ASSESSMENT REPORT
ON THE
OXIDE PEAK PROPERTY
(KIDVIEW AND AMETHYST VALLEY CLAIMS)

Located in the Toodoggone River Area
Omineca Mining Division
NTS 94-E-6E
British Columbia

at
57° 29' N. Latitude
127° 09' W. Longitude

for

Operator: GEOSTAR MINING CORPORATION
Owner: C. KOWALL

by

D.A. Yeager, Geologist
C.K. Ikona, P. Eng.

February, 1986
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 LIST OF CLAIMS</td>
<td>2</td>
</tr>
<tr>
<td>3.0 LOCATION, ACCESS AND GEOGRAPHY</td>
<td>2</td>
</tr>
<tr>
<td>4.0 HISTORY OF REGIONAL EXPLORATION</td>
<td>3</td>
</tr>
<tr>
<td>5.0 REGIONAL GEOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>6.0 PROPERTY GEOLOGY</td>
<td>5</td>
</tr>
<tr>
<td>6.1 Lithology</td>
<td>5</td>
</tr>
<tr>
<td>6.2 Alteration</td>
<td>5</td>
</tr>
<tr>
<td>6.2.1 Kidview</td>
<td>5</td>
</tr>
<tr>
<td>6.2.2 Amethyst Valley</td>
<td>6</td>
</tr>
<tr>
<td>6.3 Mineralization</td>
<td>6</td>
</tr>
<tr>
<td>6.3.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>6.3.2 Amethyst Valley Chalcedony Stockwork</td>
<td>7</td>
</tr>
<tr>
<td>6.3.3 Amethyst Valley Silica Lenses</td>
<td>8</td>
</tr>
<tr>
<td>6.3.4 Kidview Silicified Shear Zone</td>
<td>8</td>
</tr>
<tr>
<td>6.3.5 Other Zones</td>
<td>9</td>
</tr>
<tr>
<td>7.0 DISCUSSION AND CONCLUSIONS</td>
<td>10</td>
</tr>
<tr>
<td>8.0 RECOMMENDATIONS</td>
<td>11</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Property Location Map</td>
<td>1</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Claim Map</td>
<td>2</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Regional Geology Map</td>
<td>4</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Schematic Regional Cross Section</td>
<td>4</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Property Compilation Map</td>
<td>9</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Sample Location Map</td>
<td>Map Pocket</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Geochem Location Map/Silver(Ag) Values</td>
<td>Map Pocket</td>
</tr>
</tbody>
</table>

LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix I</td>
<td>List of References</td>
</tr>
<tr>
<td>Appendix II</td>
<td>Certificate of Analysis</td>
</tr>
<tr>
<td>Appendix III</td>
<td>Statement of Qualifications</td>
</tr>
<tr>
<td>Appendix IV</td>
<td>Engineer's Certificate</td>
</tr>
<tr>
<td>Appendix V</td>
<td>Cost Statement</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The Oxide Peak property, consisting of 40 units in the Kidview and Amethyst Valley claims, is held under option agreement by Geostar Mining Corporation of Vancouver, B.C. The property is situated in the Toodoggone River region of British Columbia where exploration has led to the discovery of the Baker Gold Mine (pre-production reserves of 100,000 tons @ 0.92 oz/T Au, 18.7 oz/T Ag), S.E.R.E.M.'s Lawyers deposit (pre-1985 reserves of 1.035 million tons @ 0.21 oz/T Au, 7.58 oz/T Ag) and Energex's Al property (264,000 tons "open-pittable" @ 0.248 oz/T Au). The British Columbia government has announced that funding will be made available to construct an access road to link the district with the existing Omineca Resource Road.

The Oxide Peak property, adjoining Energex's claims, is underlain by Toodoggone Volcanics and occurs within a geologic environment similar to the main properties in the district.

Recent exploration on the claims has outlined several multi-element geochemical targets coincident with hydrothermal alteration zones of the type consistent with epithermal gold and silver deposits.

The Oxide Peak property is at this time considered to have the potential for the discovery of a Toodoggone type gold deposit and an aggressive exploration program should be undertaken to fully assess the economic potential of the claims. An exploration program with a phased budget of $150,000 is recommended.
2.0 LIST OF CLAIMS

Examination of mineral titles registered with the British Columbia Ministry of Mines and Petroleum Resources shows the claims are held by Charles Kowall, the original staker. Separate documents examined indicate that the claims are optioned to Geostar Mining Corporation.

The following table summarizes the claim data.

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Record No.</th>
<th>Record Date</th>
<th>No. of Units</th>
<th>Tag No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidview</td>
<td>5706</td>
<td>August 22, 1983</td>
<td>20</td>
<td>58159</td>
</tr>
<tr>
<td>Amethyst Valley</td>
<td>5707</td>
<td>August 22, 1983</td>
<td>20</td>
<td>58158</td>
</tr>
</tbody>
</table>

The next expiry date is August 22, 1986. After filing the 1985 assessment work program, additional credits will be granted until August 22, 1987.

Claim posts examined in the field indicate that the claims were staked in accordance with the requirements of the B. C. Mineral Act.

3.0 LOCATION, ACCESS AND GEOGRAPHY

The claims lie on NTS sheet 94-E-6E, Omineca Mining Division, at approximately 57° 29' N. latitude, 127° 09' W. longitude.

The property is located in the Tooodogone River area of northern British Columbia approximately 305 km north of Smithers, B. C. It lies east and north of McClair Creek, which flows into the Tooodogone River (Arctic drainage) 11 km to the southeast. Access at present is by charter aircraft for 273 km from Smithers to the Sturdee airstrip,
Energex 1985
"open pittable" reserves
264,000 Tons at 0.248 oz/T Gold

Toodoggone Gold Camp
British Columbia
Property Location Map
• Gold Occurrences

Geostar Mining Corp.
Claim Map
Oxide Peak Property
Toodoggone District
NTS 94-E-6E B.C.
February, 1986

Pamicon Developments Ltd.
then a further 30 km north by helicopter to the claims. The British Columbia government announced in 1985 that funding would be available to extend an already existing resource road to the Johansen and Thutade Lakes area into the Toodoggone. The decision to proceed with road construction is expected to be made as soon as any of the property owners in the district announce the commencement of advanced development work.

The property lies at the northern extremity of the Omineca Mountains and the southern limits of the Cassiar Mountains. The area is characterized by wide U-shaped, drift-filled valleys and deeply incised V-shaped upland valleys. In the vicinity of the Oxide Peak property the terrain generally consists of steep rugged mountains and broad drift filled valleys. The valleys are typically mixed grassland and scrub brush while the uplands are characterized by scrub timber grading into grassy alpine growth. The highest elevations support only mosses and lichen.

Elevations on the property range from 1380 m to 2011 m. Water is plentiful in the main streams on the property, the highest dependable year round supply occurring at the 1700 to 1800 metre level.

4.0 HISTORY OF REGIONAL EXPLORATION

The first known mining exploration activity in the area was placer mining on the Toodoggone River and McClair Creek in the 1930's. Several lode prospecting ventures from that era succeeded in discovering high grade vein material at several localities in the Toodoggone district but unfavourable economic conditions precluded the development of the showings.
at that time. The importance of the discoveries was not recognized and their existence was soon forgotten.

In the late 1960's, modern exploration programs were carried out in the region searching for base metal porphyry deposits associated with alkalic intrusive systems. Following up on silt samples with anomalous base metal values led to the discovery of gold and silver mineralization by Kennco on the Chappelle property (later Baker Mine) and by Sumitomo (later Sumac Mines) on Albert's Hump. The early work done by these two companies drew attention to the area and led to the development by other companies of what are presently the three main properties in the region: Multinational's Baker Mine (Chappelle), SEREM's Lawyers deposit and Energex's Al deposits.

5.0 REGIONAL GEOLOGY (Forster 1981)

The property lies in the Intermontane Geologic Belt and is underlain by Lower Jurassic pyroclastic volcanic rocks of the Toodoggone volcanics. The Toodoggone volcanics occur in a northwesterly trending belt bounded on the east by the Omineca Mountains and on the west by the Stikine Plateau. Pre-Toodoggone rocks within the region include Permian carbonates of the Asitka Group and Late Triassic Takla volcanics. Hazelton Group volcanics occur in fault contact with Toodoggone rocks and were deposited in a volcanic arc environment during the Early Jurassic. Omineca intrusions of Triassic to Jurassic age invade all pre-Cretaceous rocks within the region. Toodoggone rocks are unconformably overlain to the southwest by sediments of the Cretaceous-Tertiary Sustut Group and Middle to Late Jurassic Bowser Group.
Geostar Mining Corp.

REGIONAL GEOLOGY MAP
OXIDE PEAK PROPERTY
Toodoggone District
NTS 94-E-6E B.C.

February, 1986 Figure: 3
Pamican Developments Ltd.
6.0 PROPERTY GEOLOGY

6.1 Lithology

British Columbia Ministry of Mines mapping indicates that the property is underlain by the lower to middle Jurassic McClair Creek Formation described in the 1985 preliminary geologic map on the Toodoggone area as "Purple, lavender, grey, rarely grey-green, 'crowded' fine to medium-grained plagioclase porphyritic flows; includes some lapilli tuff, breccia, and minor epiclastic beds". The northeast corner of the Amethyst Valley claim is underlain by a fault bounded wedge of upper Triassic Takla Group rocks described as "Dark green augite porphyry basalt flows and breccias with lesser fine-grained andesite to basalt flows and minor interbedded siltstone, tuffaceous sediments, and chert. Contains limestone lenses that may be part of the 'Asitka Group'."

6.2 Alteration

6.2.1 Kidview (Crawford and Vulimiri, 1981)

Oxide Peak, as the name suggests, is highly gossanous (and intensely fractured). The rock weathers rust-brown over most of the exposed area and has been intensely leached to yellow-cream clays, sulphates and oxides along narrow zones. Rust-weathering rock is pervasively altered to chlorite and epidote and contains disseminated pyrite and calcite fracture fillings. Chlorite and epidote alteration extends along fractures in adjoining rocks. Two
areas of rock adjacent to pink feldspar porphyry, are completely altered to blue-white silica and pyrite. Zones of intense leaching and silicification correspond to major fracture systems.

6.2.2 Amethyst Valley

Rusty pyritic gossans flank the north trending faults bounding the Takla Group rocks. Small, gossanous and highly leached zones occur at the intersection of other minor faults and shear zones. These gossans appear to represent argillic alteration zones and contain clays, sericite, limonites and pyrite. They are usually cored by silicified systems and flanked by zones of chlorite-epidote propylitic alteration.

6.3 Mineralization

6.3.1 Introduction

A number of large quartz vein systems and quartz stockwork breccia zones have been discovered on the property to date. The mode of occurrence, associated alteration and accompanying geochemistry indicate that these silicified zones are epithermal vein systems of the type that commonly contain significant gold and silver deposits in the Toodoggone camp. None of the silicified zones on the Oxide Peak property have been opened up below surface by trenching
nor has all the property been prospected in the detail required to reveal all the silicified systems present.

6.3.2 Amethyst Valley Chalcedony Stockwork

This zone covers an area approximately 300 metres long by 100 metres wide located in the northeast quadrant of the Amethyst Valley claim. The zone appears to trend 150° to 160° and has not been closed off on the southeast end. The zone consists of a number of subparallel vein and stockwork systems trending approximately 035° and dipping vertically. The stockworks consist of 1 mm to 20 cm wide veins variably spaced from 2 cm to 2 m apart. The veins consist of chalcedonic and crystalline quartz, barite, calcite, galena and sphalerite. Rock chip samples taken from stockwork material contained metal values ranging up to 340 parts per billion gold, 14.2 parts per million silver, 50 parts per million arsenic, 1620 parts per million barium, 1691 parts per million copper, 50 parts per million antimony, greater than one percent lead and greater than one percent zinc.

The host rock is a quartz-feldspar porphyritic volcanic hydrothermally altered to a cream or bright pink colour in places. A large gossan lies 200 metres northeast of the chalcedony zone. This fifty percent gossanous area is made up of a lensy, anastamosing fracture zone with a major orientation of 155° dipping steeply to the northeast. Alteration does not appear to be
rock type specific nor confined to specific fracture zones; rather, it floods irregularly to form bright yellow orange outcrops and talus trains. Some rock chips from the gossan contained anomalous levels of copper, zinc and barite.

6.3.3 Amethyst Valley Silica Lenses

This structure occurs in the northern half of the central part of the Amethyst Valley claim and consists of a series of silicified zones in gossans lying along a 700 metre strike length trending 160°. The largest lens is approximately 100 metres long by 4 metres thick and consists of a blue-grey watery looking quartz in a gossanous andesite host rock. Two other similar zones occur with the structure. Chip samples from the zones contained metal values ranging up to 3320 parts per million barium, 281 parts per million copper and 2110 parts per million zinc. The structure has not been investigated for its entire length and is open to the northwest and southeast.

6.3.4 Kidview Silicified Shear Zone

This zone occurs at the centre of the north boundary of the Kidview claim and part way across into the Amethyst Valley claim. The zone strikes 150° and dips vertically. It consists of a recessive weathering shear zone approximately 10 metres wide and 350 metres long.
containing at least three resistant weathering silicified zones. The zones range in intensity from quartz-barite stringers in pyritic andesites to a completely silicified and pyritic, porphyritic volcanic exposed in a 4 metre by 6 metre outcrop. Float indications suggest this occurrence is much larger. Chip samples taken along the zone contained metal values ranging up to 260 parts per billion gold, 14.0 parts per million silver, 450 parts per million arsenic, 1000 parts per million barium, 406 parts per million copper, 148 parts per million molybdenum, 3120 parts per million lead and 520 parts per million zinc.

6.3.5 Other Zones

A large number of smaller silicified zones were noted and sampled during the mapping and prospecting. Most of these were restricted to stringers or veinlets contained in narrow shear zones and were limited in size and extent. Others of the silicified zones were larger stockworks or breccias that contained only a minor overall amount of silica because of narrow vein widths and wide spacing of the host fractures. Anomalous levels of precious and base metals were contained in some of the chip samples taken from these zones.

By no means has all of the property been prospected and mapped in detail. The number, size and intensity of gossans and alteration
PROPERTY COMPILATION MAP
OXIDE PEAK PROPERTY
Toodoggone District
NTS 94-E-6E BC.
February, 1986
Figure: 3
Pamicon Developments Ltd.

LEGEND

quartz fissure zones
silicified zones
gochemically anomalous zones
hydrothermal alteration zones

Geostar Mining Corp.
zones visible on the unexplored parts of the property suggest that additional detailed investigation will continue to reveal significant epithermal systems.

7.0 DISCUSSION AND CONCLUSIONS

The Toodoggone area, soon to be accessible by road, is on the verge of becoming a true mining district in the sense that there appears to be a number of economically viable gold and silver deposits within the geologic/physiographic region. The geologic features of these deposits indicate that they are epithermal systems, which commonly contain high grade, bonanza type mineralization that can be very profitable yet require a relatively small pre-production capital expenditure. These systems typically extend to considerable depth and may host economic ore shoots at any level in the system without necessarily showing ore grade values at surface. Western mining history has shown epithermal mining districts to commonly be multi-deposit districts.

The excellent exploration potential of the Oxide Peak property is demonstrated by the following features: (a) the property is adjacent to Energex's Moose and JD properties; (b) the property is underlain by favourably altered Toodoggone Volcanics host rocks; (c) although three large fissure vein systems and many smaller ones have already been found to date on the property, over two-thirds of the ground has yet to be prospected in detail; (d) rock chip sampling on the systems has demonstrated the type of enhanced base and precious metal values consistent with epithermal gold and silver deposits.

A composite of chips was taken from each site of bedrock or felsite mineralized subcrop showing silification and alteration.
8.0 RECOMMENDATIONS

The 1985 program on the property complied with Stage I recommendations made verbally by the writers prior to the commencement of the program. The following is a recommended ongoing exploration program.

Stage II

(a) Obtain aerial photograph blowup coverage for the property and complete the detailed prospecting, mapping and rock chip sampling for the entire property. $19,000

(b) Geologic mapping, soil and rock chip sampling, geophysical orientation studies on picket grids over zones indicated by Stage II(a). 10,500

(c) Preliminary hand trenching on any targets indicated by Stages II(a) and II(b). 4,000

(d) In-depth investigation of best zone indicated by Stages II(a)-II(c) either by detailed trenching or 200' of shallow drilling. Either option anticipated to cost: 10,000

 Engineering and Reporting: 2,000
 Sub-total: 45,000
 Approx.10% Operators Overhead: 4,500
 Total Stage II: $50,000
Stage III

(a) Preliminary drill testing of targets outlined by Stage II:

1820 feet @ $50.00/foot = $91,000

Approx. 10% Operators Overhead: 9,000

Total Stage III: $100,000

Total Stage II & III: $150,000

Respectfully submitted,

D. A. Yeager, Geologist

[Signature]

C. K. Ikona, P. Eng.
APPENDIX I

LIST OF REFERENCES

Sample	Base	Zn	Al	As	Ba	Be	B	Ca	Co	Cr	Cu	Mn	Ni	Pb	Sb	Sr	Sn	Ti	V	Zn		
	10.15	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.16	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.17	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.18	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.19	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.20	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.21	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.22	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.23	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.24	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.25	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.26	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
	10.27	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2	10.1	0.2
Certificate of Analysis

To: PAMICON DEVELOPMENTS LIMITED
215 - 543 GRANVILLE ST.,
VANCOUVER, B.C.
V6C 1X8

Sample Description
212 Brooksbank Ave.
North Vancouver, B.C.
Canada V7J 1C1
Telephone: (604) 984-2221
Telex: 043 62097

Analyst
Chemex Labs Ltd.

Nitric-Aqua-Regia digestion of 0.5 gms of material followed by ICP analysis. Since this digestion is incomplete for many minerals, values reported for Al, Sb, Ba, Be, Ca, Cr, Co, La, Mg, Mn, Na, Sr, Ti, Tl, W and V can only be considered as semi-quantitative.

Comments:

| Sample | Au ppm | Ag ppm | As ppm | Ba ppm | Be ppm | Br ppm | Ca ppm | Co ppm | Cr ppm | Cu ppm | Fe ppm | K ppm | La ppm | Mg ppm | Mn ppm | Na ppm | Ni ppm | Pb ppm | Sb ppm | Sr ppm | Ti ppm | Tl ppm | Tm ppm | V ppm | W ppm | Zn ppm |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| 215-29 | 0.21 | 0.2 | 50 | 170 | 0.5 | 0.04 | 0.5 | 1 | 63 | 1.04 | 1.94 | 0.15 | 10 | 0.01 | 23 | 1 | 0.01 | 1 | 30 | <10 | 30 | 0.01 | 10 | 5 | <10 | 10 |
| 215-30 | 0.62 | 2.0 | 100 | 100 | 0.5 | 2.27 | 0.5 | 9 | 48 | 3.79 | 1 | 0.29 | 10 | 0.25 | 1046 | 3 | 0.01 | 2 | 870 | 15 | 0.01 | 10 | 15 | <10 | 10 |
| 215-31 | 0.35 | 0.6 | 100 | 100 | 0.5 | 0.19 | 1.0 | 6 | 45 | 3.01 | 1 | 0.14 | 10 | 0.05 | 552 | 10 | 0.5 | 1 | 340 | 554 | 2 | 0.01 | 10 | 15 | <10 | 10 |

Certified by [Signature]
Chemex Labs Ltd.

212 Brooksbank Ave.
North Vancouver, B.C.
Canada V7J 2C1

Telephone: (604) 984-0221
Fax: 043-52597

Analysts

Tel.: 604-772-2700
Telex: 043-52597

Worldwide Analytical Laboratory Services

Certificate of Analysis

TO: PAMICON DEVELOPMENTS LIMITED

215 - 543 GRANVILLE ST.
Vancouver, B.C.

INVOICE

I0: 215-543 GRANVILLE SI.
VANCOUVER, B.C.

VICTORIA 1X8

Date: 26-SEP-85
P.O.: NONE

OXIDE PEAK

Semiquantitative multi-element ICP analysis
Nitric-Aqua-regia digestion of 0.5 g of material followed by ICP analysis. Since this digestion is incomplete for many minerals, values reported for Al, Sb, Ba, Be, Ca, Cr, Ga, La, Mg, K, Na, Sr, Ti, Ti, W and V can only be considered as semiquantitative.

COMMENTS:

Certified by: [Signature]
CERTIFICATE OF ANALYSIS

TO: PAMICON DEVELOPMENTS LIMITED
DATE: 26-SEP-85
INVOICE: I8516473
CERT. #: A8516473-002-A

Comments:
Semi quantitative multi element ICP analysis
Nitric-Aqua-Regia digestion of 0.5 g of material followed by ICP analysis. Since this digestion is incomplete for many minerals, values reported for Al, Sb, Ba, Be, Ca, Cr, Ga, La, Mg, K, Na, Sr, Ti, Ti, W and U can only be considered as semi-quantitative.

Comments:
Semi-quantitative.
Since this digestion is incomplete for many minerals, values reported for Al, Sb, Ba, Be, Ca, Cr, Ga, La, Mg, K, Na, Sr, Ti, Ti, W and U can only be considered as semi-quantitative.

| Sample description | Au ppm | Ag ppm | As ppm | Ba ppm | Be ppm | Bi ppm | Ca ppm | Cd ppm | Co ppm | Cr ppm | Cu ppm | Fe ppm | Ga ppm | K ppm | Mg ppm | Mn ppm | Na ppm | Ni ppm | Pb ppm | Sb ppm | Se ppm | Sn ppm | Ti ppm | W ppm | Zn ppm |
|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
Chemex Labs Ltd.

CERTIFICATE OF ANALYSIS

TO: PAMICON DEVELOPMENTS LIMITED
215 - 543 GRANVILLE ST.,
VANCOUVER, B.C.
INVOICE #: AB8516473-003-A
DATE: 26-SEP-85

Semi quantitative multi element ICP analysis
Nitric-Aqua-Regia digestion of 0.5 g of material followed by ICP analysis. Since this digestion is incomplete for many minerals, values reported for Al, Sb, Ba, Be, Ca, Cr, Ga, La, Mg, K, Na, Sr, Ti, W and V can only be considered as semi-quantitative.

| Sample description | Au ppm | Ag | As | Ba | Be | Bi | Ca | Cd | Co | Cr | Cu | Fe | Ga | K | La | Mg | Mn | Mo | Na | Ni | Pb | Sb | Sr | Ti | Zn |
|--------------------|--------|
| DX 089 | | | | 0.39 | 54.5 | 129 | 7 | 0.67 | 0.22 | 0.02 | 272 | 5 | 0.01 | 250 | 4 | 4212 | 10 | 13 | <10 | <10 | <10 | 4 | 7040 | |
| DX 090 | | | | 0.33 | 2.4 | 2 | 129 | 7 | 0.67 | 0.22 | 0.02 | 272 | 5 | 0.01 | 270 | 4 | 74 | 10 | 13 | <10 | <10 | <10 | 4 | 150 | -- |
| DX 091 | | | | 0.28 | 1.0 | 2 | 129 | 7 | 0.67 | 0.22 | 0.02 | 272 | 5 | 0.01 | 400 | 4 | 104 | 10 | 13 | <10 | <10 | <10 | 4 | 150 | -- |
| DX 092 | | | | 0.24 | 1.0 | 2 | 129 | 7 | 0.67 | 0.22 | 0.02 | 272 | 5 | 0.01 | 60 | 4 | 104 | 10 | 13 | <10 | <10 | <10 | 4 | 150 | -- |
| DX 093 | | | | 0.38 | 1.0 | 2 | 129 | 7 | 0.67 | 0.22 | 0.02 | 272 | 5 | 0.01 | 400 | 4 | 104 | 10 | 13 | <10 | <10 | <10 | 4 | 150 | -- |
| DX 094 | | | | 0.32 | 1.0 | 2 | 129 | 7 | 0.67 | 0.22 | 0.02 | 272 | 5 | 0.01 | 60 | 4 | 104 | 10 | 13 | <10 | <10 | <10 | 4 | 150 | -- |
| DX 095 | | | | 0.39 | 1.0 | 2 | 129 | 7 | 0.67 | 0.22 | 0.02 | 272 | 5 | 0.01 | 400 | 4 | 104 | 10 | 13 | <10 | <10 | <10 | 4 | 150 | -- |
| DX 096 | | | | 0.39 | 1.0 | 2 | 129 | 7 | 0.67 | 0.22 | 0.02 | 272 | 5 | 0.01 | 400 | 4 | 104 | 10 | 13 | <10 | <10 | <10 | 4 | 150 | -- |
| DX 097 | | | | 0.39 | 1.0 | 2 | 129 | 7 | 0.67 | 0.22 | 0.02 | 272 | 5 | 0.01 | 400 | 4 | 104 | 10 | 13 | <10 | <10 | <10 | 4 | 150 | -- |
| DX 098 | | | | 0.39 | 1.0 | 2 | 129 | 7 | 0.67 | 0.22 | 0.02 | 272 | 5 | 0.01 | 400 | 4 | 104 | 10 | 13 | <10 | <10 | <10 | 4 | 150 | -- |
| DX 099 | | | | 0.39 | 1.0 | 2 | 129 | 7 | 0.67 | 0.22 | 0.02 | 272 | 5 | 0.01 | 400 | 4 | 104 | 10 | 13 | <10 | <10 | <10 | 4 | 150 | -- |

CERTIFIED BY: [Signature]
CERTIFICATE OF QUALIFICATIONS

I, DAVID A. YEAGER, of Bowen Bay Road, Bowen Island, in the Province of British Columbia, DO HEREBY CERTIFY THAT:

1. I am a Geologist in the employ of Pamicon Developments Ltd. with offices at 215, 543 Granville Street, Vancouver, British Columbia.

2. I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Geology.

3. My primary employment since 1969 has been in the field of mineral exploration, mainly as a Field and Project Geologist.

4. My experience has encompassed a wide range of geologic environments and has allowed considerable familiarization with prospecting, geophysical, geochemical and exploration drilling techniques.

5. This report is based on data generated by work supervised by me on the Kidview and Amethyst mineral claims during the period September 8 to September 12, 1985.

6. I have no interest in the property reported on herein.

7. I hereby grant permission to Geostar Mining Corporation to use this report for any documentation required by any regulatory authority.

DATED at Vancouver, British Columbia, this 14th day of March 1986.

David A. Yeager, Geologist
ENGINEER'S CERTIFICATE

I, CHARLES K. IKONA, of 5 Cowley Court, Port Moody, in the Province of British Columbia, DO HEREBY CERTIFY THAT:

1. I am a Consulting Mining Engineer with offices at 215, 543 Granville Street, Vancouver, British Columbia.

2. I am a graduate of the University of British Columbia with a degree in Mining Engineering.

3. I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.

4. I have not examined the property reported on herein, however, the field work was conducted by David A. Yeager, a Geologist who I have known and worked with for a number of years and in whom I have every confidence.

5. I have no interest in the property reported on herein.

6. I hereby grant permission to Geostar Mining Corporation to use this report for any documentation required by any regulatory authority.

DATED at Vancouver, British Columbia, this 13th day of March, 1986.

Charles K. Ikona, P. Eng.
COST STATEMENT
KIDVIEW AND AMETHYST VALLEY CLAIMS
OMINECA MINING DIVISION

WAGES

D. Yeager (Geologist)
215 - 543 Granville St.,
Vancouver, B.C.
6 Days @ 250.00/day $1,500.00

E. Debock (Labourer)
215 - 543 Granville St.,
Vancouver, B.C.
6 Days @ 200.00/day 1,200.00

D. Fulcher (Labourer)
215 - 543 Granville St.,
Vancouver, B.C.
1 Day @ 150.00/day 150.00 $2,850.00

EXPENSES

Airfare
Vancouver - Smithers 199.16

Accommodations & Meals
2 Men x 6 Days @ 50.00/day 600.00

Fix Wing
Central Mountain Air 535.76

Helicopter
ALC Helicopters 1,589.05
<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expediting</td>
<td>95.29</td>
</tr>
<tr>
<td>Deakin Equipment</td>
<td>146.44</td>
</tr>
<tr>
<td>Freight</td>
<td></td>
</tr>
<tr>
<td>PWA Air Cargo</td>
<td>77.44</td>
</tr>
<tr>
<td>Travel Expenses</td>
<td>318.65</td>
</tr>
<tr>
<td>Drafting</td>
<td>48.13</td>
</tr>
<tr>
<td>Assays</td>
<td></td>
</tr>
<tr>
<td>Chemex Labs Ltd.</td>
<td>2,043.50</td>
</tr>
<tr>
<td>Report</td>
<td>1,000.00</td>
</tr>
<tr>
<td>Supervision & Management @ 15%</td>
<td>998.01</td>
</tr>
<tr>
<td>TOTAL EXPENSES</td>
<td>7,651.43</td>
</tr>
<tr>
<td>TOTAL PROGRAM COST</td>
<td>$10,502.43</td>
</tr>
</tbody>
</table>