ARIS SUMMARY SHEET

District Geologist, Smithers

Off Confidential: 89.03.30

ASSESSMENT REPORT 17237

MINING DIVISION: Liard

PROPERTY: Stik
LOCATION: LAT 57 36 33 LONG 127 30 42
UTM 09 6385962 588929
NTS 094E12E

CLAIM(S): Stik 1-4
OPERATOR(S): Delaware Res.
AUTHOR(S): Beattie, B.C.
REPORT YEAR: 1988, 25 Pages

COMMODITIES
SEARCHED FOR: Gold, Silver

GEOLOGICAL SUMMARY: The claims are underlain by three members of the Middle Jurassic Toodoggone Volcanics and by the Upper Cretaceous Tango Creek Formation (Sustut Group) intruded in one area by a small plug of Middle Jurassic gabbro. Faulting is common and complex and associated with the faulting are a number of quartz vein and alteration zones. The "B" zone (Stik 1) is a quartz-barite zone traceable for 400 metres.

WORK DONE: Prospecting, Geochemical
PROS 250.0 ha
Map(s) - 2; Scale(s) - 1:10 000
ROCK 10 sample(s); AU, AG
RECONNAISSANCE PROSPECTING REPORT

on the

STIK 1-4 Mineral Claims
Liard Mining Division
N.T.S. 94-E/12E
Latitude 57°35' North
Longitude 127°32' West
British Columbia

January 15, 1988

on behalf of
DELAWARE RESOURCES LTD.
Vancouver, B.C.

by

Brent C. Beattie, B.A.Sc.

TAIGA CONSULTANTS LTD.

#400, 534 - 17th Avenue S.W.
Calgary, Alberta T2S 0B1

SUB-RECORDER RECEIVED
MAR 30 1988
M.R. $
VANCOUVER, B.C.
TABLE OF CONTENTS

INTRODUCTION .. 1
 Location and Access
 Property Status
 Physiography
REGIONAL GEOLOGY ... 5
EXPLORATION TARGETS .. 8
EXPLORATION HISTORY ... 9
PROPERTY GEOLOGY ... 11
PREVIOUS EXPLORATION .. 14
1987 EXPLORATION PROGRAM .. 16
SUMMARY AND RECOMMENDATIONS ... 17
CERTIFICATE ... 18
BIBLIOGRAPHY .. 19

APPENDIX
 Summary of Personnel
 Rock Sample Descriptions
 Summary of Expenditures
 Certificates of Analysis
 Analytical Techniques

FIGURES
1 General Location Map .. 2
2 Claim Location Map ... 3
3 Regional Geology ... 6
4 Property Geology ... 12

MAPS
1 Compilation Map Au/Ag Geochemistry 1:10,000
2 1985 Prospecting Traverses, Stream Silt and Rock Geochemistry
INTRODUCTION

Taiga Consultants Ltd. was contracted by Delaware Resources Corp. to complete a reconnaissance geological mapping and prospecting program on the Stik 1-4 mineral claims. A total of 10 rock samples were collected and analyzed for Au and Ag. This assessment report describes the results of this program.

Location and Access

The Stik 1-4 claims (Figure 1) are located in NTS map-area 94-E/12, approximately 520 km northwest of Prince George, B.C., in the Stikine River area. The approximate geographic coordinates of the claim group are 57°35' North latitude and 127°32' West longitude. The claims are accessible from Smithers (300 km to the south) to the Sturdee Airstrip via fixed-wing plane, then by helicopter to the claim group, a distance of approximately 50 km.

Property Status

The Stik 1-4 mineral claims (Figure 2) were staked in the Liard Mining Division under the modified grid system, and have been optioned to Delaware Resources Corp. from the Owner (Golden Rule Resources Ltd.). Relevant claim data are as follows:

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>No. of Units</th>
<th>Record Number</th>
<th>Date of Record</th>
<th>Assessment Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stik 1</td>
<td>20</td>
<td>3400</td>
<td>March 4/85</td>
<td>March 4/88</td>
</tr>
<tr>
<td>Stik 2</td>
<td>20</td>
<td>3401</td>
<td>March 4/85</td>
<td>March 4/88</td>
</tr>
<tr>
<td>Stik 3</td>
<td>20</td>
<td>3402</td>
<td>March 4/85</td>
<td>March 4/88</td>
</tr>
<tr>
<td>Stik 4</td>
<td>20</td>
<td>3403</td>
<td>March 4/85</td>
<td>March 4/88</td>
</tr>
</tbody>
</table>

To the writer's knowledge, the ground currently covered by the Stik 1-4 claims has never before been held, either wholly or partially.
LOCATION MAP

FIGURE 1
Physiography

The claims are situated within the Cassiar Mountains physiographic subdivision of the Interior Plateau. The topography varies from broad U-shaped glacial valleys to steep-sided valley walls to upland areas dominated by rounded to serrated peaks. Elevations range from 1300 m in the valley of Adoogacho Creek to 2023 m on the Stik 4 claim, giving the area a maximum relief of 723 m.

Vegetation varies from mixed woodlands consisting of spruce and poplar in the valley bottoms to alpine meadows generally located above 1600 m. The highest elevations within the claims area have permanent snow cover.

Bedrock is moderately well exposed within the area. In the valleys, bedrock, for the most part, is mantled by glacial and glacio-fluvial deposits with scattered exposures. However, in the uplands, especially above treeline, bedrock exposures and felsenmeer are abundant, allowing effective prospecting and geological mapping to be conducted.
REGIONAL GEOLOGY

The regional geology was mapped by the Geological Survey of Canada at a scale of 1:250,000 under the direction of Dr. H. Gabrielse during 1971-1975, with the results published in 1977 as Open File 483.

During 1971 to 1985, the British Columbia Ministry of Energy, Mines and Petroleum Resources carried out a mapping program in the Tootoggone area, with a compilation (Preliminary Map 61) published at a scale of 1:50,000 in 1985. This mapping, carried out under the direction of T. G. Schroeter, details the units of the Toodoggone Volcanics. The following description of the regional geology is excerpted from his 1981 report.

The Toodoggone area lies within the eastern margin of the Intermontane Belt. The oldest rocks exposed are wedges of crystalline limestone more than 150 metres thick that have been correlated with the Asitka Group of Permian age. The next oldest rocks consist of andesitic flows and pyroclastic rocks including augite-tremolite andesite porphyries and crystal and lapilli tuffs that belong to the Takla Group of Late Triassic age. The Omineca intrusions of Jurassic and Cretaceous age (potassium-argon age of 186 to 200 Ma obtained by the Geological Survey of Canada) range in composition from granodiorite to quartz monzonite. Some syenomonzonite bodies and quartz feldspar porphyry dykes may be feeders to the Toodoggone rocks which unconformably overlie the Takla Group. The 'Toodoggone' volcanic rocks (named informally by Carter, 1971) are complexly intercalated volcanic and volcanic-sedimentary rocks of Early and Middle Jurassic age, 500 metres or more in thickness, along the west flank of a northwest trending belt of 'basement' rocks at least 90 km in length by 15 km in width (Geological Survey of Canada, Open File 306, replaced by Open Files 483 and 606). A potassium-argon age of 186±6 Ma was obtained by Carter (1971) for a hornblende separate from a sample collected from a volcanic sequence 14 km southeast of Drybrough Peak. Four principal subdivisions of 'Toodoggone' rocks have been recognized:

1. Lower volcanic division -- dominantly pyroclastic assemblage including purple agglomerate and grey to purple dacitic tuffs.

2. Middle volcanic division -- an acidic assemblage including rhyolites, dacites, 'orange' crystal to lithic tuffs, and quartz feldspar porphyries; includes welded tuff. The 'orange' colour of the tuffs resulted from oxidation of the fine-grained matrix while the rock was still hot. A coeval period of explosive volcanism included the formation of 'laharic' units and intrusion of syenomonzonite bodies and dykes. This event was accompanied by explosive brecciation along zones of weakness, predominantly large-scale
faults and attendant splays, followed by silicification and deposition of precious and base metals to varying degrees in the breccias. Rounded fragments of Omineca intrusive rocks are rare components in Toodoggone tuffs.

3. Upper volcanic-intrusive division -- grey to green to maroon crystal tuffs and quartz-eye feldspar porphyries.

4. Upper volcanic-sedimentary division -- lacustrine sedimentary rocks (sometimes varved), stream bed deposits, and possible local fanglomerate deposits and interbedded tuff beds.

Many Toodoggone rocks have a matrix clouded with fine hematite dust implying a subaerial origin; however, some varieties may have accumulated in shallow water. The host rock for mineralization (division 2) is an orange to chocolate brown coloured crystal tuff with varying minor amounts of lithic and vitric ash. Broken crystals of plagioclase and quartz are set in a fine-grained 'hematized' matrix of quartz and feldspar. The exact chemical composition(s) and rock name(s) await chemical analyses. Carter (1971) determined the composition of a suite of rocks collected from the Toodoggone area to range from latites to dacite (less than 30 weight per cent quartz); fused beads gave refractive indices between 1.505 and 1.535. Apatite may be a common accessory mineral.

To the west, Upper Cretaceous to Tertiary pebble conglomerates and sandstones of the Lower Tango Creek Formation of the Sustut Group (Eisbacher, 1971) unconformably overlie both Takla Group volcanic rocks and Toodoggone volcanic rocks.

STRUCTURE

The structural setting was probably the most significant factor in allowing mineralizing solutions and vapours to migrate through the thick volcanic pile in the Toodoggone area. The entire area has been subjected to repeated and extensive normal block faulting from Jurassic to Tertiary time. It is postulated that a northwesterly trending line of volcanic centres along a gold/silver-rich 'province' marks major structural breaks, some extending for 60 km or more (for example, McClair Creek system, Lawyers system). Prominent gossans are often associated with structural zones but many contain only pyrite; sulphides occur as disseminations and fracture fillings in Toodoggone and Takla Group rocks. Thrusting of Asitka Group limestones over Takla Group rocks probably occurred during Middle Jurassic time.

Today, Toodoggone rocks display broad open folds with dips less than 25°. The Sustut Group sedimentary rocks have relatively flat dips and do not appear to have any major structural disruptions.
EXPLORATION TARGETS

Precious metals exploration activity in the Toodoggone district mainly is focused on the epithermal gold mineralization associated with subaerial Early Jurassic intermediate to acidic volcanism (Toodoggone Volcanics). Gold mineralization found within Late Triassic alkaline andesitic rocks (Takla Group) and in Early Jurassic calc-alkaline volcanic rocks (Hazelton Group) is generally viewed as being in the "root zone" of the epithermal event related to Toodoggone volcanism (e.g., Baker Mine).

The structural settings of these epithermal vein systems are of primary importance in the development of economic gold mineralization within the Toodoggone Volcanics. Faulting and concomitant brecciation form the conduits for ascending gold-bearing hydrothermal solutions and vapours. It is also essential that repeated fault movement and brecciation occur, allowing multiple infusions of hydrothermal solutions.

Both lateral and vertical alteration patterns occur adjacent to these epithermal vein deposits. The outer propylitic zone consists of chlorite, epidote, calcite, and pyrite. This grades inward to an argillic/phyllic zone consisting of sericite, montmorillonite, illite, and silica. The silicified core zone is comprised of silica, adularia, and/or albite, immediately adjacent to the vein system.

Mineralized zones generally carry abundant hematite and manganese oxides. Native gold, electrum, barite, and minor pyrite occur within these silica-rich zones along with amethystine quartz. Anomalous silver, lead, zinc, and copper values have been found associated with the gold-bearing epithermal vein systems. However, the systems appear to be relatively free of arsenic and antimony.
EXPLORATION HISTORY

Gold was first discovered in the Toodoggone River area in 1925 by Charles McClair. Placer gold was located along what is now called McClair Creek in the period 1925 to 1927 when operations were suspended. Cominco carried out a base metals exploration program in the area in 1933 which resulted in the location of several showings.

In 1968, Kennco Explorations (Western) Ltd. carried out a regional stream sediment geochemical survey in the area. During the acquisition of these samples, gold- and silver-rich float was noted. Follow-up exploration by Kennco, during the period 1969-1974, resulted in the discovery of most of the gold and silver occurrences on the Chappelle and Lawyers properties. In addition, exploration by several other mining companies active in the area located a number of gold occurrences. Conwest optioned the Chappelle property in 1973 and constructed an adit to sample underground. In 1974, DuPont of Canada Exploration Ltd. optioned the Chappelle claims and put the Baker Mine into production based on the drill indicated reserves on the "A" vein. This mine operated from May 1981 to late 1983 when suspended due to exhaustion of the orebody.

Further work by Kennco on the Amethyst Gold Breccia (AGB) zone on the Lawyers property consisted of prospecting, mapping, trenching, and diamond drilling until 1975.

In 1978, the Lawyers property was optioned to Serem who have carried out exploration and development work until the present. In addition, the original AGB zone, two other gold zones (the Duke's Ridge and the Cliff Creek) have been discovered on the Lawyers property. At present, there are three levels of underground development on the AGB zone and a production decision is expected in 1989 by Cheni Gold Mines Ltd. (formerly Serem).

To the north of the Lawyers property, toward the claims under discussion, several other gold/silver deposits have been discovered in the last several years including the "A" Zone on the Mets claims held by Manson
Creek Resources Ltd., and the Thesis III, BV, and Bonanza Ridge Zones held by Energex Minerals Ltd.

At present, reported reserves on the Lawyers property are 1,037,600 tons grading 0.209 oz/ton gold and 7.57 oz/ton silver. Reserves developed to date on the Manson Creek "A" Zone deposit are 92,000 tons grading 0.334 oz/ton gold. Reserves identified to date by Energex are estimated to be in excess of 250,000 tons grading approximately 0.3 oz/ton gold. The Baker Mine, although not currently in production, is undergoing additional exploration by International Resources Ltd., and if additional gold reserves are located, may be placed back into production.
PROPERTY GEOLOGY

Reconnaissance geological mapping (Figure 4) has determined that the claims are underlain by three members of the Toodoggone Formation, by the Tango Creek member of the Cretaceous Sustut Group, and intruded in one area by a small plug of Middle Jurassic gabbro.

The northern portion of the Stik 3 claim and the eastern corner of the Stik 1 claim are underlain by the purple, fine- to medium-grained plagioclase porphyry member of the McClair Creek Formation (Unit 5). This narrow belt is in contact with the Adoogacho Creek Formation volcanics to the south.

Unit 1A (Adoogacho Creek Formation) occupies the south-central area of the Stik 3 claim, the north and north-central areas of the Stik 4 claim, the northern half of the Stik 2 claim, and as currently mapped, much of the south and east areas of the Stik 1 claim. The rocks consist of a series of interbedded purple to grey crystal tuffs and rare purple agglomerate which underlies the tuff where encountered. The tuff varies from dark grey to maroon in colour. The agglomerate consists of purple, fine-grained to aphanitic volcanic clasts cemented by light grey chalcedonic silica.

The southeastern part of the Stik 4 claim and much of the southern part of the Stik 2 claim are underlain by a younger member of the Adoogacho Creek Formation (Unit 1), consisting of pale reddish grey to dark red-brown quartzose biotite/hornblende phyric ash flows with rare occurrences of lapilli tuff and very narrow breccia units. Massive aphanitic leucocratic red altered rhyolitic dykes cut Units 1 and 1A as observed along ridges on the Stik 2 and 3 claims.

PROPERTY GEOLOGY

FIGURE 4
UPPER CRETAUSEOUS

K SUSTUT GROUP (Tango Creek Formation)
polymictic conglomerate, sandstone, shale, carbonaceous mudstone

LOWER TO MIDDLE JURASSIC "Toodogone Volcanics"

6 TUFF PEAK FORMATION
pale purple, grey, green biotite augite hornblende plagioclase porphyry flows

5 McCLAIR CREEK FORMATION
purple, lavender, grey, and rarely grey-green, fine- to medium-grained, plagioclase porphyritic flows, includes some lapilli tuff and breccia.

2 NOYEL CREEK VOLCANICLASTICS
conglomerate with some granitic clasts, graded, cross-bedded grevysacca, well-bedded crystal tuff, epiclastic sediments, local laminated calcareous silt.

2A crystal tuffs in thin well-layered units, some epiclastic sandstone and mudstone.

1 ADDOGATCHO CREEK FORMATION
pale reddish grey to dark red-brown quartzose biotite hornblende phyric ash flows.

1A crystal ash tuff, lapilli tuff, and rare agglomerate with interspersed epiclastic beds, tuffaceous sediments and minor conglomerate.

1B quartzose plagioclase porphyry, jointed, domal intrusion(?) of homogeneous appearing grey to green chloritized and epidote altered rock containing abundant inclusions of Takla volcanics.

UPPER TRIASSIC

TAKLA GROUP
Dark green augite porphyry basalt flows and breccias with lesser fine-grained andesite to basalt flows and minor interbedded siltstone, tuffaceous sediments and chert.

INTRUSIVE ROCKS

LOWER JURASSIC (dykes, sills, small plugs)

biotite hornblende diorite/gabbro

SYMBOLS

layering
mineral occurrence (with file number)
radiometric date sample site (age in Ma)
Barium, quartz vein
synform
antiform
main outcrop areas
geologic contact (defined, assumed)
fault (observed, inferred)
claim boundary
PREVIOUS EXPLORATION

The 1985 exploration program consisted of helicopter-supported reconnaissance geological mapping, prospecting, routine rock sampling, and stream silt sampling. In 1986, an airborne magnetometer survey was flown over the Stik 2 and 4 claims. Geological mapping was carried out over approximately 3000 hectares at a scale of 1:10,000. Approximately 4000 hectares were prospected in detail. A total of 134 stream silt samples were collected at 100 m intervals along first, second, and some third order streams (see Map 2). During geological mapping and prospecting, a total of 26 rock samples and 6 soil samples were routinely collected (see Map 1).

Faulting is both common and complex on the property. On the Stik 2 claim, a fault complex has been partially mapped. The feature consists of an intricate system of intersecting faults of the same age with subsidiary fracturing and shearing associated. On the Stik 2 and 4 claims, block faulting is responsible for most of the contacts between Units 1 and 1A. On the Stik 3 claim, contacts are similar between the McClair Creek and Adoo-gacho Creek Formations.

Associated with these primary fault systems are a number of secondary fracture/fault zones consisting of moderate to intense fracturing and related shearing. In places, these zones are persistent and extensive, and are characterized by a strong degree of alteration, most commonly clay and/or red hematitic alteration, and rarely silica/clay alteration where barite is present in moderate quantities as on the Stik 5 claim. Gossan or limonite zone development is common along some of these features.

Silicification usually accompanies these structures to varying degrees. In places, silicification has progressed into a weak vein development phase, producing a quartz stockwork-vein system.

"A" Zone (Quartz-Barite Zone) (Stik 1 & 5)

A zone of quartz-barite float and subcrop was discovered along a ridge just east of the Stik 1. An initial examination showed a narrow silicified
zone exposed in cliff-edge outcrop containing two subparallel quartz-barite veinlets striking southwest for 14 m from the point of discovery and 6 m northeast under glacial debris. On the south extension, a major northwest crosscutting fault appears to have offset the vein system. To the northeast, the system is traceable through quartz float and altered subcrop for 400 m where it is exposed again along a cliff. At this point, the alteration zone is 8 m wide and consists of strongly altered (silica, clay) plagioclase porphyry, hosting at least four narrow parallel quartz-barite veinlets cutting through a core of moderate to intense siliceous alteration. Gossan development along this section is moderate to intense, and pyritization is uniformly present throughout as well. Freshly broken rock revealed disseminated pyrite, galena (to 1%), and minor sphalerite. Along several silicified fractures, blebs of chalcopyrite were noted. Further to the northeast, the system is traceable for 20 m in float and then is lost in heavy glacial deposits.

"B" Zone (Stik 2)

On the Stik 2 claim, a quartz vein 1.5 to 2.3 m wide was discovered striking northwest and dipping 43°SW. Rust-altered quartz containing up to 1% disseminated pyrite occurs in broken form for 5 m in subcrop. The vein appears to be hosted by a secondary zone of shearing associated with a primary east-west trending fault mapped to the north.

"C" Zone (Stik 3)

On the Stik 3 claim, just west of Cirque Lake, there is a northerly striking silicified fracture zone cutting the altered crystal tuff unit. Pyrite, chalcopyrite, and galena-bearing quartz float was discovered further downslope to the north. Quartz float concentrations increase upslope to solid bedrock which passes under the snow cover. On the south side of the ridge, there is a concentration of rusty boulders consisting primarily of angular quartz. No anomalous Au or Ag values were obtained from stream sediment samples submitted in 1985; however, elevated values greater than 10 ppb Au were obtained from all claims and two elevated values greater than 1...
ppm Ag occurred on the Stik 4 claim. Five rock samples returned elevated Au values ranging from 124 to 8810 ppb. Two samples returned elevated silver values of 0.96 oz/ton and 4.62 ppm. In 1986, an airborne magnetometer survey was conducted over the Stik 2 and 4 claims. The magnetic data support the geological mapping, and reflect a complex pattern of intersecting faults.

1987 EXPLORATION PROGRAM

A brief reconnaissance prospecting program was completed during the middle of September 1987, during which 10 rock samples were collected and forwarded to Barringer Magenta Laboratories Ltd. in Calgary, Alberta, for Au and Ag analysis. Analytical results and procedures are presented in the Appendix. Map 1 shows the sample locations and results.

The rock samples returned one anomalous Au value of 33 ppb, and three anomalous Ag values of 5.2 ppm, 3.08 ppm, and 2.6 ppm. All the samples were collected in the vicinity of the "B" Zone; however, recent snowfall covered the exposed outcrops in the area, reducing the effectiveness of prospecting.
SUMMARY AND RECOMMENDATIONS

The Stik 1-4 mineral claims are located in the Liard Mining Division, and are underlain by Lower to Middle Jurassic "Toodoggone Volcanics" and by sediments of the Tango Creek Formation (Sustut Group). Surficially, the valleys are mantled by glacial till while the uplands have extensive bedrock exposure and felsenmeer with a few areas of permanent snow cover.

The 1985 exploration program consisted of soil/silt/rock geochemical sampling as well as geological mapping. This program delineated several alteration zones and quartz veins plus a quartz-barite zone on the eastern border of the Stik 1 claim. Geochemical results included a number of elevated and anomalous Au and Ag values throughout the Stik 1 to 4 claims. In 1986, an airborne magnetometer survey was flown over the Stik 2 and 4 claims.

The 1987 program consisted of five man days of helicopter-supported prospecting in the vicinity of the "B" Zone on the Stik 1 claim. Snow cover hampered prospecting. Of the ten samples collected, there were three elevated Ag-in-rock values and one elevated Au-in-rock value.

The results of the exploration programs to date indicate further work is warranted on the Stik 1 to 4 mineral claims. The quartz-barite veins and alteration zones should be mapped in detail and evaluated by trenching (either manual or blast). Since there are areas of permanent snow, work should be completed in August to take advantage of the minimal snow cover.
CERTIFICATE

I, Brent Coleman Beattie, of #1406, 1310 - 14th Avenue S.W. in the City of Calgary in the Province of Alberta, do hereby certify that:

1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd. with offices at Suite 400, 534 - 17th Avenue S.W., Calgary, Alberta.

2. I am a graduate of the University of British Columbia, B.A.Sc. Geological Engineering (1984), and I have practised my profession continuously since 1985.

4. I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of DELAWARE RESOURCES CORP., in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 15th day of January, A.D. 1988.

Respectfully submitted,

[Brent C. Beattie, B.A.Sc.]
BIBLIOGRAPHY

APPENDIX

Summary of Personnel
Rock Sample Descriptions
Summary of Expenditures
Certificates of Analysis
Analytical Techniques
SUMMARY OF PERSONNEL

<table>
<thead>
<tr>
<th>Name / Address</th>
<th>Position</th>
<th>Dates</th>
<th>Man Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brent Beattie, Calgary, Alberta</td>
<td>Project Geologist</td>
<td>Sept. 23</td>
<td>1</td>
</tr>
<tr>
<td>Ted Eninew, LaRonge, Sask.</td>
<td>Sr. Prospector</td>
<td>Sept. 23</td>
<td>1</td>
</tr>
<tr>
<td>Don McLeod, LaRonge, Sask.</td>
<td>Sr. Prospector</td>
<td>Sept. 23</td>
<td>1</td>
</tr>
<tr>
<td>Sam Eninew, LaRonge, Sask.</td>
<td>Jr. Prospector</td>
<td>Sept. 23</td>
<td>1</td>
</tr>
<tr>
<td>George McLeod, LaRonge, Sask.</td>
<td>Jr. Prospector</td>
<td>Sept. 23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

ROCK SAMPLE DESCRIPTIONS

- 110762 tuff, reddish brown, hosts 2cm quartz-calcite vein
- 110763 tuff, reddish brown, calcite stringers
- 110875 quartz-plagioclase porphyry, quartz clasts up to 1mm diameter, epidote
- 110876 tuff, grey, limonite stained, trace pyrite
- 110914 tuff, grey-green, calcite stringers
- 110915 tuff, grey-green, occasional malachite specks, tr biotite crystals
- 110992 tuff, grey-green, trace pyrite
- 110993 tuff, maroon-grey, coarse-grained, occasional quartz clots <1mm diameter
- 110994 barite vein material, occasional malachite clots up to 2mm diameter
- 110995 tuff, weathered grey-green, limonite stained, trace pyrite
SUMMARY OF EXPENDITURES

Pre-Field

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours/Man Days</th>
<th>Rate ($)</th>
<th>Amount ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Geologist</td>
<td>1.0</td>
<td>275</td>
<td>275.00</td>
</tr>
<tr>
<td>Sr. Prospectors</td>
<td>4.0</td>
<td>225</td>
<td>900.00</td>
</tr>
<tr>
<td>Jr. Prospectors</td>
<td>5.5</td>
<td>185</td>
<td>1017.50</td>
</tr>
<tr>
<td>Sampler</td>
<td>1.0</td>
<td>185</td>
<td>185.00</td>
</tr>
<tr>
<td>Camp Cook</td>
<td>3.0</td>
<td>185</td>
<td>555.00</td>
</tr>
<tr>
<td>Accommodation (incl drill crew)</td>
<td>23.5</td>
<td>50</td>
<td>1175.00</td>
</tr>
</tbody>
</table>

Travel Expenses

- Fixed-Wing Support
 - Central Mountain: 1,230.66
 - Trans North Air: 87.00

- Helicopter Support: 3,412.89

Equipment Rental

- Radio-Telephone: 4 days @ $9, total 36.00
- Generator: 4 days @ $16, total 64.00
- Core Splitter/Water Pump: 4 days @ $6, total 24.00

Miscellaneous

- Disposable Field Supplies: 337.26
- Maps, Reproductions; Courier, Freight: 443.75

Analyses

- 10 rock samples @ $9.60/each: 96.00

Post-Field

- Data Compilation, Report Writing, Drafting: 1,545.00
- Handling Charges: 305.00

TOTAL EXPENDITURES: $9,237.45
Geochemical Laboratory Report

Sample Type: ROCK

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au (PPB)</th>
<th>Ag (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110812</td>
<td>4.0</td>
<td>0.44</td>
</tr>
<tr>
<td>110813</td>
<td>13.0</td>
<td>0.45</td>
</tr>
<tr>
<td>110914</td>
<td>8.0</td>
<td><0.02</td>
</tr>
<tr>
<td>110915</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td>110916</td>
<td>14.0</td>
<td>0.25</td>
</tr>
<tr>
<td>110917</td>
<td>3.0</td>
<td>0.16</td>
</tr>
<tr>
<td>110918</td>
<td>48.0</td>
<td>0.44</td>
</tr>
<tr>
<td>110875</td>
<td>3.0</td>
<td>0.2</td>
</tr>
<tr>
<td>110876</td>
<td>7.0</td>
<td>0.2</td>
</tr>
<tr>
<td>110877</td>
<td>63.0</td>
<td>0.43</td>
</tr>
<tr>
<td>110878</td>
<td>38.0</td>
<td>0.26</td>
</tr>
<tr>
<td>110879</td>
<td>34.0</td>
<td>0.64</td>
</tr>
<tr>
<td>110880</td>
<td>7.0</td>
<td>0.33</td>
</tr>
<tr>
<td>110881</td>
<td>62.0</td>
<td>0.52</td>
</tr>
<tr>
<td>110882</td>
<td>46.0</td>
<td>0.48</td>
</tr>
<tr>
<td>110762</td>
<td>33.0</td>
<td>3.08</td>
</tr>
<tr>
<td>110763</td>
<td>7.0</td>
<td>0.02</td>
</tr>
<tr>
<td>110764</td>
<td>64.0</td>
<td>0.5</td>
</tr>
<tr>
<td>110765</td>
<td>8.0</td>
<td>0.04</td>
</tr>
<tr>
<td>110766</td>
<td>35.0</td>
<td>0.33</td>
</tr>
<tr>
<td>110767</td>
<td>57.0</td>
<td>0.8</td>
</tr>
<tr>
<td>110768</td>
<td>60.0</td>
<td>1.62</td>
</tr>
<tr>
<td>110992</td>
<td>6.0</td>
<td>0.1</td>
</tr>
<tr>
<td>110993</td>
<td>5.0</td>
<td>0.11</td>
</tr>
<tr>
<td>110994</td>
<td>4.0</td>
<td>1.32</td>
</tr>
<tr>
<td>110995</td>
<td>5.0</td>
<td>2.6</td>
</tr>
<tr>
<td>110996</td>
<td>6.0</td>
<td>0.54</td>
</tr>
<tr>
<td>110997</td>
<td>2.0</td>
<td>0.06</td>
</tr>
<tr>
<td>110998</td>
<td>6.0</td>
<td>0.04</td>
</tr>
<tr>
<td>110999</td>
<td>2.0</td>
<td>0.68</td>
</tr>
</tbody>
</table>