Math Claim

Soil Geochemical and Prospecting Report

Clinton M.D.
NTS 92P / 14 E
51°51'N; 121°08'W

(Annual Work Approval Number: KAM96-0300502-195)

For:
Guardian Enterprises Ltd.
830-355 Burrard Street
Vancouver, B.C. V6C 2G8

By:
Ed McCrossan
P.Geo., F.G.A.C.
681-7362

May 28, 1996 GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

24,463
Table of Contents

Summary 1
Introduction 2
Location and Access 3
Claim Data 3
Topography, Vegetation and Climate 3
History and Previous Work 3
Regional Geology 4
Property Geology 4
Geochemical Sampling 5
Conclusions and Recommendations 5
Cost Statement 6
Statement of Qualifications 7
References 8
Appendix I: Rock Sample Descriptions 9
Appendix II: Assay Results 11
Figures:

1) Location Map (after page 2)
2) Claim Map (after page 3)
3) Rock and Soil Geochemistry: Sample Locations and Copper Results
Summary

The Math Claim is located 24 km NE of 100 Mile House within the Intermontane Belt of the Canadian Cordillera in a geological setting favourable for the formation of Cu (Au, Mo) porphyry deposits similar to the Mount Polley and Fish Lake Cu-Au projects.

The Math Property is underlain by the Takomkane Batholith of Triassic to Jurassic age which is composed of a medium grained granodiorite to quartz monzonite in this area.

Mineralization on the property consists of disseminations and fracture fillings of fine grained sulphides including pyrite, chalcopyrite and molybdenite.

Twenty-five rock samples and nine soil samples were collected from the property and analyzed for 30 elements using ICP and Au using fire assay.

Although Au results were generally low, the anomalous results for both Cu and Mo suggest that more detailed work is warranted for the Math Claim.
Introduction

The Math Claim is located 24 km NE of 100 Mile House within the Intermontane Belt of the Canadian Cordillera.

It is situated in a geological setting favourable for the formation of Cu (Au, Mo) porphyry deposits similar to the Mount Polley and Fish Lake Cu-Au projects.

The Mount Polley deposit, owned by Imperial Metals Corporation (65%) and Sumitomo Corporation (35%), contains estimated reserves of 81,500,000 tonnes grading 0.30% Cu and 0.414 gpt Au.

The Fish Lake deposit, owned by Taseko Mines Ltd., contains 675 million tonnes grading 0.236% Cu and 0.435 gpt Au.

This report describes assessment work carried out on the Math Claim during May 1, 1996. (Annual work approval number: KAM96-0300502-195).
Location and Access:

The Math Claim is located 24 km north-northeast of 100 Mile House in the Clinton Mining Division of British Columbia (Figure 1).

The property is road accessible via Forest Grove along secondary road 410 and forestry road 39. The latter road passes through the centre of the claim enroute to Bedingfield Lake.

Claim Data:

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Tenure No.</th>
<th>No. of Units</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>335459</td>
<td>20</td>
<td>May 7/97</td>
</tr>
</tbody>
</table>

The Math Claim is owned 100% by Guardian Enterprises Ltd. (Figure 2).

Topography, Vegetation and Climate:

The relief within the Math Claim is minor to moderate with subcropping ridges trending north to northeasterly throughout the property. Topographically low areas between the ridges contain small swamps, ponds and lakes.

Elevation on the property ranges between 3,000 and 3,400 feet above mean sea level.

Vegetation and climate is typical for the Interior Plateau (Cariboo Land District) of B.C. Vegetation density was moderate and did not hinder field work.

History and Previous Work:

1972: Pickands Mather & Co. Geological and geophysical surveys were completed and several anomalous areas were trenches and/or drilled.

1980: Denison Mines completed soil geochemical and biogeochemical sampling and assayed for Cu, Mo, F, Mn and W.

1994: Staked by Dave Heyman and sold to Guardian Enterprises Ltd.
Guardian Enterprises Ltd

Math Claim

Clinton M.D. B.C.
NTS 92P14E 1:50,000

May, 1996
Claim Map Fig. 2
Regional Geology:

The Math Claim lies within the Intermontane Belt of the Canadian Cordillera in an area of relatively complex geologic history.

The oldest rocks in the area consist of Permian marine limestones and sediments of the Cache Creek and Pavilion Groups.

During the Triassic, andesitic marine volcanics and associated sediments of the Nicola Group were deposited.

These were intruded during the late Triassic and/or Jurassic by the granitic Thuya and Takomkane batholiths.

Marine volcanic activity and sedimentation continued throughout the Jurassic and then the Raft and Baldy batholiths, again of granitic composition, were emplaced during the Cretaceous.

During the lower and mid Tertiary, terrestrial sediments and acidic to intermediate volcanics of the Chu Chua and Skull Hill Formations were deposited above the earlier units.

Volcanic activity and sedimentation continued throughout the middle and late Tertiary and finally the extensive Plateau basalts of Miocene to Pliocene age covered large areas in the region.

Property Geology:

The Math Claim is underlain entirely by the Takomkane Batholith of Triassic to Jurassic age. In the claim area, the intrusion was composed of a medium grained, relatively quartz rich granodiorite to quartz monzonite containing occasional potassium feldspar "megacrysts" to 1 cm in diameter. Mafic crystal content of the quartz monzonite was less than 5%.

Mineralization on the property consisted of disseminations and fracture fillings of very fine to fine grained sulphides including pyrite and chalcopyrite. Traces of molybdenite were also present.

Minor quartz veining and veinlets associated with fractures and lesser shear "zones" were also noted in subcrop fragments.

Alteration products seen on the property included biotite with lesser chlorite and epidote. Argillic and hematitic alteration was associated with some fractured and sheared areas and limonite and pyrolusite often coated fracture surfaces.
LEGEND

- Soil Sample Line
- Cu Assay (ppm)
- Subcrop Rock Sample with No.
- Outcrop Rock Sample with No.
- Usable Logging Roads
- Overgrown Logging Roads
- Lake or Pond

GUARDIAN ENTERPRISES LTD.
MATH CLAIM
CLINTON MINING DIVISION, B.C.
NTS 92 P 14 E
Rock and Soil Geochemical Sample Location Map with Cu Assay Results
Geochemical Sampling:

Twenty-five rock samples were taken from angular subcrop fragments and outcrop on the Math property. Some chip samples were also collected from outcrop recently exposed by road construction (see Appendix I for rock sample descriptions and Figure 3 for sample locations).

Nine soil samples were also collected along one line which crossed the most prospective area on the property. Sample depth varied between 30 and 50 cm and material was taken from either the upper B or lower A soil horizons.

The samples were sent to Acme Analytical Laboratories and analyzed for 30 elements using ICP and Au using fire assay (Appendix II).

Sample results were anomalous in Cu, Mo, and Zn but Au results were generally low. This may be due to near surface weathering effects.

Conclusions and Recommendations:

Although the assay results for Au were low, both the rock sample and soil geochemical results were anomalous in Cu and Mo.

Since the property lies within the Intermontane Belt of the Cordillera, has a geological setting favourable for the formation of Cu (Au, Mo) porphyry deposits, and is situated between the known Cu-Au deposits at Mount Polley and Fish Lake, further work is warranted for the property.

Detailed prospecting and geochemical sampling should be carried out in the centre and northeastern portion of the claim around the anomalous areas. This program could be followed by geophysical surveys and trenching if necessary.
Cost Statement

Work completed May 1, 1996.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geologist</td>
<td>$400.00</td>
</tr>
<tr>
<td>Assistant</td>
<td>300.00</td>
</tr>
<tr>
<td>Truck rental</td>
<td>150.00</td>
</tr>
<tr>
<td>Fuel</td>
<td>50.00</td>
</tr>
<tr>
<td>Food & hotel</td>
<td>250.00</td>
</tr>
<tr>
<td>Assays</td>
<td>500.00</td>
</tr>
<tr>
<td>Miscellaneous @ 10%</td>
<td>165.00</td>
</tr>
<tr>
<td>Report</td>
<td>400.00</td>
</tr>
<tr>
<td>Secretarial, copies, etc.</td>
<td>300.00</td>
</tr>
</tbody>
</table>

Total $2,550.00
STATEMENT OF QUALIFICATIONS

I, Ed McCrossan, of 204-1225 Barclay Street, Vancouver, British Columbia hereby certify:

1. I am a graduate of the University of British Columbia (1984) and hold a B.Sc. degree in geology.

2. I have been employed in my profession by various mining companies since graduation and have worked on projects in Canada, U.S.A., Thailand, China, Chile, Bolivia, Peru, Venezuela, Central America, and Mexico.

3. I am a member of the Canadian Institute of Mining and Metallurgy, a Fellow of the Geological Association of Canada, and a registered member in good standing of the Association of Professional Engineers and Geoscientists of B.C.

4. The information and recommendations contained in this report are based upon a one day work program and a review of the historical data.

5. I do not own an interest in the properties described herein nor in the securities of Guardian Enterprises Ltd.

6. I consent to and authorize the use of the attached report and my name in the Company’s Prospectus, Statement of Material Facts or other public documents.

DATED at Vancouver, British Columbia, this 5 day of June, 1996.

Ed McCrossan
Geologist, F.G.A.C., P.Geo.
References

Leonard, M.A. & Wahl, H.J.
BCDOM Assessment Report #4647.

Sketchley, D.A.
1980: Soil Geochemical and Biogeochemical Report, May Day Group
BCDOM Assessment Report #8648.
Appendix I

Math Claim: Rock Sample Descriptions*

* Note that all terms used are field descriptions based upon visual inspection of hand specimens. No thin sections were prepared for these samples.

49951: Grab of angular quartz-monzonite subcrop. Minor biotitic and hematic alteration. Trace chlorite.

49952: Grab of angular float. Quartz monzonite with limonitic and hematitic staining associated with fractures.

49953: Grab of angular dacite porphyry float. Aphanitic with some quartz veinlets.

49954: Composite grab of angular subcrop material. Unaltered quartz monzonite.

49955: Grab of angular quartz monzonite subcrop. Minor to moderate hematitic and biotitic alteration concentrated along fractures and crystal boundaries.

49956: As in 955 with minor argillic and chloritic alteration and a trace of very fine grained sulphides associated with fractures.

49957: Grab of quartz monzonite subcrop containing trace amounts of fine grained sulphides as small concentrations and hairline fracture fillings.

49958: As in 957 but with up to 1% sulphides (pyrite and chalcopyrite?) as disseminations and fine grained concentrations/blebs.

49959: Grab of 1.2 cm quartz veinlet within angular quartz monzonite subcrop. Minor biotite alteration.

49960: Composite grab of angular quartz monzonite subcrop. Trace of disseminated sulphides associated with minor-moderate fracturing. Moderate limonitic and hematitic staining throughout.

49961: Composite grab of angular quartz monzonite subcrop.

49962: As in 49961 and containing a trace of disseminated very fine grained sulphides with minor to moderate Fe staining associated with fracture surfaces. Minor biotite alteration and Mn staining.
49963: Grab of angular quartz monzonite subcrop with minor limonitic, hematitic and biotitic alteration and a trace of disseminated sulphides.

49964: Grab of 1-4 cm shear within fine grained quartz monzonite. Moderate argillic alteration with limonitic and manganese staining. Silicification as minor quartz veinlets.

49965: Grab sample of a 10 cm wide shear. Quartz monzonite was crushed with some gouge formation. Argillic and limonitic alteration with Mn staining.

49966: Grab of a 1-2 cm quartz vein within minor to moderately fractured and sheared quartz monzonite. Locally intense limonitic and pyrolusitic staining.

49967: Garb of moderately altered (limonite) quartz monzonite. Mn staining.

49968: Grab of moderately altered & oxidized fracture within quartz monzonite. Minor biotite, chlorite and silica alteration products.

49969: 2 metre chip sample across moderately fractured and altered quartz monzonite (as in 49968).

49970: 2 metre discontinuous “chip” sample within moderately fractured and limonite stained quartz monzonite.

49971: Grab of more intensely altered (chlorite, biotite, limonite, trace epidote) fracture within sample #49970.

49972: Grab of 1-2 cm wide quartz vein and gouge. Some banding texture noted within the quartz, as well as limonitic and Mn staining.

49973: Grab of quartz monzonite. Moderate limonitic staining.

49974: Composite grab of altered quartz monzonite outcrop in new road cut.
Appendix II

Assay Results
<p>| SAMPLE# | Ho ppm | Cu ppm | Pb ppm | Zn ppm | Ag ppm | Ni ppm | Co ppm | Mn ppm | Fe ppm | As ppm | U ppm | Th ppm | Sr ppm | Cd ppm | Sb ppm | Bi ppm | V ppm | Ca ppm | P ppm | La ppm | Cr ppm | Mg ppm | Ba ppm | Ti ppm | B ppm | Al ppm | Na ppm | K ppm | W ppm | Au ppm |
|---------|</p>
<table>
<thead>
<tr>
<th>SAMPLE#</th>
<th>Mo ppm</th>
<th>Cu ppm</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
<th>Ag ppm</th>
<th>Ni ppm</th>
<th>Co ppm</th>
<th>Mn ppm</th>
<th>Fe ppm</th>
<th>As ppm</th>
<th>U ppm</th>
<th>Th ppm</th>
<th>Sr ppm</th>
<th>Cd ppm</th>
<th>Sb ppm</th>
<th>Bi ppm</th>
<th>V ppm</th>
<th>Ca ppm</th>
<th>P ppm</th>
<th>La ppm</th>
<th>Cr ppm</th>
<th>Mg ppm</th>
<th>Ba ppm</th>
<th>Ti ppm</th>
<th>B ppm</th>
<th>Al ppm</th>
<th>K ppm</th>
<th>W ppm</th>
<th>Au ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 49984</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>9</td>
<td>.04</td>
<td>3</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td>2</td>
<td>1</td>
<td>.2</td>
<td><2</td>
<td>2</td>
<td>1</td>
<td>.07 .001</td>
<td><1</td>
<td><1 .01</td>
<td>6 .01</td>
<td><3 .01</td>
<td><.01</td>
<td><.01</td>
<td><2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49985</td>
<td>2</td>
<td>4</td>
<td>17</td>
<td><.3</td>
<td>8</td>
<td>5</td>
<td>611</td>
<td>2.38</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>19</td>
<td>.3</td>
<td>4</td>
<td><2</td>
<td>74 .37 .066</td>
<td>4</td>
<td>16 .35</td>
<td>96 .09</td>
<td><3 .48</td>
<td>.07</td>
<td>.14</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49986</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>16</td>
<td><.3</td>
<td>4</td>
<td>4</td>
<td>363</td>
<td>2.19</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>3</td>
<td>21</td>
<td>.4</td>
<td>3</td>
<td><2</td>
<td>68 .39 .061</td>
<td>4</td>
<td>17 .31</td>
<td>83 .11</td>
<td><3 .43</td>
<td>.07</td>
<td>.12</td>
<td><2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49987</td>
<td>2</td>
<td>3</td>
<td><3</td>
<td>13</td>
<td><.3</td>
<td>9</td>
<td>5</td>
<td>379</td>
<td>2.27</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>3</td>
<td>25</td>
<td>.4</td>
<td>4</td>
<td>2</td>
<td>69 .40 .063</td>
<td>6</td>
<td>16 .34</td>
<td>98 .06</td>
<td><3 .47</td>
<td>.08</td>
<td>.12</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49988</td>
<td>1</td>
<td>3</td>
<td><3</td>
<td>8</td>
<td><.3</td>
<td>4</td>
<td>3</td>
<td>284</td>
<td>1.74</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>4</td>
<td>19</td>
<td>.2</td>
<td>3</td>
<td><2</td>
<td>52 .33 .053</td>
<td>5</td>
<td>17 .21</td>
<td>69 .08</td>
<td><3 .43</td>
<td>.07</td>
<td>.10</td>
<td><2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49989</td>
<td>1</td>
<td>3</td>
<td><3</td>
<td>11</td>
<td><.3</td>
<td>8</td>
<td>5</td>
<td>344</td>
<td>2.34</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>68</td>
<td>.7</td>
<td>6</td>
<td>8</td>
<td>55 .15 .187</td>
<td>3</td>
<td>15 .62</td>
<td>34 .16</td>
<td><3 .94</td>
<td>.06</td>
<td>.11</td>
<td><2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49990</td>
<td>2</td>
<td>159</td>
<td><3</td>
<td>16</td>
<td><.3</td>
<td>8</td>
<td>16</td>
<td>205</td>
<td>4.64</td>
<td><4</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>60</td>
<td>.7</td>
<td>4</td>
<td>3</td>
<td>56 .12 .161</td>
<td>3</td>
<td>10 .57</td>
<td>28 .16</td>
<td><3 .10</td>
<td>.07</td>
<td>.14</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49991</td>
<td><1</td>
<td>54</td>
<td><3</td>
<td>72</td>
<td><.5</td>
<td>25</td>
<td>28</td>
<td>1190</td>
<td>5.92</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>47</td>
<td><.2</td>
<td><2</td>
<td>2</td>
<td>166 .67 .043</td>
<td>4</td>
<td>49 .16</td>
<td>93 .01</td>
<td><4 .24</td>
<td>.04</td>
<td>.10</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49992</td>
<td>3</td>
<td>35</td>
<td>6</td>
<td>100</td>
<td>.6</td>
<td>29</td>
<td>22</td>
<td>819</td>
<td>6.02</td>
<td><7</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>163</td>
<td>.3</td>
<td>2</td>
<td><2</td>
<td>210 .20 .237</td>
<td>17</td>
<td>61 .51</td>
<td>127 .40</td>
<td><3 .71</td>
<td>.41</td>
<td>.16</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49993</td>
<td>1</td>
<td>60</td>
<td><3</td>
<td>75</td>
<td>.7</td>
<td>22</td>
<td>21</td>
<td>2159</td>
<td>7.02</td>
<td><6</td>
<td><5</td>
<td><2</td>
<td>4</td>
<td>49</td>
<td><.2</td>
<td><2</td>
<td><2</td>
<td>178 .55 .034</td>
<td>3</td>
<td>48 .31</td>
<td>53 .30</td>
<td><4 .38</td>
<td>.19</td>
<td>.13</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49994</td>
<td>2</td>
<td>70</td>
<td>5</td>
<td>124</td>
<td>1.0</td>
<td>221</td>
<td>41</td>
<td>1096</td>
<td>7.88</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>161</td>
<td><.2</td>
<td><2</td>
<td><2</td>
<td>118 .66 .160</td>
<td>15</td>
<td>48 .49</td>
<td>59 .71</td>
<td><3 .27</td>
<td>.12</td>
<td>.18</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49995</td>
<td>2</td>
<td>43</td>
<td>4</td>
<td>65</td>
<td>.9</td>
<td>9</td>
<td>15</td>
<td>672</td>
<td>5.17</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>63</td>
<td><.2</td>
<td><2</td>
<td><2</td>
<td>156 .23 .053</td>
<td>4</td>
<td>17 .57</td>
<td>83 .33</td>
<td><6 .33</td>
<td>.38</td>
<td>.17</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49996</td>
<td>2</td>
<td>44</td>
<td><3</td>
<td>66</td>
<td><.9</td>
<td>10</td>
<td>16</td>
<td>699</td>
<td>5.35</td>
<td><7</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>65</td>
<td><.3</td>
<td><2</td>
<td><2</td>
<td>162 .24 .054</td>
<td>4</td>
<td>17 .62</td>
<td>86 .34</td>
<td><4 .51</td>
<td>.39</td>
<td>.10</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49997</td>
<td>2</td>
<td>26</td>
<td>20</td>
<td>93</td>
<td>1.1</td>
<td>5</td>
<td>21</td>
<td>829</td>
<td>6.07</td>
<td><7</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>55</td>
<td><.3</td>
<td><2</td>
<td><2</td>
<td>181 .25 .057</td>
<td>3</td>
<td>81 .80</td>
<td>48 .25</td>
<td><5 .37</td>
<td>.37</td>
<td>.07</td>
<td><2</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49998</td>
<td>2</td>
<td>43</td>
<td>5</td>
<td>85</td>
<td>.8</td>
<td>6</td>
<td>19</td>
<td>938</td>
<td>6.65</td>
<td><13</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>19</td>
<td><.2</td>
<td><2</td>
<td><2</td>
<td>179 .47 .030</td>
<td>2</td>
<td>19 .86</td>
<td>39 .30</td>
<td><25 .62</td>
<td>.05</td>
<td>.05</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 49999</td>
<td>3</td>
<td>39</td>
<td><3</td>
<td>130</td>
<td>1.8</td>
<td>186</td>
<td>42</td>
<td>1018</td>
<td>7.77</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>4</td>
<td>77</td>
<td><.2</td>
<td><2</td>
<td><2</td>
<td>108 .65 .176</td>
<td>17</td>
<td>84 .45</td>
<td>55 .56</td>
<td><3 .11</td>
<td>.49</td>
<td>.09</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-01</td>
<td>1</td>
<td>8</td>
<td><3</td>
<td>11</td>
<td><.3</td>
<td>11</td>
<td>1</td>
<td>493</td>
<td>.56</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>192</td>
<td><.2</td>
<td><2</td>
<td><2</td>
<td>8 .25 .004</td>
<td><1</td>
<td>22 .15</td>
<td>31 .03</td>
<td><3 .16</td>
<td>.01</td>
<td>.02</td>
<td><2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-02</td>
<td>4</td>
<td>29</td>
<td>3</td>
<td>23</td>
<td><.3</td>
<td>19</td>
<td>2</td>
<td>151</td>
<td>1.33</td>
<td><4</td>
<td><5</td>
<td><2</td>
<td>1</td>
<td>11</td>
<td><.2</td>
<td><2</td>
<td><2</td>
<td>30 .22 .021</td>
<td>4</td>
<td>28 .37</td>
<td>31 .08</td>
<td><3 .38</td>
<td>.03</td>
<td>.05</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-03</td>
<td>8</td>
<td>69</td>
<td>11</td>
<td>81</td>
<td>.5</td>
<td>55</td>
<td>8</td>
<td>411</td>
<td>2.93</td>
<td><8</td>
<td><5</td>
<td><2</td>
<td>3</td>
<td>29</td>
<td><.4</td>
<td><2</td>
<td><2</td>
<td>68 .97 .029</td>
<td>7</td>
<td>90 .14</td>
<td>59 .26</td>
<td><3 .13</td>
<td>.02</td>
<td>.18</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STANDARD C2/AU-R</td>
<td>21</td>
<td>59</td>
<td>37</td>
<td>145</td>
<td>6.3</td>
<td>75</td>
<td>36</td>
<td>1160</td>
<td>4.22</td>
<td>42</td>
<td>23</td>
<td>9</td>
<td>37</td>
<td>55</td>
<td>21.3</td>
<td>19</td>
<td>21</td>
<td>75</td>
<td>.61</td>
<td>.102</td>
<td>40</td>
<td>68</td>
<td>1.01</td>
<td>194</td>
<td>.10</td>
<td>27</td>
<td>2.02</td>
<td>.07</td>
<td>.17</td>
</tr>
<tr>
<td>SAMPLE#</td>
<td>Mo</td>
<td>Cu</td>
<td>Pb</td>
<td>Zn</td>
<td>Ag</td>
<td>Ni</td>
<td>Co</td>
<td>Mn</td>
<td>Fe</td>
<td>As</td>
<td>U</td>
<td>Au</td>
<td>Th</td>
<td>Sr</td>
<td>Cd</td>
<td>Pb</td>
<td>Bi</td>
<td>V</td>
<td>Ca</td>
<td>P</td>
<td>La</td>
<td>Cr</td>
<td>Mg</td>
<td>Ba</td>
<td>Ti</td>
<td>B</td>
<td>Al</td>
<td>Na</td>
<td>K</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>L1 0-00E</td>
<td>5</td>
<td>11</td>
<td>5</td>
<td>121</td>
<td>.3</td>
<td>12</td>
<td>6</td>
<td>472</td>
<td>2.10</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>27</td>
<td>1.3</td>
<td><2</td>
<td><2</td>
<td>47</td>
<td>.35</td>
<td>.117</td>
<td>5</td>
<td>19</td>
<td>.29</td>
<td>253</td>
<td>.11</td>
<td>4</td>
<td>1.26</td>
<td>.05</td>
<td>.13</td>
</tr>
<tr>
<td>L1 0+25E</td>
<td>9</td>
<td>14</td>
<td>6</td>
<td>105</td>
<td>.3</td>
<td>10</td>
<td>5</td>
<td>474</td>
<td>2.10</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>22</td>
<td>.9</td>
<td><2</td>
<td><2</td>
<td>47</td>
<td>.27</td>
<td>.097</td>
<td>5</td>
<td>17</td>
<td>.24</td>
<td>176</td>
<td>.09</td>
<td>4</td>
<td>1.20</td>
<td>.05</td>
<td>.12</td>
</tr>
<tr>
<td>L1 0+50E</td>
<td>8</td>
<td>17</td>
<td>4</td>
<td>79</td>
<td><3</td>
<td>7</td>
<td>5</td>
<td>407</td>
<td>2.08</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td>21</td>
<td>.7</td>
<td><2</td>
<td><2</td>
<td>39</td>
<td>.17</td>
<td>.096</td>
<td>3</td>
<td>11</td>
<td>.12</td>
<td>300</td>
<td>.09</td>
<td>3</td>
<td>.73</td>
<td>.05</td>
<td>.07</td>
</tr>
<tr>
<td>L1 0+75E</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>86</td>
<td><3</td>
<td>7</td>
<td>5</td>
<td>1557</td>
<td>1.52</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>17</td>
<td>.7</td>
<td><2</td>
<td><2</td>
<td>39</td>
<td>.17</td>
<td>.096</td>
<td>3</td>
<td>11</td>
<td>.12</td>
<td>300</td>
<td>.09</td>
<td>3</td>
<td>.73</td>
<td>.05</td>
<td>.07</td>
</tr>
<tr>
<td>L1 0+100E</td>
<td>11</td>
<td>22</td>
<td>3</td>
<td>97</td>
<td><3</td>
<td>11</td>
<td>7</td>
<td>1492</td>
<td>2.59</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>31</td>
<td>.5</td>
<td><2</td>
<td><2</td>
<td>53</td>
<td>.52</td>
<td>.085</td>
<td>5</td>
<td>18</td>
<td>.25</td>
<td>477</td>
<td>.08</td>
<td>4</td>
<td>1.16</td>
<td>.04</td>
<td>.15</td>
</tr>
<tr>
<td>L1 0+125E</td>
<td>11</td>
<td>38</td>
<td>4</td>
<td>57</td>
<td><3</td>
<td>9</td>
<td>6</td>
<td>615</td>
<td>2.10</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>23</td>
<td>.4</td>
<td><2</td>
<td><2</td>
<td>46</td>
<td>.37</td>
<td>.048</td>
<td>5</td>
<td>14</td>
<td>.22</td>
<td>225</td>
<td>.06</td>
<td><3</td>
<td>.85</td>
<td>.03</td>
<td>.15</td>
</tr>
<tr>
<td>L1 0+150E</td>
<td>11</td>
<td>31</td>
<td>5</td>
<td>73</td>
<td><3</td>
<td>7</td>
<td>7</td>
<td>778</td>
<td>2.12</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>27</td>
<td>.3</td>
<td><2</td>
<td><2</td>
<td>51</td>
<td>.39</td>
<td>.077</td>
<td>2</td>
<td>8</td>
<td>.16</td>
<td>264</td>
<td>.05</td>
<td>3</td>
<td>.98</td>
<td>.04</td>
<td>.12</td>
</tr>
<tr>
<td>L1 0+175E</td>
<td>9</td>
<td>21</td>
<td>4</td>
<td>41</td>
<td><3</td>
<td>4</td>
<td>4</td>
<td>550</td>
<td>1.64</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>20</td>
<td>.2</td>
<td><2</td>
<td><2</td>
<td>37</td>
<td>.30</td>
<td>.040</td>
<td>1</td>
<td>6</td>
<td>.09</td>
<td>214</td>
<td>.05</td>
<td>3</td>
<td>.63</td>
<td>.04</td>
<td>.10</td>
</tr>
<tr>
<td>L1 0+200E</td>
<td>2</td>
<td>27</td>
<td><3</td>
<td>53</td>
<td><3</td>
<td>7</td>
<td>3</td>
<td>3032</td>
<td>3.39</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>7</td>
<td>37</td>
<td><2</td>
<td><2</td>
<td>78</td>
<td>.67</td>
<td>.025</td>
<td>12</td>
<td>49</td>
<td>.65</td>
<td>217</td>
<td>.15</td>
<td>5</td>
<td>2.17</td>
<td>.04</td>
<td>.28</td>
</tr>
<tr>
<td>SK 0+90N</td>
<td><1</td>
<td>16</td>
<td><3</td>
<td>50</td>
<td><3</td>
<td>26</td>
<td>11</td>
<td>547</td>
<td>3.14</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>5</td>
<td>65</td>
<td><2</td>
<td><2</td>
<td>62</td>
<td>1.06</td>
<td>.046</td>
<td>15</td>
<td>36</td>
<td>.84</td>
<td>175</td>
<td>.12</td>
<td>5</td>
<td>1.30</td>
<td>.06</td>
<td>.16</td>
<td><2</td>
</tr>
<tr>
<td>SK 0+130N</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>55</td>
<td><3</td>
<td>9</td>
<td>8</td>
<td>399</td>
<td>2.62</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>55</td>
<td>.27</td>
<td><2</td>
<td><2</td>
<td>55</td>
<td>.27</td>
<td>.079</td>
<td>4</td>
<td>19</td>
<td>.29</td>
<td>132</td>
<td>.11</td>
<td>3</td>
<td>.24</td>
<td>.05</td>
<td>.08</td>
</tr>
<tr>
<td>SK 0+150N</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>76</td>
<td><3</td>
<td>9</td>
<td>8</td>
<td>402</td>
<td>2.27</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>52</td>
<td>.24</td>
<td><2</td>
<td><2</td>
<td>55</td>
<td>.27</td>
<td>.079</td>
<td>4</td>
<td>19</td>
<td>.29</td>
<td>132</td>
<td>.11</td>
<td>3</td>
<td>.24</td>
<td>.05</td>
<td>.08</td>
</tr>
<tr>
<td>SK 0+180N</td>
<td><1</td>
<td>6</td>
<td>7</td>
<td>56</td>
<td><3</td>
<td>14</td>
<td>7</td>
<td>352</td>
<td>3.31</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>55</td>
<td>.27</td>
<td><2</td>
<td><2</td>
<td>55</td>
<td>.27</td>
<td>.079</td>
<td>4</td>
<td>19</td>
<td>.29</td>
<td>132</td>
<td>.11</td>
<td>3</td>
<td>.24</td>
<td>.05</td>
<td>.08</td>
</tr>
<tr>
<td>WH 0+50E GLO 96</td>
<td><1</td>
<td>9</td>
<td><3</td>
<td>55</td>
<td><3</td>
<td>17</td>
<td>7</td>
<td>326</td>
<td>2.42</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>43</td>
<td><2</td>
<td><2</td>
<td>2</td>
<td>57</td>
<td>.23</td>
<td>.056</td>
<td>5</td>
<td>29</td>
<td>.36</td>
<td>93</td>
<td>.15</td>
<td>4</td>
<td>1.03</td>
<td>.05</td>
<td>.16</td>
</tr>
<tr>
<td>WH 0+100</td>
<td><1</td>
<td>9</td>
<td><3</td>
<td>55</td>
<td><3</td>
<td>17</td>
<td>7</td>
<td>326</td>
<td>2.42</td>
<td><2</td>
<td><5</td>
<td><2</td>
<td>2</td>
<td>43</td>
<td><2</td>
<td><2</td>
<td>2</td>
<td>57</td>
<td>.23</td>
<td>.056</td>
<td>5</td>
<td>29</td>
<td>.36</td>
<td>93</td>
<td>.15</td>
<td>4</td>
<td>1.03</td>
<td>.05</td>
<td>.16</td>
</tr>
</tbody>
</table>

Sample type: SOIL. Samples beginning 'RE' are Runoffs and 'RRE' are Reject Runoffs.
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe ppm	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Zr ppm	Nb ppm	V ppm	Mg ppm	Ca ppm	P ppm	La ppm	Cr ppm	Mg ppm	Ba ppm	Ti ppm	B ppm	Al ppm	Na ppm	K ppm	V ppm	Au ppm																																	
FIR 1+00E	1 11 4 64 <.3 23	7 203 2.20	2 <5 <2 2	26 <.2 <2	<2 58 .35 .099	8 31 .38 154	.10 <3 1.36 .03 .12	<2 5	<1 9 .3 41 <.3 17	6 225 2.09	3 5 <2 2	28 <.2 <2	<2 59 .31 .040	7 30 .29 69	.12 <3 .98 .04 .09	<2 2	<1 11 6 44 <.3 28	7 188 2.36	<2 5 <2 3	34 <.2 <2	<2 66 .43 .096	8 37 .38 110	.13 4.14 .04 .10	<2 2	<1 9 6 51 <.3 23	6 206 2.25	<2 5 <2 2	30 <.2 <2	<2 61 .35 .073	8 32 .31 111	.12 <3 1.01 .04 .09	<2 2	<1 11 6 55 <.3 21	6 216 2.23	<2 7 <2 3	31 <.2 <2	<2 62 .36 .059	9 33 .34 112	.13 <3 1.08 .04 .11	<2 2	<1 11 6 50 <.3 20	7 244 2.33	<2 5 <2 2	30 <.2 <2	<2 64 .39 .036	10 29 .39 97	.13 <3 1.10 .05 .14	<2 2	<1 10 4 49 <.3 20	6 241 2.25	<2 7 <2 3	29 <.2 <2	<2 62 .38 .035	10 31 .37 93	.13 <3 1.06 .05 .14	<2 2	<1 12 5 69 <.3 21	7 311 2.77	<2 11 <2 3	30 <.2 <2	<2 79 .37 .053	10 35 .42 130	.13 <3 1.26 .04 .14	<2 2
FIR 3+50E	1 11 6 50 <.3 20	7 244 2.33	<2 5 <2 2	30 <.2 <2	<2 64 .39 .036	10 29 .39 97	.13 <3 1.10 .05 .14	<2 2	<1 10 4 49 <.3 20	6 241 2.25	<2 7 <2 3	29 <.2 <2	<2 62 .38 .035	10 31 .37 93	.13 <3 1.06 .05 .14	<2 2	<1 12 5 69 <.3 21	7 311 2.77	<2 11 <2 3	30 <.2 <2	<2 79 .37 .053	10 35 .42 130	.13 <3 1.26 .04 .14	<2 2	<1 13 6 60 <.3 26	8 444 2.92	<2 7 <2 2	32 <.2 <2	<2 84 .60 .059	6 36 .44 127	.12 <3 1.24 .04 .14	<2 2	<1 13 5 51 <.3 15	9 385 3.36	<2 5 <2 4	26 <.2 <2	<2 102 .33 .043	9 33 .38 123	.12 <3 1.29 .03 .16	<2 2																								
RE FIR 3+50E	1 10 4 49 <.3 20	6 241 2.25	<2 7 <2 3	29 <.2 <2	<2 62 .38 .035	10 31 .37 93	.13 <3 1.06 .05 .14	<2 2	<1 12 5 69 <.3 21	7 311 2.77	<2 11 <2 3	30 <.2 <2	<2 79 .37 .053	10 35 .42 130	.13 <3 1.26 .04 .14	<2 2	<1 13 6 60 <.3 26	8 444 2.92	<2 7 <2 2	32 <.2 <2	<2 84 .60 .059	6 36 .44 127	.12 <3 1.24 .04 .14	<2 2	<1 13 5 51 <.3 15	9 385 3.36	<2 5 <2 4	26 <.2 <2	<2 102 .33 .043	9 33 .38 123	.12 <3 1.29 .03 .16	<2 2	<1 13 5 51 <.3 15	9 385 3.36	<2 5 <2 4	26 <.2 <2	<2 102 .33 .043	9 33 .38 123	.12 <3 1.29 .03 .16	<2 2	<1 13 5 51 <.3 15	9 385 3.36	<2 5 <2 4	26 <.2 <2	<2 102 .33 .043	9 33 .38 123	.12 <3 1.29 .03 .16	<2 2																
FIR 4+00E	1 13 5 51 <.3 15	9 385 3.36	<2 5 <2 4	26 <.2 <2	<2 102 .33 .043	9 33 .38 123	.12 <3 1.29 .03 .16	<2 2	<1 13 5 51 <.3 15	9 385 3.36	<2 5 <2 4	26 <.2 <2	<2 102 .33 .043	9 33 .38 123	.12 <3 1.29 .03 .16	<2 2	<1 13 5 51 <.3 15	9 385 3.36	<2 5 <2 4	26 <.2 <2	<2 102 .33 .043	9 33 .38 123	.12 <3 1.29 .03 .16	<2 2																																								

Sample type: SOIL. Samples beginning 'RE' are Rejects and 'RRE' are Reject Rejects.