A REPORT ON
RECONNAISSANCE, GEOLOGICAL, GEOCHEMICAL AND
GEOPHYSICAL EXPLORATION - 1983
ON
THE HIGH GOLD CLAIM
1 claim comprising 16 contiguous Units
for a total of 400 hectares.
Record No. 1697.
Located in the
OSOYOOS MINING DIVISION
of
BRITISH COLUMBIA

GEOLOGICAL BRANCH
ASSESSMENT REPORT

12,592

Recorded owner:
Tarro Resources Ltd.
403 - 595 Howe Street
Vancouver, B.C. V6C 2T5

Operated by:
E.G. Kennedy, P.Eng.
Box 10108 - 1550 Stock Exchange Tower
609 Granville Street
Vancouver, B.C. V7Y 1C6

Report by:
E.G. Kennedy, P.Eng.
Box 10108 - 1550 Stock Exchange Tower
609 Granville Street
Vancouver, B.C. V7Y 1C6

November 1, 1983
HIGHGOLD CLAIM

TED KENNEDY CONSULTING LTD.
TARRON RESOURCES LTD.
HIGHGOLD CLAIM
OSOYOOS MINING DIVISION — BRITISH COLUMBIA
N.T.S. 82 K/2 W
LOCATION MAP — CANADA

FIG. 1
SCALE: 1:1,000,000
DATE: OCT./83
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>LOCATION AND ACCESS</td>
<td>2</td>
</tr>
<tr>
<td>PROPERTY</td>
<td>2</td>
</tr>
<tr>
<td>TOPOGRAPHY</td>
<td>2</td>
</tr>
<tr>
<td>INFRASTRUCTURE</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY AND PREVIOUS WORK</td>
<td>3</td>
</tr>
<tr>
<td>CURRENT EXPLORATION</td>
<td>3</td>
</tr>
<tr>
<td>REGIONAL GEOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>ECONOMIC GEOLOGY</td>
<td>5</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>6</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>8</td>
</tr>
<tr>
<td>COST ESTIMATES</td>
<td>10</td>
</tr>
<tr>
<td>CERTIFICATE</td>
<td>11</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>12</td>
</tr>
</tbody>
</table>

MAPS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Map Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1</td>
<td>Canada Location Map</td>
</tr>
<tr>
<td>FIGURE 2</td>
<td>British Columbia Location Map</td>
</tr>
<tr>
<td>FIGURE 3</td>
<td>Claim Map</td>
</tr>
<tr>
<td>FIGURE 4</td>
<td>Geology Map</td>
</tr>
<tr>
<td>FIGURE 5</td>
<td>Magnetometer Survey Map</td>
</tr>
<tr>
<td>FIGURE 6</td>
<td>Geochemical a Lead, b Silver, c Zinc, d Arsenic, e Copper, f Gold, g Mercury</td>
</tr>
</tbody>
</table>
SUMMARY

Tarron Resources Ltd. owns one claim (The High Gold Claim) consisting of 16 contiguous units, with an area of 400 hectares in the easily accessible and geologically favourable Anarchist Mountain area, eight kilometres east of Osoyoos in the south central part of British Columbia.

The claim is underlain by rocks of the Anarchist formation. This formation hosts the famous Camp McKinney gold ore mineralization, which was mined early in the century, as well as a dozen or so deposits in the general area of Anarchist Mountain and Camp McKinney.

The claim is considered a good exploration target for precious and base metals. A four phase program making use of modern exploration technology, is recommended.

The first phase of this program has been completed with encouraging results and continued work is recommended.
LOCATION AND ACCESS

This claim, comprising 16 units, is located west of Anarchist Mountain eight kilometres east of Osoyoos, B.C. The southern boundary of the claim group is approximately one kilometre north of the Southern Trans-Canada Highway No. 3. The property is located on National Topographic Series Map 82 E/3. Figures 1 and 2 of this report show the location of the properties.

The claim area is easily accessible by standard vehicle using a farm/logging road which bisects the area from No. 3 Highway. As well, a new east-west fence line with clearway is accessible to 4 x 4 vehicles.

PROPERTY

The property consists of 1 claim comprising 16 contiguous units for a total of 400 hectares. The claim was recorded on March 30, 1983 and is in good standing until March 30, 1984.

Record number is 1697. The claim was staked by Malcolm Bell and is registered in the name of Tarron Resources Ltd. and is shown on claim map number 82E/3.

The writer examined the legal corner post and portions of the boundary and is satisfied the claim is staked in accordance with the regulations and that the claim is located as depicted on the attached maps (Figure 2 and 3).

TOPOGRAPHY

The High Gold claim is within the Interior Plateau, a physiographic belt bounded by the rugged mountain ranges of the Cascades to the west and the Columbia Range to the east. Topography on the claim block is relatively gentle, relief is approximately 305 metres ranging from 1,021 metres to 1,387 metres.
INFRASTRUCTURE

The area is excellently located as regards to infrastructure. The town of Osoyoos has available a good labour pool and adequate living facilities including stores, schools and recreational facilities to support a mining operation.

HISTORY AND PREVIOUS WORK

The High Gold claim area was probably explored during the gold rush of the late 1800's as a result of the discoveries at the Camp McKinney area 14 km to the northeast in a similar geologic environment. Work was primarily centered around the Cariboo-Amelia mine; discovered in 1887, milling commenced in 1894 and continued for the next 9 years. A total of 69,581 ounces of gold and 6,359 ounces of silver were recovered from 123,457 tons mined and milled. The average gold recovery over the life of the mine was 0.56 oz/ton. The area received more work between 1917 and 1939. In 1917-1918 Cominco optioned the claims and carried out limited surface exploration. In 1929 the shafts were dewatered by CF Law of Vancouver but no further work was done. In 1934 the claims were resurveyed and had a small unsuccessful diamond drilling program carried out by Bralco Development and Investment Company. In 1939 Pioneer Gold Mines dewatered, surveyed and sampled the claims but did not do any more underground exploration.

To the writers knowledge, no work has been done on the High Gold claim previous to the work described below.

CURRENT EXPLORATION

A program carried out in September 1983 consisted of geological reconnaissance, two lines of soil sampling and two lines of magnetometer work. The lines were run east west and readings and samples taken each 50 metres along these lines (see Figures 6a - f).
The area is extensively overburdened and the reconnaissance geology attempted proved to be of limited value. However, enough exposure was found to satisfy the writer that the area is underlain by the favourable Anarchist sedimentary rocks and the intrusive contact is nearby. This contact may be important both as a source of mineralizing solutions and as a physical control on their movement or migration to permissive beds such as those of the Anarchist group.

The two lines of soil and rock samples taken were analysed for silver, lead, zinc, copper, gold, mercury and arsenic. This was done to "profile" the property. The lines were in an east-west direction.

Results show encouraging metal values to be present in the soil and rock.

The magnetometer work indicates that a very subtle magnetic low may exist near the centre of the claim. Magnetic activity in general appears to be subdued.

The results of this limited work is encouraging and more work must be done on the property.

REGIONAL GEOLOGY

According to Cockfield (1935) and Daly (1912) and Little (1959):

The rocks of the area have been divided into a number of groups, as shown by the accompanying map (Figure 4).

A group that represents probably the oldest rocks of the area has been assigned by Daly to the Anarchist series, which consists largely of highly metamorphosed sedimentary rocks but includes also altered greenstones and possibly also altered intrusive rocks. The sedimentary members of the group are the altered equivalents of quartzite, slate, and limestone, now micaceous quartzites, mica schists, and crystalline limestone. The quartzite is a grey to green rock, commonly sheared, and holding considerable mica and in some cases graphite. The mica schist is prevailing dark in colour and consists essentially of the same minerals as the quartzites, but the
LEGEND:

CRETACEOUS (?)
16 VALHALLA PLUTONIC ROCKS: granite, granodiorite

15 NELSON PLUTONIC ROCKS: granodiorite, quartz diorite, diorite; granite, quartz monzonite, syenite, monzonite

PERMIAN AND/OR TRIASSIC
ANARCHIST GROUP
7 Greenstone, quartzite, greywacke, limestone; locally paragneiss

Drift-covered area.
Geological boundary (defined, approximate).
Bedding (horizontal, inclined).
Bedding, tops unknown (inclined, vertical).
Gneissosity (inclined, vertical).
Schistosity (inclined, vertical).
Fault (defined, vertical, assumed).
Lineation.
Glacial striae.
Fossil locality.
Mineral property.

TED KENNEDY CONSULTING LTD.
TARRON RESOURCES LTD.
HIGHGOLD CLAIM
OSOYOOS MINING DIVISION — BRITISH COLUMBIA
N.T.S. 82K/2W
GEOLOGY MAP

FIG. 4

SCALE: 1" = 4 mi. DATE: OCT./83
mica and chlorite are much more abundant. Graphite is quite commonly developed also. The limestones are blue-grey to white rocks. The sheared greenstones are abundant in the area, but little can be said with regard to their relations with the remainder of the schistose rocks. It is possible that they represent both intrusive and extrusive types.

The Cretaceous Nelson Plutonic and Valhalla Plutonic rocks intrude the Anarchist group. These were described by Daly (1912) as the Rock Creek Plutonics and include granodiorite, basic diorite and serpenterized diorite.

Diorite. - The diorite is dark green, medium-grained rock. It is greatly altered, but the original essential constituents seem to be biotite, green hornblende, and plagioclase of medium acidity. Magnetite, apatite, titanite, and interstitial quartz are the primary accessories. The rock may be classified as a biotite-hornblende diorite.

Granodiorite. - The granodiorite sends apophyses into the diorite and at a few points encloses blocks of it, so that their relative age is undetermined. The granodiorite is rather coarse-grained and of a reddish-gray colour much lighter than that of the diorite. The other essentials are quartz, biotite, and hornblende, each of which has optical characters like those of the respective minerals in the older diorite. This rock is notably crushed and altered. Epidote, calcite, and kaolin are very abundant secondary constituents.

Dunite. - Dunite, generally altered to serpentine, occurs at two different localities in the valleys of Rock creek and Kettle river. One mile up the river from their confluence several large outcrops of heavily slickensided serpentine and talc, shown microscopically to have been derived from a pure olivine-chromite rock, occur.

ECONOMIC GEOLOGY

Camp McKinney was one of the early lode gold camps of British Columbia with one property, the Cariboo, producing somewhat over $1,000,000 in gold, largely between 1894 and 1903. A number of other properties were developed at this time but so far as the writer is aware none of these produced important amounts of ore.
The chief type of deposit consists of quartz veins occurring in the schists of the Anarchist series and in general paralleling the strike and dip of the schistosity. The general trend in Camp McKinney proper is east-west, but elsewhere veins running in many different directions were noted. These quartz veins are mineralized with pyrite accompanied by galena and sphalerite and carry in places good values in gold. Where pyrite occurs alone in the veins the values are apt to be low. The amount of silification varies greatly from place to place along the strike of individual veins; in some cases bodies of quartz 5 or 6 feet wide narrow within a few feet to one or more stringers along the same strike. It appears probable that the ore occurs in shoots.

The principal veins occur on the northern side of the main mass of granodiorite. On the south side of this granodiorite there are, however, numerous veins and shear zones in the Anarchist schists carrying quartz and pyrite. No veins were seen in the granodiorite itself, but it is quite possible that veins do occur in this rock.

At least 12 mineral occurrences including the Gold Hill and the Cariboo-Amelia have received the attention of exploration crews since the discovery of gold in the area in the latter part of the last century. All of these are in the Anarchist group and all are within a few kilometres of the High Gold claim.

The High Gold claim is mapped by Little and others as being underlain by the Anarchist group and traversing by the writer confirmed the presence of these rocks on the claim.

On a more regional scale the Anarchist group hosts some of the deposits in the Greenwood-Kettle River area.

CONCLUSIONS

The High Gold claim of Tarron Resources Ltd. is underlain by the favorable sedimentary rocks of the Anarchist Group. These rocks host most, if not all, of the mineralization in the region including the former gold producing area, Camp McKinney as well as some of the mineral deposits and ore bodies to the east in the Greenwood-Kettle River area.
Mineralization has been discovered and work has been done on claims to the south and south-east. Preliminary geological, geophysical and geochemical work on these adjoining claims have produced some positive results.

Preliminary work by the writer in October 1983 on the High Gold claim consisting of geology, geophysics and geochemistry was encouraging.

Although no mineralization has been found, this ground is situated in an extremely interesting geological environment from which gold ore has been mined and on which numerous mineral occurrences have been located and worked on.

A perusal of the history of the area makes it clear that no modern exploration technology has been applied to High Gold area.

The High Gold claim has a suitable geological framework for gold and base metal mineralization. This type of mineralization has been mined from this area in the past at Camp McKinney and is known to exist close by.

It is reasonable to conclude that the High Gold claim represents good prospecting ground and should be the subject of a thorough and diligent search for ore.
RECOMMENDATIONS

A four stage program is recommended to explore the High Gold claim for gold, silver and base metal mineralization.

Stage I was completed early in October 1983 and consisted of research into the files and records in the Mines Department and Geological Survey of Canada and a field program of reconnaissance geology, geophysics, and geochemical sampling. The results of this program and the results of past work by others in the area indicates unexplored mineral potential and further work is recommended. It is recommended that the company do Stage II.

Stage II would consist of work aimed at establishing and delineating on the High Gold claim favorable geological horizons and alteration zones or structures in which to search for ore. The steps would be:

1. Linecutting with a north-south baseline and crosslines at 100 metre intervals with pickets marked at 30 metre intervals along the lines.

2. Geological mapping, trenching, where necessary, to give the necessary rock exposure.

3. Magnetometer and very low frequency electromagnetic (VLF) survey on alternate lines with readings each 30 metres.

Stage III would be a follow-up on Stage II and is aimed at defining drill targets by carrying out the following work:

1. Geochemical soil sampling on a density of 100 x 30 metres.

2. Conventional electromagnetic survey on alternate lines in selected areas.

3. Trenching and sampling on the results of the above work.
Stage IV would consist of testing the results of the above work by diamond drilling. The scope and extent of this work is dependent entirely on the results of Stage II and Stage III of the above recommended program and cannot be planned until this pre-drilling work has been completed. Diamond drilling is recommended only if the results of the pre-drilling work justify it.

A 1,000 metre program of diamond drilling should be budgeted for.
COST ESTIMATES

Stage I Preliminary orientation work. Geological reconnaissance, profile magnetometer and soil samples - completed in October 1983

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td></td>
</tr>
<tr>
<td>1. Pre drilling</td>
<td></td>
</tr>
<tr>
<td>2. Linecutting</td>
<td>7,000</td>
</tr>
<tr>
<td>Spaced at 100 metres, pickets at 30 metres on the lines</td>
<td></td>
</tr>
<tr>
<td>3. Geological mapping</td>
<td>3,000</td>
</tr>
<tr>
<td>Using air photos and grid lines for control</td>
<td></td>
</tr>
<tr>
<td>4. Magnetometer and VLF</td>
<td>10,000</td>
</tr>
<tr>
<td>TOTAL STAGE I</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

Stage II Pre drilling

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage II</td>
<td></td>
</tr>
<tr>
<td>1. Soil sampling & assaying</td>
<td>10,000</td>
</tr>
<tr>
<td>Costs include collection, and assaying samples</td>
<td></td>
</tr>
<tr>
<td>2. Electromagnetic survey</td>
<td>5,000</td>
</tr>
<tr>
<td>Includes interpretation</td>
<td></td>
</tr>
<tr>
<td>3. Trenching & assaying</td>
<td>5,000</td>
</tr>
<tr>
<td>To expose bedrock in areas of interest</td>
<td></td>
</tr>
<tr>
<td>TOTAL STAGE II</td>
<td>$20,000</td>
</tr>
</tbody>
</table>

Stage IV Diamond Drilling (contingent upon the results of previous work)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage IV</td>
<td></td>
</tr>
<tr>
<td>1. Allow 1000 metres at $100 per meter. This is all inclusive and involves</td>
<td>$100,000</td>
</tr>
<tr>
<td>mobilization and demobilization, drilling costs, assays, supervision, etc.</td>
<td></td>
</tr>
</tbody>
</table>

November 1, 1983

Respectfully submitted

E. G. Kennedy
Geologist

E G Kennedy P.Eng.
KATCHER
COST STATEMENT

Dale Hoffman - report preparation

1 day @ $100 $ 105.21
Maps - 5.21

Analysis - Vangeochem

$ 219.15
166.05
655.35
526.85

1,567.40 1,567.40

Fineline - drafting, maps reproduction

250.00
137.98

387.98 387.98

Marloch Resources - contractors

October 7, 8, 9, 11th -

Equipment and Supplies 31.58
Groceries 36.72
Accommodations and Meals 204.57
Vehicle and gas 638.26

Wages: M.A. Mackillop 4.5 days
@ 120 + 30/day 657.00
M.B. Mackillop 4.0 days
@ 120 + 30/day 600.00

1,275.00
+ 20% 255.00

1,530.00 1,530.00 2,461.13

Marloch Resources - contractors

October 14, 16, 17, 18

Groceries 30.99
Accommodations and meals 195.63
Vehicle and gas 499.92

Wages: M.A. Mackillop 4.0 days
@ 120 + 30/day 600.00
M.B. Mackillop 2.5 days
@ 120 + 30/day 375.00

975.00
+ 20% 195.00

1,170.00 1,170.00 1,846.54
<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.G. Kennedy</td>
<td></td>
</tr>
<tr>
<td>Oct. 7, 8, 9, 10 - Field Time and Travel</td>
<td></td>
</tr>
<tr>
<td>Travel - 60 miles @ 30¢/mile</td>
<td>180.00</td>
</tr>
<tr>
<td>Gasoline</td>
<td>64.02</td>
</tr>
<tr>
<td>Meals and Accommodation</td>
<td>167.98</td>
</tr>
<tr>
<td>Supplies</td>
<td>52.39</td>
</tr>
<tr>
<td>Office</td>
<td></td>
</tr>
<tr>
<td>Maps, report, administration</td>
<td>2,500.00</td>
</tr>
<tr>
<td>5 days @ $500.00</td>
<td></td>
</tr>
<tr>
<td>General Unrecorded Expenses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>667.35</td>
</tr>
<tr>
<td></td>
<td>$10,000.00</td>
</tr>
</tbody>
</table>
AMENDMENTS TO
"A REPORT ON RECONNAISSANCE
GEOLOGICAL, GEOCHEMICAL and
GEOPHYSICAL EXPLORATION - 1983
ON
THE HIGH GOLD CLAIM
OF
TARRON RESOURCES LTD."

E.G. KENNEDY, P.Eng.
I. SOIL GEOCHEMICAL SURVEY - SAMPLING PROCEDURE & INTERPRETATIONS

A total of 94 soil samples were collected every 50 metres from the B horizon where ever possible utilizing a heavy grubhoe along two, two kilometer flag and compass soil lines spaced 650 metres apart. Samples were sent to Vangeochem Labs in Vancouver where Cu, Pb, Zn, Ag, Au, As and Hg were analyzed utilizing techniques as described in a letter by Vangeochem personnel entered in the back of this report.

Values in general are low and well below threshold for most elements. Gold however, on the south line records two "anomalous" values 25 and 35 ppb at stations 1+50E and 10+00N, respectively. Due to the thick glacio-fluvial overburden cover of the claim block these two isolated anomalies can not be adequately explained as of yet.

II. MAGNETIC SURVEY - THEORY AND PROCEDURE

The magnetometer survey was carried out utilizing a Sintrex MP-2 proton precession magnetometer. The survey followed the lines and stations described for the geochemical survey and was used in this reconnaissance survey to:

(1) directly locate concentrations of magnetic ore associated minerals;
(2) assist in geological interpretations in overburden covered areas;
(3) aid in structural, particularly fault interpretation.

A base reading was established before the survey commenced and checked at the end of the day for daily variations if significant drift occurred with the base station values.

Overall response of the property in general is low. The most obvious feature in the data is the increased magnetic gradient on the west edge of the south line. It is postulated at this time that this increased gradient may represent granodiorite as observed in the southwest corner of the claim area.
TO: Ted Kennedy Consultants
 #607 - 610 Jarvis Street
 Vancouver, B.C. V6E 3M4

FROM: Vangeochem Lab Ltd.
 1521 Pemberton Ave.
 North Vancouver, B.C. V7P 2S3

SUBJECT: Analytical procedure used to determine hot acid soluble
 arsenic in geochemical silt, soil, lake sediment and
 rock samples.
 For 1983 Analytical Reports

1. Sample Preparation
 (a) Geochemical soil, silt, lake sediment or rock samples
 were received in the laboratory in wet-strength 3 1/2 x
 6 1/2 Kraft paper bags and rock samples in 4" x 6"
 Kraft paper bags.
 (b) The wet samples were dried in a ventilated oven.
 (c) The dried soil and silt samples were sifted by hands
 using a 8" diameter 80-mesh stainless steel sieve.
 The plus 80-mesh fraction was rejected and the minus
 80-mesh fraction was transferred into a new bag for
 analysis later.
 (d) The dried rock samples were crushed by using a jaw
 crusher and pulverized to 100-mesh or finer by using a
 disc mill. The pulverized samples were then put in a
 new bag for later analysis.

2. Method of Digestion
 (a) 0.25 gram of the minus 80-mesh sample was used.
 Samples were weighed out by using a top-loading
 balance.
(b) Samples were heated in a sand bath with concentrated perchloric acid (70 – 72% HCl by weight) at a medium heat for four hours.

(c) The digested samples were diluted with demineralized water.

3. Method of Analysis

(a) Potassium iodide and stannous chloride in HCL were added to the digested samples.

(b) Zinc metal was introduced and the arsenic in solution was gassed off as arsenic through a glass wool scrubber plug saturated with lead acetate and into a solution of silver diethylthiocarbamate in chloroform with i-ephrine, forming a red complex with the silver diethylthiocarbamate.

(c) The concentration of the arsenic was determined colorimetrically by comparing the intensity of the color of the red complex with a set of known standards prepared in a similar fashion as the samples.

4. The analyses were supervised or determined by Mr. Eddie Tang or Mr. Conway Chun and their laboratory staff.

Eddie Tang
Vangeochem Lab Ltd.
TO: Ted Kennedy Consultants
 #607 - 610 Jervis Street
 Vancouver, B.C. V6E 3M4

FROM: Vangeochem Lab Ltd.
 1521 Pemberton Ave.
 North Vancouver, B.C. V7P 2S3

SUBJECT: Analytical procedure used to determine hot acid soluble for Cu, Pb, Zn & Ag in geochemical silt, soil, and samples.
For 1983 Analytical Reports

1. Method of Sample Preparation
 (a) Geochemical soil, silt or rock samples were received in the laboratory in wet-strength 4" x 6" Kraft paper bags or rock samples sometimes in 8" x 12" plastic bags.
 (b) The dried soil and silt samples were sifted by hand using a 8" diameter 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus 80-mesh fraction was transferred into a new bag for analysis later.
 (c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

2. Method of Digestion
 (a) 0.50 gram of the minus 80-mesh samples was used. Samples were weighed out by using a top-loading balance.
 (b) Samples were heated in a sand bath with nitric and perchloric acids (15% to 85% by volume of the concentrated acids respectively).
 (c) The digested samples were diluted with demineralized water to a fixed volume and shaken.
3. Method of Analysis

Cu, Pb, Zn & Ag analyses were determined by using a Techtron Atomic Absorption Spectrophotometer Model AA4 with their respective hollow cathode lamps. The digested samples were aspirated directly into an air and acetylene mixture flame. The results, in parts per million, were calculated by comparing a set of standards to calibrate the atomic absorption units.

4. Background Correction

A hydrogen continuum lamp is used to correct the silver background interferences.

5. The analyses were supervised or determined by Mr. Conway Chun or Mr. Eddie Tang and the laboratory staff.
CERTIFICATE

I, EDWARD GUNNAR KENNEDY, of Vancouver, in the Province of British Columbia, hereby certify that:

1. I am a member, in good standing, of the Association of Professional Engineers of Saskatchewan and am Registered with the Alberta Association of Professional Engineers, Geologists and Geophysicists as a Professional Geologist.

2. I have a Bachelor's Degree in Geology from the University of Saskatchewan (1955).

3. I am a Consulting Mining Geologist and reside at Vancouver, British Columbia, and Wamberal, N.S.W. Australia.

4. I have practiced as an exploration and mining geologist for more than 25 years.

5. This report is based upon a study of data available through the British Columbia Department of Energy and Mines, and published and unpublished reports on the area.

6. A property examination and Stage One of the recommended program was completed on October 8 and 9, 1983. Information derived from this work was used in this report.

7. I have no interest, direct or indirect, in the property under discussion, nor do I expect to receive any interest in the property nor do I expect to receive any interest, directly or indirectly in the properties or securities of Tarron Resources Ltd.

Dated at Vancouver, British Columbia, this 1st day of November, 1983.
REFERENCES

Geology Kettle River West Half, British Columbia.

Cairnes, C.E. 1937 Mineral Deposits of the West Half of Kettle River area,
British Columbia.

Daly, R.A. 1912 Geology of the North American Cordillera at the Forty-
Ninth Parallel.

Cockfield, W.E. 1935 Lode Gold Deposits of Fairview Camp, Camp McKinney
and Vidette Lake area near Osoyoos, British Columbia.
1935 Map 316A, Camp McKinney, Similkameen District.

Minister of Mines
British Columbia
Annual Reports 1913, 1931

Department of
Energy and Mines
British Columbia
Assessment work files

Unpublished
reports by
E. Livgard, P.Eng.
G. Cavey, P.G.A.C.
B.A. Fenwick - Wilson
M.G. Mooney, P.Eng.
L. Sookachoff, P.Eng.