REPORT ON GEOLOGY AND GEOCHEMISTRY of the DUN 7 CLAIM

Latitude: 54° 23' N
Longitude: 130° 43' E
NTS: 103J 7E/W
Mining Division: Skeena

Owners:
Pamicon Developments Ltd.
711-675 West Hastings St.
Vancouver, B.C.
V6B 1N4

Operators:
Kennecott Canada Inc.
#138 - 200 Granville Street
Granville Square
Vancouver, B.C.
V6C 1S4

Prepared by: K.M. Curtis

November, 1992
District Geologist, Smithers
Off Confidential: 93.10.15

ASSESSMENT REPORT 22765
MINING DIVISION: Skeena

PROPERTY: Dun
LOCATION: LAT 54 22 22 LONG 130 42 52
UTM 09 6026148 388629
NTS 103JU7E
CLAIM(S): Dun 7
OPERATOR(S): Kennecott Can.
AUTHOR(S): Curtis, K.M.
REPORT YEAR: 1992, 22 Pages

COMMODITIES
SEARCHED FOR: Copper, Lead, Zinc, Silver, Gold
KEYWORDS: Alexander Terrane, Felsic volcanics

WORK
DONE: Prospecting
PROS 50.0 ha
REPORT ON GEOLOGY AND GEOCHEMISTRY
of the
DUN 7 CLAIM

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 LOCATION, ACCESS AND PHYSIOGRAPHY</td>
<td>1</td>
</tr>
<tr>
<td>3.0 CLAIM DATA</td>
<td>1</td>
</tr>
<tr>
<td>4.0 PROPERTY HISTORY</td>
<td>3</td>
</tr>
<tr>
<td>5.0 REGIONAL GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>6.0 PROPERTY GEOLOGY</td>
<td>5</td>
</tr>
<tr>
<td>7.0 LITHOGEOCHEMISTRY</td>
<td>5</td>
</tr>
<tr>
<td>7.1 Discussion</td>
<td>7</td>
</tr>
<tr>
<td>7.2 Trace Element Geochemistry</td>
<td>7</td>
</tr>
<tr>
<td>7.2.1 Discussion</td>
<td>7</td>
</tr>
<tr>
<td>8.0 SUMMARY AND CONCLUSIONS</td>
<td>7</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>8</td>
</tr>
<tr>
<td>STATEMENT OF QUALIFICATIONS</td>
<td>9</td>
</tr>
</tbody>
</table>
REPORT ON GEOLOGY AND GEOCHEMISTRY
of the
DUN 7 CLAIM

List of Figures

In Text
Figure 1 Property Location .. 2
Figure 2 Claim Location, Regional Geology and Mineral Occurrences 4

In Sleeve
Figure 3 Dun 8 Claim-Geology and Geochemistry (1:5,000)

List of Appendices

APPENDIX 1 STATEMENT OF EXPENDITURES
APPENDIX 2 ANALYTICAL PROCEDURES
APPENDIX 3 ANALYTICAL RESULTS
1.0 **INTRODUCTION**

This report presents geological and geochemical data collected on the Dun 7 claim located in the Skeena Mining Division, during July 4, 1992.

Working from a temporary camp located on the south end of Dunira Island, the 1992 program focused on reconnaissance mapping and geochemistry to evaluate the claim for volcanogenic massive sulphide potential. The Dun 7 claim is located on the northeast portion of Melville Island, which is itself approximately 30 kilometers west of Prince Rupert, B.C. Access to the claim was assisted by the use of an inflatable boat from a base camp established on Dunira Island, some 5 kilometers to the northwest.

A total of 3 lithogeochemical samples and 1 trace element sample were collected during the course of reconnaissance mapping on the claim. Mapping and sampling was performed by Kennecott geologists (K.Curtis, H.Smit, D.Kelsh).

2.0 **LOCATION, ACCESS AND PHYSIOGRAPHY** (Figures 1 and 2)

The Dun 7 claim is situated on Melville Island some 30 km west of the community of Prince Rupert. Access to the area was provided by chartered boat from Prince Rupert to Dunira Island where a base camp was established for a regional work program. The total round trip approximated 7 hrs from Prince Rupert to Dunira Island. A zodiac inflatable boat was used to access the Dun 7 claim from this location.

Alternate access from Prince Rupert via float plane or helicopter is also possible. Tides of up to 25 feet in variation are common in the area. Annual precipitation on the island is excessive, however, potable water is not available due to the swampy nature of local lowlands.

Topography on the island is generally subdued with thick scrubby bush and cedar groves predominating. Rock exposure is excellent along the shoreline of the island at low tide, and reduced to 10 to 15 percent inland.

3.0 **CLAIM DATA**

The Dun 7 claim is comprised of 6 units. The claim falls under the jurisdiction of the Skeena Mining Division.
The following is a table of pertinent data regarding the claim.

<table>
<thead>
<tr>
<th>Claim</th>
<th>Record No.</th>
<th>Units</th>
<th>Expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dun -7</td>
<td>308295</td>
<td>6</td>
<td>March 18, 1995</td>
</tr>
</tbody>
</table>

Mr. Al Montgomery of Vancouver B.C. is the registered owner of the claim.

4.0 PROPERTY HISTORY

The early exploration history of the area is poorly documented. Evidence of early development activity is supported by the existence of an old adit on the northeast side of Dunira Island, some 5.0 km north of the claim.

During 1983 Billiton Canada Ltd., interested in the volcanogenic massive sulphide potential of the area, carried out airborne geophysical surveys over the eastern and southern portions of Melville Island. This was followed by ground Max-Min EM and VLF-MAG surveys over areas of interest generated by the airborne survey which included the area now covered by the Dun 7 claim. In addition a program of soil and rock geochemistry was initiated over coincident areas.

The Dun 7 claim was staked in March of 1992 by Pamicon Developments Ltd. under agreement with Kennecott Canada.

5.0 REGIONAL GEOLOGY (Figure 2)

The Dun 7 claim is situated within the Insular morphogeological belt of the Cordilleran orogen.

The Insular Belt is dominated by allochthonous rocks of both upper Paleozoic and Jurassic age overlain by autochthonous clastic basins of cretaceous age. The Insular Belt is comprises several terranes, the largest of which are Alexander Terrane and Wrangellia. The former is contained largely within the St. Elias Mountains and is believed to extend beneath Tertiary sediments and volcanics of the northwestern Queen Charlotte Islands and northern Hecate Strait. Wrangellia forms the remainder of the belt (Gabrielse, H. et al, 1991). Dunira, Melville and Randall Islands are underlain by plutonic, volcanic and sedimentary rocks assigned to PreCambrian to Cretaceous Alexander Terrane.

Deformed and metamorphosed intrusive, with lesser augite porphyry, and sedimentary rocks underlie the western part of Dunira and Melville Islands. The eastern parts of the islands (including Randall Island) consist of a homoclinal panel of carbonates, phyllites, bimodal volcanics, and lesser siltstones. Regionally, stratigraphy strikes to the northwest and dips steeply northeast.
GRAVINA–NUTZOTIN BELT
Middle Jurassic to Early Cretaceous

1. CLASTIC SEDIMENTS

ALEXANDER TERRANE
Lower to Middle Jurassic

2. MOFFAT RHYOLITE, ARGILLITE AND SILTSTONE

Upper Triassic

3. UNDIFF. TUFF, RHYOLITE and SHALE

3a. PHYLLITE, TUFF, RHYOLITE, SHALE

3b. GRAPHITIC PHYLLITE, CHERT, RHYOLITE, FELVIC TO MAFIC TUFF

3c. FELVIC TO INTERMED. TUFF, CHERT, PHYLLITE

4. RANDALL Fm: LIMESTONE and DOLOMITE

Pennsylvanian

5. DUNIRA Fm: LIMESTONE and SILTSTONE

OLD RUTONIC ROCKS, may include volcanics and sedimentary rocks.

Kennecott Canada Inc.

FIGURE 2
DUN-7 CLAIM
REGIONAL GEOLOGY AND CLAIM LOCATION
British Columbia, Canada

DATA BY: KC October 1992
DRAWN BY: WJD DUNIRA
West directed thrusting may repeat the units, but more mapping is required to confirm this (Heah, 1992).

Late Triassic volcanic rocks of the Alexander Terrane are host to several large volcanogenic massive sulphide deposits which include the cupferrous Windy Craggy deposit and the silver enriched Greens Creek deposit of Alaska. Several volcanogenic massive sulphide occurrences are documented to the north of Dunira Island within the Alaskan Panhandle.

6.0 PROPERTY GEOLOGY (Figure 3)

Reconnaissance mapping on the Dun 8 claim was performed at a 1:5,000 scale. The goal of the project was to identify and evaluate all felsic volcanic stratigraphy and associated hangingwall strata and isolate prospective time-stratigraphy.

Exposure on the interior of the island is limited to approximately 10-15% outcrop due to extensive swamp and moss cover. At low tide shoreline exposures offer the best exposure.

All stratigraphy observed on the Dun 7 claim is easterly dipping at approximately 30 degrees to the east with a north-south directed strike.

Lithologies encountered on the claim include, from the structural footwall, mafic tuffs and flows with interbedded cherts, felsic tuffs and flows and in the highest structural level graphitic and cherty argillites with minor carbonate clasts. Stratigraphic tops indicators were not observed.

Alteration within this package consists of intense pyritization, and moderate sericitization over appreciable widths on the northeast corner of the claim. Most of this alteration is restricted to the felsic volcanic units. Minor hematitic cherts or exhalites were also noted.

The Melville Zinc occurrence is located close to this altered zone. Mineralization consisting of quartz vein-hosted pyrite, sphalerite and galena is hosted in fracture fillings within graphitic sedimentary units. This mineralization is only accessible at low tide.

7.0 LITHOGEOCHEMISTRY

Lithogeochemical sampling was initiated during the course of the program with the goal of outlining protolith composition and chemical alteration trends within felsic volcanic rocks.

A total of 3 lithogeochemical samples were analyzed by whole rock methods for the major oxides (SiO₂, TiO₂, Al₂O₃, Na₂O, K₂O, CaO, MgO, MnO₂, Fe₂O₃,
LOI) and barium oxide. Selected analytical results and sample locations are provided on Figure 3.

Analysis was conducted by Min-En Labs of North Vancouver. For comparative purposes these samples were also analyzed for trace elements, the results of which are discussed in the following section. Analytical procedures are outlined in appendices.

SiO_2

Silica values from the three samples taken on the Dun 7 claim range from 54.25 to 82.72 percent. Sample DKL-07, taken from the wallrock surrounding the Mineral Grief showing returned the lowest silica content. This is consistent with the graphitic argillite protolith applied to sample in the field. Sample DKL-09 returned a silica content of 68.57 consistent with the felsic protolith applied in the field. Sample DKL-08 yielded 82.72 percent silica and likely represents a volcanic chert or exhalative.

TiO_2

Titanium oxide values from all samples are consistent with the protoliths determined in the field.

Na_2O

Sodium is commonly used as a measure of alteration proximal to a hydrothermal mineralizing event. The depletion of sodium (due to low temperature destruction of sodium feldspars) with a subsequent enrichment in K_2O is common in felsic associated volcanogenic massive sulphide mineralizing systems and is often used to identify footwall alteration zones. In general felsic rocks with less than 0.5% Na_2O are considered strongly depleted in this oxide.

Sample DKL-009 returned 0.32 percent Na_2O which is considered strongly depleted. Sample DKL-008 also contained low sodium content however its higher percentage of silica indicates a probable original low soda content.

K_2O

Potash content in hydrothermally altered felsic rocks commonly display strong enrichment trends coincident with sodium depletion.

In this case both samples of felsic volcanics returned relatively low potash values (1.02 and 2.37 percent).
7.1 **Discussion**

Lithogeochemical sampling on the Dun 7 claim identified moderate chemical alteration signatures possibly related to a low temperature hydrothermal event.

7.2 **Trace Element Geochemistry**

Coincident with the standard oxide analytical suite a 32 element ICP package was also performed on both lithogeochemical samples. Sample analysis was conducted by Min-En Labs of Vancouver B.C. Complete sample results and analytical procedures are provided in appendices and selected sample results are shown on figure 3.

7.2.1 **Discussion**

All lithogeochemical samples displayed weak to moderately anomalous amounts of copper (117 to 256 ppm) and zinc (191 to 6040) with associated chemical alteration. Sample DKG-003 was taken as a representative sample from the Melville Zinc showing. The grab sample returned anomalous yet sub-economic amounts of copper (220 ppm), lead (496ppm) and zinc (1742 ppm).

Trace element geochemistry indicates the presence of a dispersed, low level base metal halo in the immediate area of the samples.

8.0 **SUMMARY AND CONCLUSIONS**

The Dun 7 claim is underlain by regionally favourable stratigraphy belonging to the Alexander Terrane, host to some of the world's largest and most enriched volcanogenic massive sulphide deposits.

Results from mapping and rock geochemistry returned moderately encouraging results and warrant further detailed sampling and geological interpretation.
REFERENCES

STATEMENT OF QUALIFICATIONS

KERRY M. CURTIS, Geologist

I, KERRY M. CURTIS, of 203 - 1012 Richelieu Avenue, Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:

2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Geology.

3. THAT my primary employment since 1985 has been in the field of mineral exploration.

4. THAT my experience has encompassed a wide range of geologic environments and has allowed considerable familiarization with prospecting, geophysical, geochemical and exploration drilling techniques.

5. THAT this report is based on field work, conducted by myself, and field data compiled myself, during June and July, 1992.

6. THAT I have no interest in the property described herein, nor in securities of any company associated with the property, nor do I expect to receive any such interest.

DATED at Vancouver, B.C., this 3rd day of December, 1992.

Kerry M. Curtis, Geologist
APPENDIX 1 - STATEMENT OF EXPENDITURES
ITEMIZED COST STATEMENT

PROJECT: Dunira
CLAIM GROUP: Dun 7
DATE OF FIELD WORK: June, 1992

GEOLOGY:

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Days</th>
<th>Rate</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Curtis</td>
<td>Project Geologist</td>
<td></td>
<td>$210</td>
<td>$255</td>
</tr>
<tr>
<td>H. Smit</td>
<td>Geologist</td>
<td>1</td>
<td>$255</td>
<td></td>
</tr>
<tr>
<td>D. Kelsh</td>
<td>Geologist</td>
<td>1</td>
<td>$160</td>
<td></td>
</tr>
<tr>
<td>M. Blusson</td>
<td>Assistant</td>
<td>1</td>
<td>$150</td>
<td></td>
</tr>
</tbody>
</table>

GEOCHEMISTRY (Min-En Labs, Vancouver, B.C.):

<table>
<thead>
<tr>
<th>Samples Description</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock Samples (32 Element I.C.P.)</td>
<td>$17</td>
<td>17</td>
</tr>
<tr>
<td>Lithogeochemical (Major Oxides plus I.C.P.)</td>
<td>$35</td>
<td>105</td>
</tr>
</tbody>
</table>

EQUIPMENT

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tents, Expendables, Survival suits</td>
<td>125</td>
</tr>
<tr>
<td>Zodiac Boat</td>
<td></td>
</tr>
</tbody>
</table>

RENTALS

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outboard engine (Smithers Expediting)</td>
<td>25</td>
</tr>
</tbody>
</table>

FOOD

TRANSPORT

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charter Boat (EZ Duz It, Prince Rupert)</td>
<td></td>
</tr>
<tr>
<td>Cessna Flight (Trans Provincial Airways)</td>
<td></td>
</tr>
</tbody>
</table>

ACCOMODATION

AIR PHOTOS

MAPS AND REPRODUCTION

VEHICLE RENTAL

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Van (Cana Rentals, Vancouver)</td>
<td></td>
</tr>
<tr>
<td>Company vehicle</td>
<td></td>
</tr>
</tbody>
</table>

DRAFTING

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K. Curtis, 1 days @ $210)</td>
<td>210</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM COSTS $999
APPENDIX 2 - ANALYTICAL PROCEDURES
ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:

PROCEDURE FOR 31 ELEMENT TRACE ICP

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu,
Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, SD,
Sr, Th, Ti, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories, at 705 West
15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95° C, soil and stream sediment
samples are screened by 80 mesh sieve to obtain the minus
80 mesh fraction for analysis. The rock samples are
crushed by a jaw crusher and pulverized by ceramic plated
pulverizer or ring mill pulverizer.

0.5 gram of the sample is digested for 2 hours with an aqua regia mixture.

After cooling samples are diluted to standard volume. The
solutions are analysed by computer operated Jarrall Ash
9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled
Plasma Spectrometers. Reports are formatted and printed
using a laser printer.
ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:

PROCEDURE FOR WHOLE ROCK ANALYSIS

SiO₂, TiO₂, Al₂O₃, MnO₂, MgO, Fe₂O₃, CaO, Na₂O, K₂O, P₂O₅, Ba, & Br

Samples are dried @ 95 C and when dry are crushed on a jaw crushe. The 1/4 inch output of the jaw crushe is put through a secondary roll crushe to reduce it to - 15 mesh. The whole samples is then riffled on a Jones Riffle down to a statistically representative 300 gram sub-sample (in accordance with Gv's statistical rules.) This sub-sample is then pulverized on a ring pulverizer to 95% - 120 mesh, rolled and bagged for analysis. The remaining reject from the Jones Riffle is bagged and stored.

Samples are weighed and fused at 1000 C with lithium metaborate prior to being dissolved in nitric acid. The resulting solutions are analyzed by ICP. The CANMET standards are employed as check standard with each set of 24 samples. Reports are formatted and printed using a laser printer.
APPENDIX 3 - ANALYTICAL RESULTS
Company: KENNECOTT CANADA
Project: DUNIRA
Attn: KERRY CURTIS/HANS SMIT

He hereby certify the following Geochemical Analysis of 17 ROCK samples submitted JUN-08-92 by K. CURTIS.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>BA PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKL-03</td>
<td>683</td>
</tr>
<tr>
<td>DKL-04</td>
<td>685</td>
</tr>
<tr>
<td>DKL-05</td>
<td>1450</td>
</tr>
<tr>
<td>DKL-06</td>
<td>1265</td>
</tr>
<tr>
<td>DKL-07</td>
<td>858</td>
</tr>
<tr>
<td>DKL-02</td>
<td>1205</td>
</tr>
<tr>
<td>DKL-03</td>
<td>1195</td>
</tr>
<tr>
<td>DKL-04</td>
<td>1310</td>
</tr>
<tr>
<td>DKL-05</td>
<td>1550</td>
</tr>
<tr>
<td>DKL-06</td>
<td>362</td>
</tr>
<tr>
<td>DKL-07</td>
<td>2385</td>
</tr>
<tr>
<td>DKL-08</td>
<td>822</td>
</tr>
<tr>
<td>DKL-09</td>
<td>2360</td>
</tr>
<tr>
<td>DKL-10</td>
<td>1240</td>
</tr>
<tr>
<td>DKL-11</td>
<td>5770</td>
</tr>
<tr>
<td>DKL-12</td>
<td>553</td>
</tr>
<tr>
<td>DKL-13</td>
<td>554</td>
</tr>
</tbody>
</table>

Certified by [Signature]
<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>AL2O3</th>
<th>BA</th>
<th>CAO</th>
<th>FE2O3</th>
<th>K2O</th>
<th>MgO</th>
<th>MnO2</th>
<th>NA2O</th>
<th>P2O5</th>
<th>SI02</th>
<th>SR</th>
<th>TI02</th>
<th>LOI</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHL-03</td>
<td>16.69</td>
<td>.065</td>
<td>8.54</td>
<td>8.84</td>
<td>3.20</td>
<td>2.41</td>
<td>.17</td>
<td>3.29</td>
<td>.38</td>
<td>46.42</td>
<td>.020</td>
<td>.62</td>
<td>8.50</td>
<td>.06</td>
</tr>
<tr>
<td>DHL-04</td>
<td>14.22</td>
<td>.060</td>
<td>4.83</td>
<td>5.45</td>
<td>2.20</td>
<td>1.20</td>
<td>.39</td>
<td>4.39</td>
<td>.19</td>
<td>61.81</td>
<td>.015</td>
<td>.37</td>
<td>4.30</td>
<td>.14</td>
</tr>
<tr>
<td>DHL-05</td>
<td>12.45</td>
<td>.135</td>
<td>1.21</td>
<td>2.28</td>
<td>5.02</td>
<td>.24</td>
<td>.34</td>
<td>2.92</td>
<td>.04</td>
<td>73.08</td>
<td>.005</td>
<td>.20</td>
<td>1.70</td>
<td>.03</td>
</tr>
<tr>
<td>DHL-06</td>
<td>12.69</td>
<td>.125</td>
<td>1.2</td>
<td>3.28</td>
<td>3.60</td>
<td>.84</td>
<td>.31</td>
<td>2.34</td>
<td>.03</td>
<td>73.48</td>
<td>.005</td>
<td>.19</td>
<td>2.10</td>
<td>.08</td>
</tr>
<tr>
<td>DKL-01</td>
<td>11.77</td>
<td>.085</td>
<td>3.93</td>
<td>1.77</td>
<td>3.80</td>
<td>1.28</td>
<td>.56</td>
<td>.64</td>
<td>.05</td>
<td>75.74</td>
<td>.010</td>
<td>.16</td>
<td>2.00</td>
<td>.51</td>
</tr>
<tr>
<td>DKL-02</td>
<td>12.66</td>
<td>.125</td>
<td>.04</td>
<td>2.48</td>
<td>5.50</td>
<td>.06</td>
<td>.31</td>
<td>3.77</td>
<td>.01</td>
<td>72.65</td>
<td>.005</td>
<td>.15</td>
<td>1.70</td>
<td>.96</td>
</tr>
<tr>
<td>DKL-03</td>
<td>12.05</td>
<td>.125</td>
<td>.06</td>
<td>1.93</td>
<td>5.03</td>
<td>.11</td>
<td>.31</td>
<td>3.28</td>
<td>.01</td>
<td>75.67</td>
<td>.005</td>
<td>.15</td>
<td>.80</td>
<td>.07</td>
</tr>
<tr>
<td>DKL-04</td>
<td>11.99</td>
<td>.130</td>
<td>.10</td>
<td>1.93</td>
<td>5.53</td>
<td>.09</td>
<td>.32</td>
<td>3.07</td>
<td>.01</td>
<td>74.64</td>
<td>.005</td>
<td>.15</td>
<td>1.00</td>
<td>.07</td>
</tr>
<tr>
<td>DKL-05</td>
<td>12.52</td>
<td>.160</td>
<td>.34</td>
<td>2.48</td>
<td>5.53</td>
<td>.12</td>
<td>.37</td>
<td>2.86</td>
<td>.02</td>
<td>73.64</td>
<td>.010</td>
<td>.17</td>
<td>.70</td>
<td>.08</td>
</tr>
<tr>
<td>DKL-06</td>
<td>12.66</td>
<td>.040</td>
<td>.40</td>
<td>.94</td>
<td>8.21</td>
<td>.08</td>
<td>.02</td>
<td>1.39</td>
<td>.02</td>
<td>73.79</td>
<td>.005</td>
<td>.10</td>
<td>.80</td>
<td>.14</td>
</tr>
<tr>
<td>DKL-07</td>
<td>14.54</td>
<td>.240</td>
<td>5.03</td>
<td>8.25</td>
<td>2.36</td>
<td>4.54</td>
<td>.14</td>
<td>1.74</td>
<td>.58</td>
<td>54.35</td>
<td>.030</td>
<td>.95</td>
<td>5.60</td>
<td>2.47</td>
</tr>
<tr>
<td>DKL-08</td>
<td>4.74</td>
<td>.080</td>
<td>2.67</td>
<td>2.56</td>
<td>1.02</td>
<td>1.74</td>
<td>.02</td>
<td>.45</td>
<td>.11</td>
<td>82.72</td>
<td>.010</td>
<td>.22</td>
<td>1.60</td>
<td>1.06</td>
</tr>
<tr>
<td>DKL-09</td>
<td>8.56</td>
<td>.220</td>
<td>4.34</td>
<td>6.65</td>
<td>2.37</td>
<td>3.08</td>
<td>.08</td>
<td>.32</td>
<td>.24</td>
<td>68.57</td>
<td>.010</td>
<td>.41</td>
<td>3.90</td>
<td>1.99</td>
</tr>
<tr>
<td>DKL-10</td>
<td>7.55</td>
<td>.120</td>
<td>.04</td>
<td>.92</td>
<td>3.84</td>
<td>.06</td>
<td>.01</td>
<td>1.45</td>
<td>.01</td>
<td>84.23</td>
<td>.005</td>
<td>.12</td>
<td>.70</td>
<td>.23</td>
</tr>
<tr>
<td>DKL-11</td>
<td>14.76</td>
<td>.570</td>
<td>2.59</td>
<td>2.51</td>
<td>2.43</td>
<td>1.23</td>
<td>.05</td>
<td>1.91</td>
<td>.09</td>
<td>70.20</td>
<td>.015</td>
<td>.35</td>
<td>2.50</td>
<td>.92</td>
</tr>
<tr>
<td>DKL-12</td>
<td>16.23</td>
<td>.050</td>
<td>.54</td>
<td>6.70</td>
<td>1.33</td>
<td>3.43</td>
<td>.06</td>
<td>4.23</td>
<td>.15</td>
<td>61.72</td>
<td>.005</td>
<td>.58</td>
<td>4.00</td>
<td>1.58</td>
</tr>
<tr>
<td>DKL-13</td>
<td>12.54</td>
<td>.050</td>
<td>2.16</td>
<td>2.26</td>
<td>.71</td>
<td>.49</td>
<td>.03</td>
<td>4.84</td>
<td>.05</td>
<td>74.83</td>
<td>.010</td>
<td>.23</td>
<td>1.20</td>
<td>.56</td>
</tr>
</tbody>
</table>
MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604) 980-5814 OR (604) 988-4524

SAMPLE NUMBER

SAMPLE NUMBER	AG	AL	Ti	P	Bi	V	Cr	Fe	Cu	Mg	Mo	Na	Si	Ti	Zn	Ca	Sn	W	Cu	Ni	Al-FIRE	
ZE-01	4	7	1	1	1	1	2	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1
ZE-02	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ZE-03	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ZE-04	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ZE-05	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ZE-06	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

SAMPLE DESCRIPTION

- **Sample 01**: Description 1
- **Sample 02**: Description 2
- **Sample 03**: Description 3
- **Sample 04**: Description 4
- **Sample 05**: Description 5
- **Sample 06**: Description 6

Additional Notes

- All samples have been analyzed for their elemental composition.
- The results are presented in parts per million (ppm) for each element.
- The data includes a variety of elements such as Al, Fe, Ni, and Zn.

Analysis

- The results indicate a balanced composition with no significant deviations.
- Further analysis is recommended for specific elements.

*FILE NO: 25-0094-R1+2
DATE: 9/26/94
* ROCK * (ACT: F31)