were not plotted.

The object of the reconnaissance soil sampling was to test for silver-lead-zinc-copper mineralization in the claims. Silver background for the area is high, i.e., numerous samples are higher than 0.2 ppm Ag, and samples range up to 2.6 ppm, which is definitely anomalous. The anomalous sample sites should be inspected on the ground, and detail sampling should be done where appropriate.

CONCLUSIONS

1. The geochemical reconnaissance programme outlined areas of interest on the UNION claims.

2. Additional detail sampling should be done on the anomalous areas.
STATEMENT OF COSTS

Dates: Line cutting - November, 1979
 Soil sampling - November 4, 1979

Costs:

(1) Line cutting: 0.93 km @ $150 = $140
(2) Sampling: 2 man days @ $100 = 200
(3) Vehicle: 2 days @ $34.50 = 69 $409
(4) Soil Analysis:
 78 samples @ $2.75/sample = 215
 Shipment of samples 4 219
(5) Supervision, plotting, draughting, report:
 D.W. Rennie: 4 days @ $73.00/day = 292
 P.W. Richardson: 2 days @ $400.00/day = 800
 Transportation: 2 days @ $34.50 = 69
 Room and Board (D. Rennie): 4 days @ $15 = 60 1,221

$1,849
REFERENCES

For complete list of references, see Fyles (1967), p. 14.
STATEMENT OF AUTHORS' QUALIFICATIONS

Paul W. Richardson, Ph.D., P.Eng.

Ph.D. (1955) from Massachusetts Institute of Technology in Economic Geology and Geochemistry.

1950-52: Mine Geologist at Sullivan Mine, B.C.

1968-78: Vancouver Manager for Newconex Canadian Exploration Ltd.

1978-Present: Principal of Richardson Geological Consulting Ltd.

I have had an interest in and have practised exploration geochemistry from 1953 up to the present time.

David W. Rennie, B.A.Sc.

B.A.Sc. (1979) from the University of British Columbia in Geological Engineering.

1976: Geophysical field assistant with Cominco Ltd., Vancouver.

1977: Geological field assistant with Utah Mines Ltd., Vancouver.

1978: Geological field assistant with St. Joseph Explorations Ltd., Kamloops.

1979-Present: Geologist with David Minerals Ltd., Vancouver.
APPENDIX I

RECORDS OF MINERAL CLAIMS
EMBOSSED "INITIAL POST (NO.1)".

UPON WHICH I HAVE SECURELY FASTENED TO THE NO. 1 POST, METAL TAG NO. 821-10 "F.G. NELSON B.C.

THE FOLLOWING HAS BEEN IMPRESSED:

NAME OF CLAIM,

DATE OF LOCATION

COWASS BEARING TO NO.2 POST DISTANCE TO NO.2 POST

HAVE SECURELY FASTENED TO THE NO. 2 POST, METAL TAG NO. 2 EMBOSSED "FINAL POST (NO.2)".

UPON WHICH THE FOLLOWING HAS BEEN IMPRESSED:

NAME OF CLAIM,

DATE OF LOCATION

I HAVE PLACED THE NO. 1 AND NO. 2 LEGAL POSTS IN ACCORDANCE WITH THE REGULATIONS.

I HAVE SECURELY FASTENED TO THE NO. 1 POST, METAL TAG NO. 461292 "INITIAL POST (NO.1)".

NAME OF CLAIM,

DATE OF LOCATION

I HAVE SECURELY FASTENED TO THE NO. 2 POST, METAL TAG NO. 461292 "FINAL POST (NO.2)".

NAME OF CLAIM,

DATE OF LOCATION

I HAVE MARKED THE LINE BETWEEN THE NO. 1 AND NO. 2 LEGAL POSTS AS REQUIRED BY THE REGULATIONS.

Gold Commissioner

RECEIVED

MAY 31, 1979

W.R. CARTER

SIGNATURE

M.R. #5

KASLO, B.C.

RECORDE'S STAMP

WORK NO'S OR C/L

DATE RECORDED

MINING RECEIPT

DATE OF EXPIRY

TRANSFERS

(BILLS OF SALE, ASSIGNMENTS, CONVEYANCES)
APPLICATION TO RECORD A 2-POST CLAIM

WILBURN C. CARTER 821-10th Ave. NELSON B.C.

HOLDER OF VALID SUBSISTING F.M.C. NO. 172079 STATE THAT:

ON THE 26TH DAY OF MAY 1979 I LOCATED THE UNION #3 2-POST
CLAIM SITUATE 2000 M NORTH AT CONFLUENCE OF LEAKE CR. INTO COFFEE CR. KASLO DIST.

I HAVE PLACED THE NO. 1 AND NO. 2 LEGAL POSTS IN ACCORDANCE WITH THE
REGULATIONS.

I HAVE SECURELY FASTENED TO THE NO. 1 POST, METAL TAG NO. 461291 ET EMBOSSED "INITIAL POST NO.1") UPON WHICH THE FOLLOWING HAS BEEN IMPRESSED:

NAME OF CLAIM UNION #3 DATE OF LOCATION 26 MAY 1979

LOCATOR W. CARTER

COMPASS BEARING TO NO. 2 POST 180° DISTANCE TO NO. 2 POST 500 M

NO. OF METRES TO RIGHT TO LEFT 500 M OF LOCATION LINE

I HAVE SECURELY FASTENED TO THE NO. 2 POST, METAL TAG NO. 461291 ET EMBOSSED "FINAL POST NO.2") UPON WHICH THE FOLLOWING HAS BEEN IMPRESSED:

NAME OF CLAIM UNION #3 DATE OF LOCATION 26 MAY 1979

LOCATOR W. CARTER

I HAVE MARKED THE LINE BETWEEN THE NO. 1 AND NO. 2 LEGAL POSTS AS REQUIRED BY THE REGULATIONS.

Gold Commissioner RECEIVED

MAY 31 1979

1295555E 5.50

KASLO, B.C.

RECORDE'S STAMP

<table>
<thead>
<tr>
<th>WORK NO'S OR C/L</th>
<th>DATE RECORDED</th>
<th>MINING RECEIPT</th>
<th>DATE OF EXPIRY</th>
<th>TRANSFERS (BILLS OF SALE, ASSIGNMENTS, CONVEYANCES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX II

GEOCHEMICAL ASSAY CERTIFICATES
GEOCHEMICAL ASSAY CERTIFICATE

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>L9200N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9025 E</td>
<td>24</td>
<td>58</td>
<td>1050</td>
<td>.7</td>
</tr>
<tr>
<td>9050</td>
<td>18</td>
<td>72</td>
<td>350</td>
<td>.5</td>
</tr>
<tr>
<td>9075</td>
<td>17</td>
<td>68</td>
<td>510</td>
<td>.4</td>
</tr>
<tr>
<td>9100</td>
<td>16</td>
<td>74</td>
<td>600</td>
<td>.5</td>
</tr>
<tr>
<td>9125</td>
<td>16</td>
<td>28</td>
<td>260</td>
<td>.5</td>
</tr>
<tr>
<td>9150</td>
<td>64</td>
<td>36</td>
<td>110</td>
<td>1.4</td>
</tr>
<tr>
<td>9175</td>
<td>22</td>
<td>27</td>
<td>102</td>
<td>.6</td>
</tr>
<tr>
<td>9200</td>
<td>24</td>
<td>18</td>
<td>98</td>
<td>.4</td>
</tr>
<tr>
<td>9225</td>
<td>37</td>
<td>27</td>
<td>380</td>
<td>1.5</td>
</tr>
<tr>
<td>9250</td>
<td>24</td>
<td>40</td>
<td>200</td>
<td>.6</td>
</tr>
<tr>
<td>9275</td>
<td>11</td>
<td>33</td>
<td>160</td>
<td>1.4</td>
</tr>
<tr>
<td>9300</td>
<td>34</td>
<td>90</td>
<td>530</td>
<td>1.3</td>
</tr>
<tr>
<td>9325</td>
<td>28</td>
<td>44</td>
<td>230</td>
<td>.6</td>
</tr>
<tr>
<td>9350</td>
<td>13</td>
<td>31</td>
<td>380</td>
<td>.8</td>
</tr>
<tr>
<td>9375</td>
<td>15</td>
<td>88</td>
<td>410</td>
<td>.5</td>
</tr>
<tr>
<td>9400</td>
<td>15</td>
<td>92</td>
<td>415</td>
<td>.5</td>
</tr>
<tr>
<td>9425</td>
<td>14</td>
<td>126</td>
<td>500</td>
<td>.3</td>
</tr>
<tr>
<td>9450</td>
<td>11</td>
<td>66</td>
<td>260</td>
<td>.2</td>
</tr>
<tr>
<td>9460</td>
<td>34</td>
<td>82</td>
<td>930</td>
<td>2.4</td>
</tr>
<tr>
<td>9475</td>
<td>15</td>
<td>44</td>
<td>192</td>
<td>.1</td>
</tr>
<tr>
<td>9500</td>
<td>20</td>
<td>37</td>
<td>210</td>
<td>.1</td>
</tr>
<tr>
<td>9525</td>
<td>18</td>
<td>58</td>
<td>215</td>
<td>.1</td>
</tr>
<tr>
<td>9550</td>
<td>25</td>
<td>47</td>
<td>176</td>
<td>.1</td>
</tr>
<tr>
<td>9565</td>
<td>28</td>
<td>26</td>
<td>290</td>
<td>.6</td>
</tr>
<tr>
<td>9575</td>
<td>26</td>
<td>33</td>
<td>124</td>
<td>.2</td>
</tr>
<tr>
<td>9600</td>
<td>28</td>
<td>32</td>
<td>250</td>
<td>.1</td>
</tr>
<tr>
<td>9625</td>
<td>18</td>
<td>47</td>
<td>315</td>
<td>.1</td>
</tr>
<tr>
<td>9635</td>
<td>19</td>
<td>40</td>
<td>230</td>
<td>2.6</td>
</tr>
<tr>
<td>9650</td>
<td>27</td>
<td>48</td>
<td>235</td>
<td>.4</td>
</tr>
<tr>
<td>9675</td>
<td>22</td>
<td>46</td>
<td>148</td>
<td>.3</td>
</tr>
<tr>
<td>9700</td>
<td>72</td>
<td>17</td>
<td>108</td>
<td>.2</td>
</tr>
<tr>
<td>L9200N</td>
<td>74</td>
<td>18</td>
<td>116</td>
<td>.4</td>
</tr>
</tbody>
</table>

All reports are the confidential property of clients.
All results are in PPM.

DIGESTION: ..

DETERMINATION: ..

DATE SAMPLES RECEIVED: Nov. 10, 1979
DATE REPORTS MAILED: Nov. 19, 1979

ASSAYER: ...
DEAN TOYE, B.Sc.
CHIEF CHEMIST
CERTIFIED B.C. ASSAYER
To: David Minerals Ltd.

GEOCHEMICAL ASSAY CERTIFICATE

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L9200N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9750E</td>
<td>70</td>
<td>19</td>
<td>116</td>
<td>.5</td>
<td>Creek</td>
</tr>
<tr>
<td>9765</td>
<td>45</td>
<td>94</td>
<td>580</td>
<td>.9</td>
<td></td>
</tr>
<tr>
<td>9775</td>
<td>52</td>
<td>36</td>
<td>168</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>9800</td>
<td>17</td>
<td>24</td>
<td>130</td>
<td>.4</td>
<td></td>
</tr>
<tr>
<td>9825</td>
<td>24</td>
<td>56</td>
<td>154</td>
<td>.4</td>
<td></td>
</tr>
<tr>
<td>9850</td>
<td>60</td>
<td>31</td>
<td>138</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>9875</td>
<td>18</td>
<td>21</td>
<td>136</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>9900</td>
<td>17</td>
<td>29</td>
<td>152</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>9925</td>
<td>19</td>
<td>27</td>
<td>116</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>9950</td>
<td>29</td>
<td>35</td>
<td>142</td>
<td>.4</td>
<td></td>
</tr>
<tr>
<td>L9300N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L9200N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L9300N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All reports are the confidential property of clients.
All results are in PPM.

DIGESTION: ...

DETERMINATION: ...

DATE SAMPLES RECEIVED: Nov. 10, 1979
DATE REPORTS MAILED: Nov. 19, 1979

DEAN TOYE, B. Sc.
CHIEF CHEMIST
CERTIFIED B.C. ASSAYER
GEOCHEMICAL ASSAY CERTIFICATE

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>L9300N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9025</td>
<td>5</td>
<td>27</td>
<td>152</td>
<td>.2</td>
</tr>
<tr>
<td>9050</td>
<td>7</td>
<td>41</td>
<td>134</td>
<td>.2</td>
</tr>
<tr>
<td>9075</td>
<td>8</td>
<td>33</td>
<td>124</td>
<td>.3</td>
</tr>
<tr>
<td>9100</td>
<td>14</td>
<td>29</td>
<td>186</td>
<td>.3</td>
</tr>
<tr>
<td>9125</td>
<td>13</td>
<td>29</td>
<td>250</td>
<td>.2</td>
</tr>
<tr>
<td>9150</td>
<td>49</td>
<td>78</td>
<td>140</td>
<td>.4</td>
</tr>
<tr>
<td>9175</td>
<td>42</td>
<td>25</td>
<td>106</td>
<td>.2</td>
</tr>
<tr>
<td>9200</td>
<td>33</td>
<td>16</td>
<td>108</td>
<td>.1</td>
</tr>
<tr>
<td>9225</td>
<td>20</td>
<td>42</td>
<td>94</td>
<td>.3</td>
</tr>
<tr>
<td>9250</td>
<td>24</td>
<td>24</td>
<td>144</td>
<td>.1</td>
</tr>
<tr>
<td>9275</td>
<td>15</td>
<td>60</td>
<td>154</td>
<td>.1</td>
</tr>
<tr>
<td>9300</td>
<td>18</td>
<td>44</td>
<td>130</td>
<td>.6</td>
</tr>
<tr>
<td>9325</td>
<td>19</td>
<td>46</td>
<td>164</td>
<td>.3</td>
</tr>
<tr>
<td>9350</td>
<td>22</td>
<td>30</td>
<td>182</td>
<td>.5</td>
</tr>
<tr>
<td>9375</td>
<td>19</td>
<td>42</td>
<td>134</td>
<td>.6</td>
</tr>
<tr>
<td>9400</td>
<td>8</td>
<td>58</td>
<td>360</td>
<td>1.4</td>
</tr>
<tr>
<td>9425</td>
<td>20</td>
<td>116</td>
<td>730</td>
<td>.8</td>
</tr>
<tr>
<td>9450</td>
<td>12</td>
<td>190</td>
<td>1500</td>
<td>1.2</td>
</tr>
<tr>
<td>9475</td>
<td>22</td>
<td>34</td>
<td>154</td>
<td>.3</td>
</tr>
<tr>
<td>9500</td>
<td>10</td>
<td>54</td>
<td>490</td>
<td>.5</td>
</tr>
<tr>
<td>9525</td>
<td>18</td>
<td>29</td>
<td>160</td>
<td>.1</td>
</tr>
<tr>
<td>9550</td>
<td>15</td>
<td>35</td>
<td>180</td>
<td>.2</td>
</tr>
<tr>
<td>9575</td>
<td>17</td>
<td>29</td>
<td>146</td>
<td>.3</td>
</tr>
<tr>
<td>9600</td>
<td>30</td>
<td>36</td>
<td>168</td>
<td>.3</td>
</tr>
<tr>
<td>9625</td>
<td>17</td>
<td>30</td>
<td>160</td>
<td>1.4</td>
</tr>
<tr>
<td>9650</td>
<td>25</td>
<td>27</td>
<td>128</td>
<td>.1</td>
</tr>
<tr>
<td>9675</td>
<td>46</td>
<td>48</td>
<td>260</td>
<td>.5</td>
</tr>
<tr>
<td>9700</td>
<td>47</td>
<td>54</td>
<td>152</td>
<td>1.1</td>
</tr>
<tr>
<td>9725</td>
<td>15</td>
<td>27</td>
<td>118</td>
<td>.4</td>
</tr>
<tr>
<td>9750</td>
<td>53</td>
<td>18</td>
<td>100</td>
<td>.2</td>
</tr>
<tr>
<td>9775</td>
<td>22</td>
<td>46</td>
<td>180</td>
<td>.9</td>
</tr>
<tr>
<td>9800</td>
<td>35</td>
<td>27</td>
<td>172</td>
<td>.5</td>
</tr>
<tr>
<td>L9300N</td>
<td>205</td>
<td>15</td>
<td>156</td>
<td>.2</td>
</tr>
</tbody>
</table>

All reports are the confidential property of clients. All results are in PPM.

DATE SAMPLES RECEIVED: Nov. 8, 1979
DATE REPORTS MAILED: Nov. 15, 1979

DIGESTION:

DETERMINATION:

ASSAYER: Dean Toye, B.Sc.
CHIEF CHEMIST
CERTIFIED B.C. ASSAYER
To: David Minerals Ltd.

ACME ANALYTICAL LABORATORIES LTD.
Assaying & Trace Analysis
852 E. Hastings St., Vancouver, B.C. V6A 1R6
phone: 253-3158

File No. 0654
Type of Samples Soils
Disposition

GEOCHEMICAL ASSAY CERTIFICATE

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L9300N 9845E</td>
<td>23</td>
<td>24</td>
<td>350</td>
<td>.4</td>
<td>1</td>
</tr>
<tr>
<td>9850</td>
<td>46</td>
<td>64</td>
<td>410</td>
<td>.8</td>
<td>2</td>
</tr>
<tr>
<td>9875</td>
<td>12</td>
<td>32</td>
<td>106</td>
<td>.7</td>
<td>3</td>
</tr>
<tr>
<td>9900</td>
<td>7</td>
<td>13</td>
<td>64</td>
<td>.2</td>
<td>4</td>
</tr>
<tr>
<td>9925</td>
<td>24</td>
<td>25</td>
<td>142</td>
<td>.5</td>
<td>5</td>
</tr>
<tr>
<td>9950</td>
<td>23</td>
<td>22</td>
<td>78</td>
<td>.6</td>
<td>6</td>
</tr>
<tr>
<td>L9300N 9975E</td>
<td>25</td>
<td>28</td>
<td>94</td>
<td>.2</td>
<td>7</td>
</tr>
</tbody>
</table>

All reports are the confidential property of clients
All results are in PPM.

DIGESTION: ...
DETERMINATION: ..

DATE SAMPLES RECEIVED: Nov. 8, 1979
DATE REPORTS MAILED: Nov. 15, 1979

ASSAYER

DEAN TOYE, B.SC.
CHIEF CHEMIST
CERTIFIED B.C. ASSAYER
APPENDIX III

GEOCHEMICAL ANALYSIS METHODS
Geochemical Analysis of Mo, Cu, Pb, Zn, Ag*, Ni, Co,
Mn, Bi*, V, Fe, Cd*, & Sb*

Sample preparation
Soil samples are dried at 75°C and sieved to -80 mesh.
Rock samples are ground to -100 mesh.

Digestion
A 0.50 gram sample is digested with dilute aqua regia in boiling water bath and
diluted to 10 mls with demineralized water.

Determination
All the above elements are determined by Atomic Absorption from the solution.
* With background correction.

Geochemical Analysis of Au

Digestion and extraction
A 10 gram sample which has been ignited over night at 600°C is digested hot with
dilute aqua regia, and the clear solution is extracted with Methyl Isobuthyl Ketone.

Determination
Au is determined by AA from the MIBK extractant with background correction.

Geochemical Analysis of Ba

A 0.100 gram sample is digested hot with NaOH and EDTA solution. The solution is
analysis for Ba by AA.

Geochemical Uranium Analysis

Digestion
A 0.50 gram sample is digested hot with nitric and perchloric acid and diluted to
10 mls.

Fusion
An aliquot is solvent extracted with salting agent and aliquot of is fused with
NaF, K2CO3, & Na2CO3 flux in platinum dish.

Determination
The fluorescence of the pellet is read in the Turner fluorometer.