Assessment Report
for the

DOTS, ELSA, FLORS AND IRON

Claims,

Nelson Mining Division
Goat River Area, British Columbia

N.T.S. 82F/1W, F/8W
Latitude: 49° 15' 00"N, Longitude: 116° 20' 00"W

for

Gwen Resources Ltd.
1595 Griffiths Place
Kelowna, B.C.
V1Z 2T7

Submitted by: Richard T. Walker

of

Dynamic Exploration Ltd.,
656 Brookview Crescent
Cranbrook, B.C.
V1C 4R5

Submitted: April 17, 1997
SUMMARY

Four claim groups, totalling 17 claim units, were staked immediately west of the Goat River, north of Kitchener, B.C. to cover possible and known diatreme occurrences identified by the author. The claims are located south of Bahan Creek and within, and north of, the Crackerjack Creek basin. At least four silica deficient, potassium enriched occurrences, having xenolithic textures (including sedimentary, lower crustal and possible mantle inclusions) with large megacrystic and euhedral phlogopites in an igneous matrix have been identified. The matrix has been extensively altered to secondary carbonate and chlorite.

Mineralogically, texturally and compositionally, the Goat River alkaline occurrences have similarities to occurrences in the Toby - Horsethief Creek area. Extensive carbonate - chlorite alteration resulting in carbonate pseudomorphed phenocrysts with euhedral to subhedral megacrysts of phlogopite in a fine-grained, green coloured matrix is strikingly similar to the Toby - Horsethief Creek occurrences. Therefore, it is postulated that the Goat River occurrences may comprise the southern portion of a western belt of alkaline diatremes in the Purcell Mountains, west of the well documented Rocky Mountain Alkaline Belt.

Alkaline intrusive diatremes, dykes and sills have been examined and documented in the southern Rocky Mountain Alkaline Belt of British Columbia, extending from Fernie to northeast of Golden. Documented lithologies include olivine melilitites, alkaline to basaltic lamprophyres, kimberlites and diamond-bearing lamproites. The Cross kimberlite is a Permo-Triassic intrusive breccia located north of Elkford on the southeastern edge of a broadly defined north-trending belt of alkaline diatremes. The Joff pipe is located on the western edge of this same belt east of Invermere and is considered to be either a kimberlite or an olivine melilitite. The northern portion of this belt is located in the area west of the Columbia Icefields and consists of diamond-bearing lamproites. Of particular significance regarding this program is the presence of kimberlites and diamond-bearing lamproites in a mobile belt.

The objective of the 1996-97 program was to identify potential diamond-bearing properties in the Purcell Mountains and secure the ground by staking in order that more in-depth examination could be carried out in the future. A cursory geological examination was made of the properties with limited prospecting and sampling completed. Sampling included taking large bulk samples of diatreme material for heavy mineral separation and several thin sections for description and lithological identification.
Table of Contents

Summary ... i
Introduction ... 1
 Diamond Exploration Potential ... 6
Location and Access .. 6
Claim Status ... 6
Physiography and Climate ... 6
Regional Geology .. 8
Stratigraphy ... 9
 Proterozoic ... 9
 Belt - Purcell Supergroup ... 9
 Lower Aldridge .. 9
 Middle Aldridge ... 9
 Upper Aldridge .. 10
 Creston Formation .. 10
 Lower Creston ... 10
 Upper Creston ... 11
Intrusions .. 11
 Proterozoic ... 11
 Moyie Sills .. 11
 Early Cretaceous ... 11
 Mid Cretaceous ... 11
 Bayonne Suite .. 12
 Permo-Triassic .. 12
Structure ... 13
Metamorphism .. 14
Local Geology ... 15
1996-97 Program .. 16
Results .. 17
 DOTS .. 19
 ELSA .. 19
 IRON / FORS ... 19
Rock Descriptions .. 20
 RW95-3 .. 20
 IRO95-2 .. 20
Thin Section Descriptions ... 20
 IRO95-2 .. 20
 MRWT93-8 .. 21
 MRWT93-13 ... 21
 RW95-1 ... 21
 RW95-3 ... 21
Conclusions and Recommendations ... 23
Proposed Budget ... 24
References ... 25
List of Figures

Figure 1 - General Location Map ... 2
Figure 2 - Regional / Property Location Map .. 3
Figure 3 - Claim Location Map ... 7
Figure 4 - Sample Location Map ... 18

List of Appendices

Appendix A - Statement of Qualifications
Appendix B - Claim Records
Appendix C - Analytical Results
Appendix D - Statement of Expenditures
Appendix E - Program Related Documents
INTRODUCTION

Alkaline intrusive diatremes, dykes and sills have been documented in the north-south trending Rocky Mountain Alkaline Belt (RMAB) (Pell 1994). Lithologies include olivine melilitites, limburgites, alkaline to basaltic lamprophyres, kimberlites and diamond-bearing lamproites, although the lithology of these diamond-bearing occurrences has been disputed. The Cross kimberlite is a Permo-Triassic intrusive breccia located on the southeastern edge of the RMAB. The Joff pipe is located on the western edge of this same belt east of Invermere and is considered to be either a kimberlite or an olivine melilitite. The northern portion of this belt is located west of the Columbia Icefields and consists of diamond-bearing lamproites, recently re-interpreted as lamprophyres. Of particular significance regarding this program is the presence of diamond-bearing lithologies in a mobile belt.

One true kimberlite and at least twelve dykes of kimberlitic affinity have been documented in the Purcell Mountains, west of Invermere (Pope and Thirlwall 1992). They have been dated at 245 ± 2.4 Ma and are therefore coeval with the Crossing Creek (Cross) kimberlite at the southern end of the RMAB (241 ± 5 Ma and 249 ± 12 Ma; 244 Ma). Mineralogically, texturally and compositionally, the Goat River alkaline occurrences (Fig. 1) are similar to occurrences in the Toby Creek area. Other diatremes described in the RMAB (Fig. 2) include silica-deficient, potassium-enriched occurrences having xenolithic textures (including sedimentary, lower crustal and possibly mantle inclusions), large megacrystic and euhedral phlogopite in a carbonatized and chloritized igneous matrix (Pell 1994, 1987; Parrish and Reichenbach 1991; Pope and Thirlwall 1992). Mineralogically, they may contain pseudomorphed olivine (altered to calcite and/or serpentine), euhedral to subhedral phlogopite phenocrysts to macrocrysts, ilmenite and apatite. Furthermore, they contain a minor component of ultramafic inclusions and foreign xenoliths. The extensive alteration resulting in serpentine and carbonate pseudomorphed phenocrysts with euhedral to subhedral megacrysts of phlogopite is common among these occurrences.

One diatreme in the Goat River area was dated by Cominco and returned a K-Ar age of 301 ± 10 Ma (Brown et al. 1993). Qualitative age determinations have been made for the remaining diatremes of the RMAB and Purcell Mountains, based on cross-cutting relationships (Pell 1987, Helmskaedt et al. 1987). Therefore, conclusive age dates are not available beyond intrusive age relationships and/or truncation by erosional surfaces. The Goat River occurrences have features similar to the Toby Creek occurrences which suggests an affinity and possibly a broadly coeval emplacement age (245 ± 2.4 Ma).

The presence of the Goat River occurrences in the southern Purcell Mountains (Fig. 1), south of dykes having kimberlitic composition in the Toby Creek area suggests the possibility of a second alkaline belt in the Purcell Mountains, west of the well documented RMAB. The Toby Creek occurrences occur as rusty weathering, variably carbonatized intrusive bodies ranging from 50 centimetres to 10 metres in thickness (Pope and Thirlwall 1992). They have narrow chilled margins and show little or no evidence of contact metamorphism with either host lithologies or xenoliths. The dykes are xenolithic and include pyroxenite nodules. The occurrences were
GWEN RESOURCES LTD

GOAT RIVER CLAIMS
Location Map

Scale: 1:8,000,000
Date: Oct. 7, 1994
N.T.S.: 82 F1/W & F8/W

GEMQUEST GEOLOGICAL Fig. 1
Figure 2 - General location map of diatreme localities in the southern Rocky Mountains (Pell 1987)
subdivided into two suites based on petrology and chemistry. Group A were interpreted to be lamprophyres having kimberlitic affinity whereas Group B were interpreted to be true kimberlites.

The diatremes have features consistent with steeply cross-cutting diatremes elsewhere in B.C.. These features include: lack of thermal alteration of inclusions, wide variety of xenoliths which include host lithologies, crustal and possible mantle inclusions, large xenocrysts / megacrysts of phlogopite and limited areal extent.

Diatremes in the southern Rocky Mountains are interpreted to have been intruded predominantly in the early Paleozoic yet contain zircon xenocrysts of Archean to early Paleozoic age. Crustal-type xenoliths are documented from several of the occurrences as well as mantle-derived xenoliths such as pyroxenites, peridotites and eclogites. In addition to abundant indicator minerals, micro-diamonds have been recovered from heavy mineral separates from the Jack and Mark diatreme occurrences northeast of Golden (Fig. 2) and macro-diamonds from the ICE property (which includes the Cross kimberlite) northwest of Elkford. Although these diatremes are contained within a Paleozoic mobile belt, recent geophysical programs have identified underlying Proterozoic and Archean basement. More significant is recent identification of a large composite block of Archean craton, part of the Hearn Province, in southern Alberta which underlies eastern British Columbia.

The basement of the Alberta Basin has been correlated to exposures of the Canadian Shield using U-Pb age determinations of basement material from drill core and aeromagnetic signatures (Ross et al. 1991). Canadian Shield exposures have been correlated from Saskatchewan and northwestern Alberta to southwest trending aeromagnetic anomalies in the subsurface of Alberta. Furthermore, these anomalies can be correlated with confidence to the basement underlying the Cordillera and support the interpretation that North American cratonic basement underlies the Rocky Mountains, Rocky Mountain Trench and eastern part of the Purcell Mountains (Cook et al. 1991, Ross et al. 1991). Finally, exposures of basement gneiss in the southern Cordillera demonstrate the presence of Proterozoic and Archean basement underlying miogeoclinal strata west of the Rocky Mountain Trench.

Diamonds have been recovered from at least four alkalic diatremes located in a Paleozoic mobile belt, tectonically emplaced upon Archean and Proterozoic basement. Diatremes of the southern Cordillera appear to have intruded a composite Archean cratonic block correlated to the Hearn Province. The Rocky Mountains are underlain in this area by Archean basement for which an age of 2.6 to 3.2 billion years has been determined, consistent with the ages of peridotitic diamonds determined world-wide (3.3 billion years). It is therefore reasonable to expect the presence of diamonds with mantle-derived peridotitic / eclogitic nodules and zircons of Archean age.

At present it is not clear where the intrusives originated relative to the diamond stability field. However, it is particularly significant that diamond-bearing lamprophyres northeast of Golden
restore palinspastically outboard of the Cross Creek kimberlite occurrence, from which diamonds have also been recovered.

Recent mapping in the Toby Creek area of the central Purcell Mountains identified a local basement high, the Windermere High, consisting of an inverted, dismembered high standing block of terraced basement which may have controlled emplacement of ultrapotassic dykes. These intrusive dykes define a broad north-south belt spatially associated with the intersection of the Nelson Creek Fault and the Bruce Creek synform. The ultrapotassic dykes are kimberlitic in composition or of kimberlitic affinity. They have compositions that plot in rift associated and/or active orogen fields of ultrapotassic, major element discrimination diagrams and are coeval with the Cross kimberlite in the southern Rocky Mountains at 245 ± 2.4 Ma (Pope and Thirlwall 1992).

The common petrogenesis and extensional, fault controlled structural setting, coupled with essentially identical ages of emplacement suggests the Toby Creek occurrences and Cross kimberlite had a coeval evolution during a single phase of continental extension. Ultramafic occurrences in the Goat River area represent a newly discovered series of ultrapotassic occurrences in an area previously thought devoid of such intrusives. They are exciting in terms of their possible kimberlitic affinity and relationship with diamond-bearing occurrences in the southern Rocky Mountains. In summary, with documented recovery of micro- and macro-diamonds from alkaline diatremes lying within a well defined alkaline belt overlying an Archean cratonic block, there is a very strong rationale for continued exploration for, and evaluation of, alkaline diatremes in southern B.C. Furthermore, unsuccessful evaluation in the past for diamond potential relied exclusively on a South African model. Recent work has shown that other models may be more applicable to occurrences in the southern Cordillera (i.e. ophiolitic diamonds in Nepal and Spain, alkali basalt and nephelinite hosted diamonds in New South Wales, Australia and lamproitic hosts such as the Argyle Mine, Australia).

The program to date has emphasized acquisition of potential diamond-bearing properties in the Rocky and Purcell Mountains for subsequent evaluation. A cursory geological examination has been conducted on the properties, with limited prospecting and geochemical sampling. Bulk samples were processed for recovery of heavy minerals and representative samples sent for geochemical analysis.
LOCATION AND ACCESS

The properties, comprised of the DOTS, ELSA, FLORS and IRON claims, are located in the southern Purcell Mountains (latitude 49° 15' 00" N, longitude 116° 20' 00" W), approximately 14 kilometres north of the community of Kitchener, B.C. on N.T.S. mapsheet 82 F 1/W (see Figure 1). The claims consist of a total of 17 2-post claim units located on the west side of the south flowing Goat River, and on either side of the east flowing Hall Creek.

The claim groups can be accessed by a well maintained, active logging road north of Kitchener, along the Goat River. At approximately 14 kilometres, the Hall Creek and Crackerjack Creek logging roads provide access directly to the claims.

PHYSIOGRAPHY AND CLIMATE

The properties are located in the Goat River valley, north of Kitchener and northeast of Creston, B.C.. Relief in the area varies from 762 metres (2500 feet) along the Goat River to more than 2150 metres (7053 feet) on Mt. O'Neil (to the northeast). The claims are moderately well exposed at mid- to upper slope elevations. Vegetation consists of relatively thick undergrowth comprised of slide alder and Devil's Club in the trees, where not clear-cut by recent logging activity.

The claims are located east of Kootenay Lake and are therefore subject to somewhat heavier precipitation than farther east in the Moyie River valley. The property is available for geological exploration form May to late October.

CLAIM STATUS

The properties consist of four claim groups, comprising a total of 17 2-post claims (see Figure 3), staked in accordance with existing government claim location regulations. Significant claim data are summarized below:

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Units</th>
<th>Tenure Number</th>
<th>Date of Record</th>
<th>Expiry Date*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOTS 1</td>
<td>1</td>
<td>341699</td>
<td>October 26, 1995</td>
<td>October 26, 1998</td>
</tr>
<tr>
<td>DOTS 2</td>
<td>1</td>
<td>341700</td>
<td>October 26, 1995</td>
<td>October 26, 1998</td>
</tr>
<tr>
<td>DOTS 3</td>
<td>1</td>
<td>341701</td>
<td>October 26, 1995</td>
<td>October 26, 1998</td>
</tr>
<tr>
<td>DOTS 4</td>
<td>1</td>
<td>341702</td>
<td>October 26, 1995</td>
<td>October 26, 1998</td>
</tr>
<tr>
<td>Total:</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELSA 1</td>
<td>1</td>
<td>341040</td>
<td>October 18, 1995</td>
<td>October 18, 1998</td>
</tr>
<tr>
<td>ELSA 2</td>
<td>1</td>
<td>341041</td>
<td>October 18, 1995</td>
<td>October 18, 1998</td>
</tr>
<tr>
<td>ELSA 3</td>
<td>1</td>
<td>341042</td>
<td>October 18, 1995</td>
<td>October 18, 1998</td>
</tr>
<tr>
<td>ELSA 4</td>
<td>1</td>
<td>341043</td>
<td>October 18, 1995</td>
<td>October 18, 1998</td>
</tr>
<tr>
<td>Total:</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REGIONAL GEOLOGY

The stratigraphy of the Goat River area is dominated by the Proterozoic (Belt-) Purcell Supergroup, a thick accumulation (estimated between 10 and 20 kilometres thick) of siliciclastic sediments and mafic intrusions (predominantly sills). Deposition of the Purcell Supergroup has been interpreted to have taken place between 1500 and 900 Ma (Hoy 1993). Age determinations for Moyie sills, interpreted to have been intruded at the same time as early Aldridge deposition, have returned ages between 1433 and 1445 Ma (Hoy 1993). The basin in which the Purcell Supergroup was deposited was the locus of extension, crustal attenuation and possible intracratonic rifting at approximately 1500 Ma (Brown et al. 1993). An alternate interpretation suggests deposition of the Purcell Supergroup took place between 1500 and 1200 Ma (Elston and Bressler 1980, Elston 1983, referenced in Hoy 1993). Deposition of the Purcell Supergroup has been interpreted to have ended with the East Kootenay Orogeny between approximately 1350 and 1300 Ma (McMechan and Price 1982). Subsequent extension during the Goat Orogeny, in the Late Proterozoic, resulted in initiation of deposition on the North American miogeoclone (Windermere Supergroup) following continental rifting. Deformation associated with the Laramide Orogeny (100 - 70 Ma) resulted in the dominant folds and thrusts in the area. Reactivation of local faults during the Eocene extensional event produced listric normal faults, documented in the area.
The stratigraphy of the area is dominated by exposures of the middle to upper Aldridge Formation and lower to middle Creston formations of the Proterozoic Purcell Supergroup (Brown et al. 1993, Reesor 1981). The stratigraphic section has been thickened by as much as 30% by the Moyie Sills, gabbros to quartz diorites which intrude the Aldridge Formation as concordant to slightly discordant sills and, more rarely, as moderately to steeply cross-cutting dykes. These stratigraphic packages are described briefly below.

Proterozoic

Belt-Purcell Supergroup

The stratigraphy of the southern Purcell Mountains in the Goat River area is dominated by strata comprising the Aldridge Formation. The Aldridge Formation comprises a thick succession of dominantly siliciclastic and lesser carbonate lithologies (quartz wackes, arenites, siltstones and mudstones) of Middle Proterozoic age. The Aldridge Formation has been informally sub-divided into the lower, middle and upper Aldridge Formation. These sedimentary lithologies have been intruded by sills of gabbroic to dioritic composition, the Moyie sills, interpreted to be broadly coeval with the host sediments, having intruded host sediments slightly below the sediment-water interface (Hoy 1993). The total thickness of the Aldridge Formation has been estimated to be in excess of 4000 metres in the southern Purcell Mountains (Brown et al. 1993).

Lower Aldridge

The following stratigraphic descriptions are paraphrased from Brown et al (1993):

The upper part of the lower Aldridge Formation in the Cranbrook - Kimberley area consists mainly of rusty weathering, thinly bedded siltstone and argillite, interpreted as distal turbidites. The base of the middle Aldridge is placed below blocky, grey-weathering quartz wacke beds. The Sullivan deposit occurs at the transition from lower to middle Aldridge (the lower-middle contact).

Middle Aldridge

The middle Aldridge comprises a thick sequence of fine clastic rocks, dominantly planar-bedded, fine grained quartzofeldspathic wacke to arenite, with lesser siltstone and mudstone. Medium-grained sandstone is uncommon, and coarse-grained sandstone and conglomerate are rare. Total thickness is at least 3000 metres, and may be as much as 4000 metres... In contrast, the middle Aldridge in the Cranbrook area is about 2500 metres thick and farther north at the Sullivan Mine, only 2100 metres.

Sedimentary "fragmentals" have been described in the Aldridge Formation as "sheetlike slumps and debris flows, as well as localized, cross-cutting dewatering - type fragmentals... Similar breccias in other parts of the Aldridge... are attributed to dewatering structures."
Typically, the middle Aldridge consists of rusty brown weathering quartzofeldspathic wacke beds, 0.2 to 1.0 metres thick, separated by thinner intervals (typically 0.05 to 0.3 metres) of siltstone and argillaceous siltstone. The sandstone beds are even, planar and laterally continuous, massive to indistinctly graded, locally with coarse (<1-2 mm) dark and pale grey laminae.

The upper part of the middle Aldridge is characterized by thinner wacke beds (0.05 - 0.5 metres thick) which are more widely separated with grey to dark grey, thin bedded to laminated siltstone-dominated sequences in this part of the section and can be easily interpreted as upper Aldridge. This distinct interbedded wacke and dark grey siltstone grades upward over about 100 metres into the upper Aldridge.

Upper Aldridge

The upper Aldridge is distinguished by its rusty dark brown weathering, grey to dark grey colour, platy to fissile, thin and parallel - bedded to laminated siltstone and silty mudstone couplets. Characteristic white siltstone laminae are noted ... (and) informally called "lined rock". Quartzofeldspathic wacke beds are very rare and thin (<10 cm) ... Moyie sills are absent.

The contact between the middle Aldridge and upper Aldridge is transitional over at least 100 metres, as wacke beds become thinner and more widely separated upsection ... (The thickness of the) upper Aldridge is estimated to be about 400 to 500 metres in the Yahk area. The gradational contact with the Creston Formation is placed where pale green colours, shrinkage (syneresis) cracks and other shallow-water sedimentary features first appear ... A massive, thick bedded siltstone or wacke occurs at the base of the Creston Formation.

Creston Formation

The Creston Formation overlies the Aldridge Formation and is interpreted ... to represent reworked sedimentary deposits in a shallow water environment (Brown et al. 1993). The Creston Formation has been informally sub-divided into a lower argillaceous unit, a middle quartzitic member and an upper siltite/argillite unit (Brown et al. 1993). Only the lower and middle Creston Formation have been identified in the field area and stratigraphic descriptions are paraphrased below (Brown et al. 1993).

Lower Creston

The lower Creston Formation is approximately 650 metres thick in the Goat River area and consists of thin-bedded, laminated siltstone, argillite and subordinate fine-grained quartz wacke. The lower Creston is in gradational contact with the underlying upper Aldridge Formation and is distinguished by its waxy green colour, wavy to lenticular bedding and sedimentary structures, including shrinkage (syneresis) cracks, asymmetric and symmetric ripples.
Middle Creston

The middle Creston Formation overlies the lower Creston across a gradational contact and is at least 900 metres in thickness. It is comprised predominantly of thin to medium laminated quartz arenite to quartz wacke, siltstone and mudstone. It is characterized by interbedded sequences of mauve to purplish and green coloured sediments which distinguish the middle Creston from the lower Creston. "Light grey to white medium-grained quartz arenite with commonly concordant but locally discordant mauve colour laminations or rings is a distinctive lithotype".

Intrusions

Proterozoic

Moyie sills

The "Moyie sills" comprise primarily sills but include dykes of gabbroic to dioritic composition, restricted to the lower and middle Aldridge Formation. The sills are commonly thick (15 to 30 metres) and have lateral continuity over tens of kilometres. As they are generally concordant or slightly crosscut bedding they can be used for gross stratigraphic correlations. The sills are "fine to medium grained, and range in composition from hornblende (+/- pyroxene) gabbro to hornblende quartz diorite and hornblendite (Brown et al. 1993). "Biotite granophyre ranging in composition from biotite granodiorite to biotite quartz diorite, also occurs in the centre of many of the thicker sills ... (The) sills comprise dominantly hornblende and plagioclase phenocrysts, typically up to 5 millimetres in diameter, in a finer grained groundmass of plagioclase, quartz, hornblende, chlorite and epidote. Hornblende phenocrysts, commonly partially altered to chlorite and epidote, are generally subhedral to anhedral with irregular, ragged terminations. Plagioclase ... is generally clouded by a fine mixture of epidote and albite (?) ..." (Hoy 1993).

Early Cretaceous

"Biotite lamprophyre intrusions outcrop in several areas ... They are brown weathering, medium to coarse grained, and contain biotite, hornblende and possibly olivine. They occur as sills as well as steeply dipping dikes. Similar intrusions are found in the Cranbrook - Kimberley area, where they are inferred to be Early Cretaceous" (Brown et al. 1993).

Mid-Cretaceous

Mid-Cretaceous plutons in the southeastern Cordillera intrude most terranes west of ancestral North America and ancestral North America itself. Most are batholiths and large stocks and postdate regional metamorphism and are strongly discordant with the country rocks ... The main lithologies are biotite and biotite - muscovite leucogranite and granodiorite, and biotite-hornblende granodiorite and granite. K-feldspar megacrysts are locally abundant (Woodsworth et al. 1991)."
Bayonne Suite

Lithologies of the Bayonne Suite outcrop to the north and west of the Goat River area but are described here for comparative purposes to the igneous exposures comprising the Goat River alkalics. The following description (of the White Creek Batholith - Bayonne Suite) is taken from Woodsworth et al. (1991).

"This is a roughly oval body that intrudes Proterozoic sediments of the Purcell Supergroup along the Hall Lake fault system. The batholith has a rim of biotite granodiorite which grades inwards to hornblende-biotite granodiorite and K-feldspar megacrystic granite. A core of muscovite-biotite leucogranite both grades into and intrudes the outer units. Foliation in the pluton parallels the outer contact and is independent of internal compositional boundaries. The pluton disrupts structures in the surrounding strata, and a strong secondary foliation has been superimposed on the sediments. Mineral assemblages in the contact metamorphic aureole suggest that pluton was emplaced at a depth of about 15 km.

... On the basis of U-Pb dates on zircons from the Kaniksu Batholith and more precise K-Ar and Rb-Sr dates from other plutons in the area, ... (it has been) concluded that most plutons were emplaced between 115 and 90 Ma. The Kaniksu Batholith was emplaced at about 94 Ma at deeper levels than most of the mid-Cretaceous plutons in the region, and was accompanied by penetrative deformation and prograde metamorphism while the remainder of the area was tectonically inactive".

Permo-Triassic

Ultrabasic to ultrapotassic dykes have been recently described west of Invermere, BC (Pope and Thirlwall 1992). These intrusive dykes define a broad north-south belt spatially associated with the intersection of the Nelson Creek Fault and the Bruce Creek Synform, possible basement control related to the locus of the Windermere High. As similar lithologies may be present in the Goat River area, these lithologies are described here.

The dykes occur as rusty weathering, variably carbonatized intrusive bodies ranging from 50 centimetres to 10 metres thick. They have narrow chilled margins and show little or no evidence of contact metamorphism with either the host lithologies or xenoliths, interpreted as evidence for rapid intrusion and quick cooling of the dyke material.

The dykes are xenolithic, ranging from approximately 5 percent to more than 50 percent by volume, and include: pyroxenite nodules, abundant Belt-Purcell quartzite and argillite lithologies and quartz-feldspar xenocrysts derived from either Hudsonian basement or Mesozoic-Cretaceous granitoid intrusives.

The occurrences have been subdivided into two suites based on petrology and chemistry. Group A are considered to be lamprophres having kimberlitic affinity whereas Group B dykes are
considered to be true kimberlites (Pope and Thirlwall 1992).

Group A dykes are typically light green in colour with phlogopite phenocrysts absent to abundant (porphyritic) in a carbonate rich matrix with carbonate-iron oxide pseudomorphs after euhedral olivine. Olivine pseudomorphs are recognized by their crystal outline and relict serpentine fractures. The matrix consists of fine-grained carbonate, opaques and iron-stained, fine-grained laths, possibly an alteration product of mica or feldspar.

Xenoliths are abundant in Group A dykes, typically more than 50 percent by volume, and are almost exclusively derived from the underlying Belt-Purcell Supergroup. However, granitic gneiss and ultrabasic xenoliths have also been reported (Pope 1990). Group A dykes correspond to the lamprophyre-kimberlite field (Pope and Thirlwall 1992), transitional between rift and active orogen type volcanics.

Group B dykes are typically dark green in colour. They are porphyritic with phlogopite phenocrysts up to 8 centimetres long and apatite phenocrysts up to 0.5 millimetres in diameter poikilitically enclosed by phlogopite. Phlogopite crystals are also intergrown with calcite, suggesting that calcite may also be primary.

Matrix phases identified include: carbonate, serpentine, chlorite, phlogopite, apatite and opaques. The presence of abundant matrix calcite distinguishes Group B dykes from lamproites (Pope and Thirlwall 1992, after Dawson 1987). The xenolith content of Group B dykes is typically less than 10 percent by volume.

Group B dykes are petrologically similar to kimberlites (Pope and Thirlwall 1992) and are classified as continental rift associated ultrapotassic rocks with kimberlitic affinities. They can be further defined as micaceous kimberlites, due to the high proportion of phlogopite, matrix calcite and apatite (Pope and Thirlwall 1992).

Structure

The Goat River occurrences are located on the western flank of the Purcell anticlinorium, the westernmost structure associated with the Rocky Mountain Fold and Thrust Belt. The Purcell anticlinorium is allochthonous with respect to North American cratonic basement, having been transported north-eastward in the hanging wall of the Purcell Thrust. Proterozoic Purcell Supergroup strata are bounded to the east by the Rocky Mountain Trench and become more deformed and metamorphosed to the west within the Kootenay Arc.

The strata of the Purcell Supergroup in the southern Purcell Mountains have been affected by three phases of deformation: 1) a Late Proterozoic extensional event, the Goat River Orogeny at approximately 800 Ma; 2) folding and thrusting associated with the Laramide orogeny (100 - 70 Ma) and 3) an Eocene extensional event.
The Goat River Orogeny is structurally evident in the area as doubly plunging folds and large scale block faulting (farther east) associated with the Purcell basin (Brown et al. 1993, Hoy 1993). It has been interpreted to have occurred prior to deposition of the Late Proterozoic Windermere Supergroup and to be recorded in the coarse conglomerates of the Toby Formation, a result of deposition adjacent to active fault scarps (Hoy 1993, Lis and Price 1976). Extensional tectonism during the Late Proterozoic and early Paleozoic resulted in continental rifting and development of the North American miogeocline.

Compressional deformation during the Laramide Orogeny (100 - 70 Ma) produced the dominant, east verging folds and thrust faults of the Rocky Mountain Fold and Thrust Belt. Complex faults and associated broad to relatively tight folds developed during this time period. The Purcell Thrust was active during this time, transporting strata of the north to northeast plunging Purcell Anticlinorium eastward on west dipping imbricate thrusts faults that extend into cratonic basement. The Goat River area is located within Domain 2 of Hoy (1993), between the Moyie Fault and the St. Mary Fault, and is defined by a complex array of faults and folds. "The Creston - Kitchener contact defines a broad north-plunging anticlinal fold, dismembered by an array of dominantly northeast and north-trending faults (Hoy 1993). This structure may be the broad, north-trending and north-plunging Goat River anticline which dominates the western domain of Brown et al. (1993). The east limb of the Goat River anticline is truncated by the north-trending Carroll Creek / Kid Fault.

The Iron Range Fault is an important local structure, comprised of a series of faults over approximately 1 kilometre along the crest of the Iron Mountain Range (P. Stinson, pers. comm., 1994; Brown et al. 1993). The fault trace is sub-parallel to the axis of the Goat River anticline and cuts gently dipping strata of the Aldridge Formation. There is also a well developed, steeply northwesterly dipping spaced to penetrative cleavage associated with the fault zone having a north to northeast strike. Intense hematite-magnetite-quartz alteration is associated with the fault zone (Brown et al. 1993). "Based on the correlation of marker laminites across the fault zone there is little vertical displacement at Iron Range Mountain. However, the fault zone is complex and it is interpreted to be deep-seated because of the abundant evidence of hydrothermal alteration along it (Brown et al. 1993)". In addition, mapping in the 1994 field season resulted in the identification of both ductile and cataclastic fault textures and weak indications of west side down movement on the fault (P. Stinson, pers. comm. 1994).

The final phase of deformation is associated with Eocene extension and is evidenced by listric normal faults. Many of these faults have reactivated earlier faults (associated with Laramide deformation) and are locally important.

Metamorphism

The metamorphism of the area is of greenschist grade but may range as high as lower amphibolite grade locally. Greenschist to lower amphibolite grade metamorphism accompanied Late Jurassic to Paleocene deformation associated with Laramide deformation. Cooling ages
determined from metamorphic biotite (in Montana) suggests that Late Proterozoic deformation was also associated with greenschist grade metamorphism (Brown et al. 1993). "... (The) overall gradational increase in strain and metamorphism westward corresponds to the transition from the Purcell anticlinorium into the eastern fringe of the Kootenay Arc (Brown et al. 1993)."

The map area containing the diatremes is interpreted to be of lower to middle greenschist grade due to development of small metamorphic biotite grains in the strata of the area. Biotite grains range up to approximately 0.5 cm in long dimension and are generally smaller. Locally, there may be development of coarser biotite proximal and immediately adjacent to the Moyie sills, in thermal aureoles. However, these are limited in extent and may be up to 1 cm in diameter. They are dark brown and, more commonly, black in colour with no apparent alteration under hand lens.

LOCAL GEOLOGY

The diatremes of the Goat River Range form localized dykes and/or sills to large areal exposures of xenolith-rich material interpreted to be associated with pipes. They have all been moderately to extensively carbonatized (extensive secondary carbonate replacement of primary mineralogy). The occurrences are characterized by variable xenolith content with phlogopite megacrysts and an extensively carbonate/chloritized altered matrix (P. Stinson, pers. comm. 1994).

The diatremes acquired to date are all located east of the Iron Range Fault, on either side of the Goat River. They lie within a weakly defined north-south zone, however, additional diatremes may be present outside of this zone. The relationship between the Iron Range Fault and diatremes known to occur immediately to the east (including the ELSA, FLORS / IRON claims) is presently unknown, however, there appears to be a spatial association which may reflect a structural control on emplacement.

The ELSA claims lie east of the St. Mary - Hall Lake Fault (Reesor 1981), which is the equivalent of the Iron Range Fault mapped by Brown et al. (1993) and recently described by Stinson (pers. comm. 1994). The ELSA occurrence lies approximately 0.75 km to the east of the surface trace of the fault (Reesor 1981).

The strata in the vicinity of the DOTS and FLORS / IRON claims have been correlated to the Middle Aldridge Formation of the (Belt-) Purcell Supergroup (Brown et al. 1993). To the north, in the vicinity of the ELSA claims, the diatremes lie within the mapped occurrence of the middle Aldridge, upper Aldridge and the lower Creston Formation (Reesor 1981). Bedding in the Cameron Creek / Bahan Creek area is moderately steeply north - northwest dipping while cleavage ranges from steepy northeast dipping to northwest dipping.

Contacts between diatremes and host lithologies have not been identified in the limited mapping performed on the properties to date. The contacts are assumed to be steeply cross-cutting due to the configuration of the outcrop examined and apparent relationships to host strata. Furthermore,
the diatremes have features consistent with steeply cross-cutting diatremes examined by the author elsewhere in southeastern British Columbia. These features include: lack of thermal alteration of inclusions, wide variety of xenoliths which include host lithologies, crustal and possible mantle inclusions, large xenocrysts and megacrysts of phlogopite and limited areal extent. None of these features is necessarily indicative of a vertically intruded diatreme, however, these features are similar to known occurrences in both the Rocky and Purcell Mountains, all of which are steeply to vertically cross-cutting.

The diatremes have variable xenolith content, ranging from approximately 10 percent to 80 percent or more by volume. Sedimentary xenoliths are typically highly angular (argillites to quartz wackes) or sub-rounded to rounded (limestones and/or dolomites). Lower crustal and mantle xenoliths are generally sub-rounded to rounded. Xenoliths are generally matrix supported but approach clast supported in the xenolith-rich occurrences, contained within a fine grained, green coloured matrix. The matrix has an effervescent reaction with 10% HCl and is therefore interpreted to be carbonate rich. Many of the xenoliths have undergone alteration (not hornfelsic thermal alteration however), interpreted to be similar to that of the matrix.

It has not been possible to determine an emplacement age for the diatremes beyond the fact that they intrude Hellikian Purcell Supergroup strata and are therefore post 900 Ma (?). However, they have features similar to the Toby - Horsethief Creek occurrences (green carbonatized matrix alteration and large phlogopite pheno-/megacrysts) which suggests an affinity and possibly broadly coeval emplacement ages. The Toby Creek kimberlite has been dated at 245 ± 2.4 Ma and it is hereby proposed that this might be a reasonable age for the Goat River occurrences.

1996-97 PROGRAM

The DOTS claims were staked to cover a closely spaced series of dark circular areas identified on a thermal (infrared) satellite image. These spots, coupled with the proximity of sample RW95-3, recovered to the east-southeast on the road below the ridge, were interpreted to suggest proximity to (a) possible diatreme exposure(s). No exposure was identified in the course of limited prospecting undertaken on the claims. The strata on the DOTS claims consists of middle Aldridge turbidites with rusty weathering silty interbeds. More specifically, strata consists of thick massive wackes up to 50 cm thick with rusty weathering, thick laminated to thin bedded sub-wacke to argillite interbeds up to 40 cm thick.

The ELSA claims were staked to cover the former BAHAN claims, which covered at least one known diatreme exposure east of the Goat River. The ELSA claims lie east of the St. Mary - Hall Lake Fault (Reesor 1981), which is the equivalent of the Iron Range Fault mapped by Brown et al. (1993) and recently described by Stinson (pers. comm. 1994). The claims lie approximately 0.75 km to the east of the surface trace of the fault (Reesor 1981). Thin sections were cut from hand samples previously obtained from the occurrence and petrographic descriptions of the samples are provided below.
The IRON claims were staked to cover an occurrence of diatreme float identified in the roadbed of the Crackerjack Creek logging road for subsequent prospecting. The FLORS claims were initially staked to cover a diatreme whose precise location remains unknown. Substantial float has been identified in a hairpin corner on the Crackerjack Creek logging road at an elevation of approximately 1450 metres. Subsequent prospecting identified a deeply weathered, dark orange-red coloured soil in the roadbed. Examination of the soil resulted in identification of a high proportion of euhedral to subhedral, slightly to moderately altered (chloritized) phlogopite crystals. This was interpreted as an intensely weathered, near surface diatreme occurrence. The IRON claims were staked to secure these occurrences for future evaluation (Fig. 4).

Sample RW95-1 - Large piece of float in Crackerjack Creek on inside, lower portion of hairpin. Galena and chalcopyrite noted on fracture surfaces.

RW95-2 - Large sample of deeply weathered soil horizon on FLORS claims. Deep red-brown colour with large altered phlogopite phenocryst xenocrysts up to 2.0 cm in diameter. Broken and angular in appearance, suggesting a proximal source.

RW95-3 - Float sample from Iron Creek road, kilometre 2 (by bridge). Sub-rounded boulder with 2 cm thick, rusty weathering rind.

IRO95-1 - Bulk sample of RW95-2, taken for processing for recovery of heavy minerals.

IRO95-2 - Bulk sample of diatreme float in creek at northern edge of IRON claims.

RESULTS

Regional digital geophysical data were purchased from the Geophysical Data Centre in Ottawa covering the Goat River area. The data comprises that utilized for the contoured geophysical maps available in southeastern British Columbia (i.e. Maps: 7701G - Kananaskis Lakes). The data was obtained on flight lines ranging between 0.5 and 2 kilometres apart and flown at an average elevation of 1000 feet (305 metres). As such, the data is applicable to regional studies, with limited usefulness for diatreme exploration. However, the digital data was gridded to 200 metres (slightly more sensitive resolution and can be processed using a variety of filters). As such, the digital data has slightly more usefulness in diatreme exploration. Limited processing and examination of the data resulted in identification of a number of small magnetic anomalies which were interpreted as possible diatreme candidates. Comparison of these anomalies with known diatreme occurrences was inconclusive. However, the author is of the opinion that geophysical anomalies identified from the regional magnetic dataset represent valid targets for subsequent follow-up ground evaluation.
GWEN RESOURCES LTD.

IRON Claim Group

CLAIM LOCATION MAP

Dynamic Exploration Ltd

Date: Feb. '96 Scale: 1:20,000 Figure No 4

N.T.S. 82 F/1W
In addition, previous examination of satellite imagery has shown this to be a potentially useful tool for diatreme exploration. The knoll cored by the Summer (GAL) diatreme is plainly evident on LandSat TM images. A black and white, thermal infrared satellite image was obtained for field evaluation of its usefulness. Numerous dark spots were identified on the image which appeared to correlate reasonably well with diatreme occurrences known in the Goat River area. However, subsequent ground verification suggests these dark spots correlate very well with gabbroic outcrops. Therefore, initial evaluation of the usefulness of thermal (infrared) satellite was disappointing. In the future, a program combining digital geophysical data with digital satellite imagery is expected to be a very cost effective method for identification and evaluation of potential diatremes for subsequent field evaluation.

The 1996-97 program consisted of limited prospecting, hand and bulk sampling, petrography, and geochemical analysis. Results of geochemical analysis, petrographic descriptions, hand sample descriptions and heavy mineral processing (initial sample weight and weight of heavy mineral fractions) are presented in Appendix B. The results are discussed below.

DOTS
Limited prospecting on the claims did not identify any diatreme material, either in outcrop or in float. No exposures were identified to explain the dark spots identified on the infrared photo and extensive snow cover at the time may have obscured (a) diatreme(s) and/or gabbros. However, subsequent ground evaluation of other dark spots in the area appear to correlate very well with gabbroic exposures. Additional work should be undertaken on the claims in an attempt to explain the infrared response and determine the response of diatremes to this form of imagery.

ELSA
Limited prospecting was undertaken on the claims and several hand samples were taken from the exposure identified in previous work. Thin sections were cut from these hand samples and petrographic descriptions are provided below.

IRON / FLORS
The IRON claims were staked to ensure a phlogopite-rich soil horizon discovered in the roadbed of the Crackerjack Creek logging road was adequately covered, both at surface and in the subsurface. In addition, diatreme breccia float has been previously identified adjacent to the roadbed of the Crackerjack Creek logging road at 1450 metres and 1585 metres. At present, the only known possible surface expression of a diatreme is that described above, however, the material appears to differ from the float, both in terms of preservation and mica content, to such a degree that (an) additional occurrence(s) is postulated. The IRON claims were staked to extend the ground covered by the existing FLORS claims.

A large bulk sample was taken from the IRON claims (IRO 95-1 - 30.8 kg, see Appendix C) from the phlogopite-rich soil horizon exposed in the roadbed. A small sample was taken for geochemical analysis and petrography. The remainder of the sample was processed for recovery of a heavy mineral concentrate, however, representative mineral grains from the resulting
concentrate have not been analyzed. A second bulk sample (IRO 95-2) was taken of diatreme float present in Crackerjack Creek, at the northern edge of the claims.

Rock Descriptions

RW95-3 (Iron Creek - km. 2)

A single boulder collected from the roadside had a brown-orange rusty surface with a several centimetre thick oxidized rind. The boulder is subrounded and discoid, possibly as a result of transport distance. The fresh surface is medium brownish purple. The texture is certainly volcanic. Sparse equant idioblastic feldspar phenocrysts occur in a matrix of smaller feldspars, more lath shaped, grey-green and possibly hematized mafic material. Both the phenocryst and groundmass feldspars are altered. Carbonate was noted in some ovoid patches and are likely amygdules. The phenocrysts are 2-3 mm mainly, up to 1 cm maximum and 5-10% in abundance. Xenoliths are small (<1 cm) subrounded and rounded volcanic and are about 10% in abundance, slightly more common than the phenocrysts. Fine sulphides and thin quartz carbonate fractures were also noted.

IRO95-2

This sample was recovered from a small creek on the IRON 5 and 6 claims. It has a slightly orange-brown rusty weathered surface with a light green to green-grey fresh surface. Galena, red brown sphalerite and trace chalcopyrite noted in carbonate veinlets. Angular xenoliths constitute about 8-10%. Yellow white angular to subrounded, broken and locally resorbed feldspar xenocrysts also occur. These have alteration and/or reaction rims. The matrix is light green and appears volcanic in nature. Xenoliths are mostly small, to 1.5 cm, and sedimentary. There is also a population of very small (1-1.5 mm) xenoliths, dark green in colour, some grey or white. Some of the dark green xenoliths appear to be idioblastic and may be xeno- or phenocrysts of pyroxene. The matrix hosts tiny equant feldspar crystals and is definitely volcanic in origin. However, there are many angular and irregular white fragments in the matrix which are clear grey to whitish and may be quartz or feldspar crystals. Rare green grains of fuchsite or possibly Cr-diopside are present. Some rock pieces show indistinct bedding so this may be a tuffaceous rock - a bedded crystal tuff.

Thin Section Descriptions

IRO 95-2

This sample is a medium- to fine-grained rock composed principally of carbonate, phlogopite, opaques and talc microcrysts in a fine-grained matrix of serpentine with minor carbonate and talc. The carbonate phenocrysts are euhedral with rhomb shapes. The rock also contains rounded rock fragments of coarse-grained carbonate with talc and opaques. The rare rounded carbonate fragment contains melilite as a cavity filling in the core of the fragment. Accessory minerals include apatite and perovskite.
MRWT93-8 (ELSA Claims)
Brecciated rock fragments in porphyritic rock containing phlogopite and opaque microcrysts in a carbonate matrix. Phlogopite microcrysts exhibit a weak to moderate parallel alignment. One very large corroded phenocryst of phlogopite occurs surrounded by coarse carbonate. Small pockets of fine-grained serpentine may have been rounded olivine crystals.

Large rock fragments contain medium- to coarse-grained carbonate minerals in ribbon structures which alternate with altered phlogopite to produce a foliated texture to the fragments. One rock fragment contains a rounded pocket of coarse carbonate which has the carbonate ribbon-phlogopite foliation wrapped around it (this texture resembles a rolled garnet in a gneiss). Small rock fragments are similar to the large ones, but also contain some fine-grained equigranular carbonate + serpentine rock fragments.

MRWT93-13 (ELSA Claims)
This sample resembles the previous one, except there is more serpentine in the matrix and the foliated texture, in both matrix and rock fragments, is not as prominent in sample MRWT93-13. Late carbonate veins with minor quartz cut the entire sample and quartz forms overgrowths on large euhedral opaque phenocrysts. Large phlogopite phenocrysts are replaced by ribbons of coarse-grained carbonate and minor serpentine and smaller microcrysts are altered to chocolate-brown fine-grained cleavage fragments which retain a faint pleochroism. A few foliated rock fragments are altered to clay + carbonate which overprints the weak foliation.

RW 95-1
Mode (approximate): clinopyroxene (45-55%), plagioclase (30%), olivine (10-15%) and orthopyroxene (5-10%).
This sample has a subophitic texture consisting of abundant laths of plagioclase (?), now completely pseudomorphed by clay and carbonate minerals, in large anhedral masses of zoned clinopyroxene and possibly orthopyroxene. A few olivine phenocrysts were found to be completely altered to serpentine or talc. A few large pockets of talc and radiating talc surrounded by granular serpentine are scattered around the section and one talc pocket contains the remnant of a phlogopite microcryst. Opaque microcrysts are common and these minerals are typically embayed, some of which look almost skeletal, and altered to a fine-grained chocolate brown mineral.

RW 95-3
Fine-grained equigranular rock containing abundant phlogopite, carbonate, opaque minerals and granular serpentine. The few coarse-grained rock fragments (?) and crystals are completely replaced by carbonate minerals and rimmed by an opaque mineral. Apatite occurs as an accessory mineral. The phlogopite has a sub-parallel alignment. A fine-grained serpentine and carbonate 'matrix' occurs in pockets around the minerals listed above.
CONCLUSIONS AND RECOMMENDATIONS

Dykes of kimberlitic affinity and at least one true kimberlite are known to occur in a north-south belt in the central Purcell Mountains west of Invermere, B.C. (Pope and Thirlwall 1992). The kimberlite has been dated using Rb-Sr phlogopite-apatite mineral pairs and is coeval with the Cross kimberlite at 245 ±2.4 Ma (Pope and Thirlwall 1992). "(The) common petrogenesis and extensional, fault-controlled structural setting, coupled with essentially identical ages of emplacement, lead us to postulate that the Toby - Horsethief Creek dykes and the Cross kimberlite evolved in parallel, during a single phase of continental extension (Pope and Thirlwall 1992). At present it is not clear where the intrusives of the Goat River originated relative to the diamond stability field. However, regardless of their diamond potential, the fact that they originated in the lower levels of the crust or from the mantle suggests the potential for hosting Rare-Earth Elements (REE's), base and/or precious metals (including Platinum Group Elements).

The program to date has emphasized acquisition of alkaline occurrences and therefore limited evaluation of these properties has been undertaken. A program of detailed mapping, sampling and geochemical analysis of the occurrences and their mineral phases is strongly recommended. If the results of such a program do confirm kimberlitic affinity for the dykes in terms of composition, elemental suites, kimberlitic indicator minerals and/or deep seated xenoliths (peridotitic and/or eclogitic inclusions), a follow-up program of trenching and drilling is recommended. Trenching, possibly with blasting, would enable the collection of a large sample of pristine dyke material for a determination of diamond content. Drilling is recommended upon favourable geochemical results, in terms of a kimberlitic indicator (heavy mineral) and/or xenolith suite. A preliminary budget has been prepared for the above work and is presented on the following page.

The fact that kimberlites and lamprophyres of kimberlitic affinity have now been documented in a new, previously unknown region of the North American miogeocline clearly indicates that more exploration is warranted in the Purcell Mountains. The close association postulated by Pope and Thirlwall (1992) between diatremes mapped in the Rocky Mountains in terms of alkaline composition, age of intrusion and volcanic association demands that these occurrences be thoroughly evaluated for their potential as hosts for diamonds. The recovery of several diamonds in the Golden cluster of diatremes and the kimberlitic affinity of the Toby Creek occurrences of the central Purcell Mountain occurrences suggests the Goat River occurrences may be possible diamond hosts.
PROPOSED BUDGET

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Field</td>
<td></td>
</tr>
<tr>
<td>Field Program</td>
<td></td>
</tr>
<tr>
<td>Diamond Drilling</td>
<td>$30,000</td>
</tr>
<tr>
<td>Personnel</td>
<td>$20,000</td>
</tr>
<tr>
<td>Analytical</td>
<td>$10,000</td>
</tr>
<tr>
<td>Camp Costs</td>
<td>$5,000</td>
</tr>
<tr>
<td>Food / Grocery</td>
<td>$2,000</td>
</tr>
<tr>
<td>Truck / Equipment Rentals</td>
<td>$4,000</td>
</tr>
<tr>
<td>Fuel</td>
<td>$1,000</td>
</tr>
<tr>
<td>Transportation</td>
<td>$2,000</td>
</tr>
<tr>
<td>Supplies</td>
<td>$1,000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$1,000</td>
</tr>
<tr>
<td>Post Field</td>
<td>$5,000</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>$86,000</td>
</tr>
<tr>
<td>Contingency at 10%</td>
<td>$8,600</td>
</tr>
<tr>
<td>Total</td>
<td>$94,600</td>
</tr>
</tbody>
</table>
REFERENCES

Appendix A

Statement of Qualifications
STATEMENT OF QUALIFICATIONS

I, Richard T. Walker, of 656 Brookview Crescent, Cranbrook, B.C., hereby certify that:

1) I am a graduate of the University of Calgary of Calgary, Alberta, having obtained a Bachelors of science in 1986.

2) I obtained a Masters of Science in Geology at the University of Calgary of Calgary, Alberta in 1989.

3) I am a member in good standing with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

4) I am a member in good standing with the Association of Professional Engineers, Geologist and Geophysicists of Alberta.

5) I am a Fellow of the Geological Association of Canada.

6) I am a consulting geologist and Principal of Dynamic Exploration Ltd. with offices at 656 Brookview Crescent, Cranbrook, British Columbia.

7) I am the author of this report which is based on work I personally performed on the properties between late September, 1995 and March, 1996.

8) I was personally involved in the acquisition of the claims described herein.

9) I presently hold 114,300 shares of Gwen Resources Ltd.

Dated at Cranbrook, British Columbia this 17th day of April, 1997.

Richard T. Walker
Appendix B

Claim Records
APPLICATION TO RECORD A 2 POST CLAIM

Province of British Columbia Ministry of Energy, Mines and Petroleum Resources
RECORD OF 2 POST CLAIM — MINERAL TENURE ACT
(Section 23)

Nelson
Mining Division

Tenure No. 341707

Date of Record OCTOBER 22, 1995

I hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. 82 F IN, in the Nelson Mining Division.

Describe how you gained access to the location; include references to roads, trails, topographic features, permanent landmarks and a description of the legal post location.

I have securely affixed the portion of the metal identification tag embossed "INITIAL POST (No. 1)" to the initial post and impressed this information on the tag:

TAG NUMBER 656359 M
CLAIM NAME
LOCATOR Rick Walker
AGENT FOR SELF
DATE COMMENCED Oct. 22/95
TIME COMMENCED 2:30 PM
DIR. TO F.P. 280°
METRES TO RIGHT 500
METRES TO LEFT

I have securely affixed the portion of the metal identification tag embossed "FINAL POST (No. 2)" to the final post (or the witness post) and impressed this information on the tag:

TAG NUMBER 656359 M
CLAIM NAME
LOCATOR Rick Walker
AGENT FOR SELF
DIST. FROM I.P. 500M
DATE COMPLETED Oct. 22/95
TIME COMPLETED 3:00 PM

*I if witness post placed for final post:
Bearing to true position of final post ________ metres.

I have complied with all the terms and conditions of the Mineral Tenure Act and Regulation pertaining to the location of 2 post claims and have attached a plan of the location on which the positions of the initial and final posts (and witness post if applicable) are indicated.

Do you intend to extract Industrial Minerals from this tenure? Yes ☐ No ☒

Signature of Locator

PLEASE PRINT CLEARLY

RECIEVED

GOUVERNMENTAGENT

$130.00

NOT AN OFFICIAL RECEIPT

RECORDING STAMP

MTL 105 REV 94/05
Province of British Columbia Ministry of Energy, Mines and Petroleum Resources

RECORD OF 2 POST CLAIM — MINERAL TENURE ACT

(Section 23)

NELSON

Mining Division

Tenure No. 341708

Date of Record OCTOBER 22, 1995

PLEASE PRINT CLEARLY

1. Rick Walker

Name of Locator

AGENT FOR SELF

Name

Address

CrANBrook BC

Postal Code Telephone

vic ith (604) 489 2255

Client No. 130 328

hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. 82F/W, in the NELSON Mining Division.

Describe how you gained access to the location; include references to roads, trails, topographic features, permanent landmarks and a description of the legal post location.

Drive Goat River road north of Kitkamer to 11 km mark, turn onto Hall Creek Road. Take Iron Creek Park 2 km mark, turn right onto next fork that climbs back to NE, then continue W above creek. Drive to second hairpin at ~1530 m elevation, then hike down ridge ESE. Initial post is located 303 m on a bearing of 301°.

I have securely affixed the portion of the metal identification tag embossed "INITIAL POST (No. 1)" to the initial post and impressed this information on the tag:

TAG NUMBER 656 360 M

INITIAL POST (No. 1)

CLAIM NAME IRON 2

LOCATOR Rick Walker

AGENT FOR SELF

TIME COMMENCED 2:39 pm

DIR. TO F.P. 280°

METRES TO RIGHT 500

METRES TO LEFT

DATE COMMENCED Oct. 22/95

DIST. FROM I.P. 500 m

DATE COMPLETED Oct. 22/95

TIME COMPLETED 3:01 pm

*If witness post placed for final post:

Bearing to true position of final post

distance metres.

I have securely affixed the portion of the metal identification tag embossed "FINAL POST (No. 2)" to the final post (or the witness post*) and impressed this information on the tag:

TAG NUMBER 656 360 M

FINAL POST (No. 2)

CLAIM NAME IRON 2

LOCATOR Rick Walker

AGENT FOR SELF

DATE COMPLETED Oct. 22/95

TIME COMPLETED 3:01 pm

I have complied with all the terms and conditions of the Mineral Tenure Act and Regulation pertaining to the location of 2 post claims and have attached a plan of the location on which the positions of the initial and final posts (and witness post if applicable) are indicated.

Do you intend to extract Industrial Minerals from this tenure? Yes [x] No

Signature of Locator

RECORDING STAMP

MTL 105 REV 94-35

S F 100 50

$190 50

30 11 09

GOVERNMENT AGENT
RECORD OF 2 POST CLAIM — MINERAL TENURE ACT

(Section 23)

Province of British Columbia
Ministry of Energy, Mines and Petroleum Resources

NELSON
Mineral Division

Tenure No. **341709**
Date of Record **OCTOBER 22, 1995**

PLEASE PRINT CLEARLY

<table>
<thead>
<tr>
<th>Name of Locator</th>
<th>AGENT FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RICK WALKER</td>
<td>SELF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1916 5TH ST. SOUTHWEST VICTORIA BC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSTAL CODE</th>
<th>TELEPHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1C 1WY</td>
<td>604 489 2255</td>
</tr>
</tbody>
</table>

Client No. **30328**
Client No. **hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. **82F 1W** in the **NELSON** Mining Division.

Describe how you gained access to the location; include references to roads, trails, topographic features, permanent landmarks and a description of the legal post location.

Drive Goat River Road north of Kitchener to 11 km mark, turn onto Hall Creek Road. Take Iron creek Fork at 2 km mark, turn right onto next Fork that climbs back to NE, then curves W above creek. Initial post is located off the south side of the road between the first and second hairpin. Initial post is located 3513m on a bearing of 298.5° from the confluence of Goat River and Leadville creek, at an elevation of approx. 1520m.

I have securely affixed the portion of the metal identification tag embossed "INITIAL POST (No. 1)" to the initial post and impressed this information on the tag:

<table>
<thead>
<tr>
<th>TAG NUMBER</th>
<th>INITIAL POST (No. 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>656361 M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLAIM NAME</th>
<th>LOCATOR</th>
<th>AGENT FOR</th>
<th>DATE COMMENCED</th>
<th>TIME COMMENCED</th>
<th>DIR. TO F.P.</th>
<th>METRES TO RIGHT</th>
<th>METRES TO LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRON 3</td>
<td>RICK WALKER</td>
<td>SELF</td>
<td>OCT. 22/95</td>
<td>3:02 PM</td>
<td>280°</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

I have securely affixed the portion of the metal identification tag embossed "FINAL POST (No. 2)" to the final post (or the witness post) and impressed this information on the tag:

<table>
<thead>
<tr>
<th>TAG NUMBER</th>
<th>FINAL POST (No. 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>656361 M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLAIM NAME</th>
<th>LOCATOR</th>
<th>AGENT FOR</th>
<th>DIST. FROM I.P.</th>
<th>DATE COMPLETED</th>
<th>TIME COMPLETED</th>
<th>WITNESS POSTplacer for final post:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRON 3</td>
<td>RICK WALKER</td>
<td>SELF</td>
<td>500m</td>
<td>OCT. 22/95</td>
<td>3:40 PM</td>
<td>Bearing to true position of final post:</td>
</tr>
</tbody>
</table>

I have complied with all the terms and conditions of the Mineral Tenure Act and Regulation pertaining to the location of 2 post claims and have attached a plan of the location on which the positions of the initial and final posts (and witness post if applicable) are indicated.

Do you intend to extract Industrial Minerals from this tenure?
Yes []
No [x]

Signature of Locator

RECORDING STAMP

RECEIVED

GOVERNMENT DEPT

1995

$125.00

NOT AN OFFICIAL RECEIPT

2511/95

30

MTL 105 REV 94/05
W. L. V. I.

Record of 2 Post Claim — Mineral Tenure Act
(Section 23)

Nelson
Mining Division

Tenure No. 341710

Date of Record: October 25, 1995

Please print clearly

Name of Locator: Rick Walker

Address: 1916 5th St. South

Cranbrook, BC

V1C 1K4 (604) 489 2255

Postal Code: Telephone

Client No.: 130320

Client No.:

hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. 82F 1/W, in the Nelson Mining Division.

Describe how you gained access to the location; include references to roads, trails, topographic features, permanent landmarks and a description of the legal post location.

Drive Goat River road to Kitchener to 11 km mark. Turn onto Wall Creek road. Take Iron Creek fork to 2 km mark. Turn right onto next fork that climbs back to 1E then curves W above creek. Follow road to switchback above lower clearcut at ~1640m elevation. Initial post is on creek just west of switchback, located 4999m at a bearing of ~90° from the influence of Goat River and Leadville Creek, at an elevation of ~1620m.

I have securely affixed the portion of the metal identification tag embossed "INITIAL POST (No. 1)" to the initial post and impressed this information on the tag:

TAG NUMBER 656363 M

I have securely affixed the portion of the metal identification tag embossed "FINAL POST (No. 2)" to the final post (or the witness post) and impressed this information on the tag:

TAG NUMBER 656363 M

Claim Name: Iron S

Locator: Rick Walker

Agent For: Self

Date commenced: October 25, 1995

Time commenced: 2:24 pm

Dir. To F.P.: 124°

From Right: 500

METRES TO LEFT

I have complied with all the terms and conditions of the Mineral Tenure Act and Regulation pertaining to the location of 2 post claims and have attached a plan of the location on which the positions of the initial and final posts (and witness post if applicable) are indicated.

Do you intend to extract Industrial Minerals from this tenure? Yes [] No [X]

Signature of Locator

[Signature]

[Stamp] $180.00

[Stamp] 28/11/09

[Stamp] Recording Stamp
Application

To Record

A

2 Post

Claim

I hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. 82F1/4, in the NELSON Mining Division.

Describe how you gained access to the location; include references to roads, trails, topographic features, permanent landmarks and a description of the legal post location.

I have securely affixed the portion of the metal identification tag embossed "INITIAL POST (No. 1)" to the initial post and impressed this information on the tag.

I have securely affixed the portion of the metal identification tag embossed "FINAL POST (No. 2)" to the final post (or the witness post) and impressed this information on the tag.

CLAIM NAME

IRON 6

LOCATOR

RICK WALKER

AGENT FOR

SELF

DATE COMMENCED

Oct. 25/95

TIME COMMENCED

2:25pm

DIR. TO F.P.

124°

METRES TO RIGHT

500

DIST. FROM I.P.

500m

DATE COMPLETED

Oct. 25/95

TIME COMPLETED

3:01 pm

I have complied with all the terms and conditions of the Mineral Tenure Act and Regulation pertaining to the location of 2 post claims and have attached a plan of the location on which the positions of the initial and final posts (and witness post if applicable) are indicated.

Do you intend to extract Industrial Minerals from this tenure? Yes [] No []

Signature of Locator

RECORDING STAMP

$180.00

23 11/09

MTL 195 REV 94.05
RECORD OF 2 POST CLAIM — MINERAL TENURE ACT
(Section 23)

NEILSON
Mining Division

Tenure No. 341699
Date of Record OCTOBER 26, 1995

PLEAE PRINT CLEARLY

1.

RICK WALKER

AGENT FOR

SELF

Name of Locator

1916 5A ST. SOUR

Address

CRANDROYK BC

Postal Code Telephone

VIC 1K4 (604) 989 1255

Client No. 130328

hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. B3F8W 8L6F1 W in the Nelson Mining Division.

Describe how you gained access to the location; include references to roads, trails, topographic features, permanent landmarks and a description of the legal post location.

ACCESS

DRIVE GOAT RIVER Road north of Kistnerer to 11km mark, turn onto Hall Creek Road. Take Iron Creek (south) fork to 2km mark. Park beside bridge, hike up ridge to north. Initial post is located 3.48km on a bearing of 321.5° from the confluence of Goat River and Leadville Creek, at an elevation of approximately 1460m.

I have securely affixed the portion of the metal identification tag embossed "INITIAL POST (No. 1)" to the intial post and impressed this information on the tag:

TAG NUMBER 656 365 M

INITIAL POST (No. 1)

CLAIM NAME DOTS

LOCATOR RICK WALKER

AGENT FOR SELF

DATE COMMENCED Oct 26/95

TIME COMMENCED 12:35 PM

DIR. TO F.P. 105° AZ

METRES TO RIGHT 500

METRES TO LEFT

I have complied with all the terms and conditions of the Mineral Tenure Act and Regulation pertaining to the location of 2 post claims and have attached a plan of the location on which the positions of the initial and final posts (and witness post if applicable) are indicated.

Do you intend to extract Industrial Minerals from this tenure? Yes □ No X

Signature of Locator

RECEIVED

GOVERNMENT AGENT
CRANBROOK

NOV 08 1995

$ 180.00
NOT AN OFFICIAL RECEIPT
TRANS. 29 11 09

MTL 105 REV 9405
APPLICATION TO RECORD A 2 POST CLAIM

NAME OF LOCATOR: RICK WALKER
AGENT FOR: SELF

ADDRESS: 1916 5TH ST. SOUTH
CRANBROOK, BC
VIC 1K4 (604) 481 1255

DATE OF RECORD: OCTOBER 26, 1995

PLEASE PRINT CLEARLY

ACCESS

I hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. 89F 1/W 2AF 8W in the Nelson Mining Division.

Describe how you gained access to the location: Include references to roads, trails, topographic features, permanent landmarks and a description of the legal post location.

Direct: Goat River Road to North of Kimberley to 11km mark. Then turn onto Hall Creek Road. Take Iron Creek Fork (South) to 2km mark. Park beside bridge. Hike up ridge to North. Initial post is located 3.48km on the bearing of 321.5° from the confluence of Goat River and Leadville Creek. At an elevation of approximately 1460m.

I have securely affixed the portion of the metal identification tag embossed "INITIAL POST (No. 1)" to the initial post and impressed this information on the tag:

TAG NUMBER: 656366 M
CLAIM NAME: DOTS 2
LOCATOR: RICK WALKER
AGENT FOR: SELF
DATE COMMENCED: Oct 26/95
TIME COMMENCED: 12:36 pm
DIR. TO F.P.: 105° 42'
METRES TO RIGHT: 500
METRES TO LEFT: 500

I have securely affixed the portion of the metal identification tag embossed "FINAL POST (No. 2)" to the final post (or the witness post) and impressed this information on the tag:

TAG NUMBER: 656366 M
CLAIM NAME: DOTS 2
LOCATOR: RICK WALKER
AGENT FOR: SELF
DIST. FROM I.P.: 500m
DATE COMPLETED: Oct 26/95
TIME COMPLETED: 1:11 pm

"If witness post placed for final post:
Bearing to true position of final post:
Distance _______ metres.

I have complied with all the terms and conditions of the Mineral Tenure Act and Regulation pertaining to the location of 2 post claims and have attached a plan of the location on which the positions of the initial and final posts (and witness post if applicable) are indicated.

Do you intend to extract Industrial Minerals from this tenure? Yes [] No [x]

Signature of Locator: ____________________________

RECORD OF IM MINERAL TENURE ACT

PROVINCE OF BRITISH COLUMBIA MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

RECORDING STAMP

$180.00
NOT AN OFFICIAL RECEIPT
TRANS. 88 1109
APPLICATION TO RECORD A
2 POST CLAIM

RECORD OF 2 POST CLAIM — MINERAL TENURE ACT
(Section 23)

NELSON
Mining Division

Tenure No. 341702
Date of Record OCTOBER 26, 1995

PLEASE PRINT CLEARLY

Name of Locator
RICK WALKER

AGENT FOR SELF

Name

Address

Cranbrook BC

V1C 1X4 (604) 489 2255

Postal Code Telephone

130 328

Client No. Client No.

hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. 82 F1/W, 82F-6W in the Nelson Mining Division. Describe how you gained access to the location; include references to roads, trails, topographic features, permanent landmarks and a description of the legal post location.

ACCESS

Drive Great River road north of kitchener to 11 km mark . Take Hall creek road to west, then onto Iron Creek (south) Fork.

At 2 km mark park at bridge and hike up to ridge on north side. Initial post is located 5.08 km on a bearing of 327° from the confluence of Great River and Leadville Creek at an elevation of approximately 1350m.

I have securely affixed the portion of the metal identification tag embossed "INITIAL POST (No. 1)" to the intial post and impressed this information on the tag:

TAG NUMBER 656368 M
CLAIM NAME DOTS 4
LOCATOR RICK WALKER
AGENT FOR SELF
DATE COMMENCED Oct 26/95
TIME COMMENCED 1:13 pm
DIR. TO F.P. 105° A2
METRES TO RIGHT 500
METRES TO LEFT —

I have securely affixed the portion of the metal identification tag embossed "FINAL POST (No. 2)" to the final post (or the witness post") and impressed this information on the tag:

TAG NUMBER 656368 M
CLAIM NAME DOTS 4
LOCATOR RICK WALKER
AGENT FOR SELF
DIST. FROM I.P. 500 M
DATE COMPLETED Oct 26/95
TIME COMPLETED 1:42 pm

*If witness post placed for final post:
Bearing to true position of final post distance metres.

I have complied with all the terms and conditions of the Mineral Tenure Act and Regulation pertaining to the location of 2 post claims and have attached a plan of the location on which the positions of the initial and final posts (and witness post if applicable) are indicated.

Do you intend to extract Industrial Minerals from this tenure? Yes ☐ No ☒

Signature of Locator

RECEIVED
GOVERNMENT AGENT
Cranbrook
Mar 28, 1995

$180.00
NOT AN OFFICIAL RECEIPT
TRANSMITTAL STAMP
20-1109

RECORDING STAMP
RECORD OF 2 POST CLAIM — MINERAL TENURE ACT

(Section 23)

Tenure No. 341040

Date of Record Oct. 18, 1995

PLEASE PRINT CLEARLY

LEONARD GAL

AGENT FOR RICK WALKER

Name of Locator	3220 SHERM SMITH RD.
Address	KELOWNA BC
Postal Code	V1V 1L3
Telephone	765 1494

Name 1916 5TH ST. SOUTH

Address CRANBROOK BC

Postal Code V1C 1K4 (604) 489 2355

APPLICATION TO RECORD A 2 POST CLAIM

I hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. 82 F/BW, in the **NELSON** Mining Division.

ACCESS

Drove up Goat River Road to approximately 17 km mark. (Initial post placed on west side of road, located 406 m from confluence of Samuel creek and Goat River, on a bearing of 244°.

I have securely affixed the portion of the metal identification tag embossed "INITIAL POST (No. 1)" to the initial post and impressed this information on the tag:

TAG NUMBER 656420 M

INITIAL POST (No. 1)

CLAIM NAME ELSA 1

LOCATOR LEONARD GAL

AGENT FOR RICK WALKER

DATE COMMENCED OCT. 18/95

TIME COMMENCED 12:35 PM

DIR. TO F.P. 340°

METRES TO RIGHT 500

METRES TO LEFT 0

I have securely affixed the portion of the metal identification tag embossed "FINAL POST (No. 2)" to the final post (or the witness post*) and impressed this information on the tag:

TAG NUMBER 656420 M

FINAL POST (No. 2)

CLAIM NAME ELSA 1

LOCATOR LEONARD GAL

AGENT FOR RICK WALKER

DIST. FROM I.P. 500 m

DATE COMPLETED OCT. 18/95

TIME COMPLETED 1:05 PM

"If witness post placed for final post:

Bearings to true position of final post:

distance 0 metres.

I have complied with all the terms and conditions of the Mineral Tenure Act and Regulation pertaining to the location of 2 post claims and have attached a plan of the location on which the positions of the initial and final posts (and witness post if applicable) are indicated.

Do you intend to extract Industrial Minerals from this tenure? Yes [] No [X]

Signature of Locator

LEONARD GAL

GOVERNMENT AGENT CRANBROOK

GCT 20 1995

RECORDING STAMP

MTL 105 REV 94/05

[Stamp Details]
I hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. 82-F/8W, in the NELSON Mining Division.

Describe how you gained access to the location; include references to roads, trails, topographic features, permanent landmarks and a description of the legal post location.

I have securely affixed the portion of the metal identification tag embossed "FINAL POST (No. 2)" to the final post and impressed this information on the tag:

TAG NUMBER 656421 M
CLAIM NAME ELSA 2
LOCATOR LEONARD GAL
AGENT FOR RICK WALKER
DATE COMMENCED OCT 18/95
TIME COMMENCED 12:36 PM
DIST. FROM I.P. 500m
TIME COMPLETED 1:04 PM

*If witness post placed for final post:
Bearing to true position of final post
distance
metres.
Province of British Columbia
Ministry of Energy, Mines and Petroleum Resources

RECORD OF 2 POST CLAIM — MINERAL TENURE ACT
(Section 23)

Nelson
Tenure No. 341042

DO NOT WRITE IN
THIS SHADDED AREA
God Commissioner
Date of Record OCT. 18, 1995

PLEASE PRINT CLEARLY

I. LEONARD GAL
 Name of Locator
 3220 SHERSMITH AVE.
 Address
 KELOWNA BC
 VIV 1L3 765 1494
 Postal Code Telephone
 Client No. 109149
 hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. B2 F/8W, in the NELSON Mining Division.

Please describe how you gained access to the location; include references to roads, trails, topographic features, permanent landmarks and a description of the legal post location.

I have securely affixed the portion of the metal identification tag embossed "INITIAL POST (No. 1)" to the initial post and impressed this information on the tag:

TAG NUMBER 656422 M
INITIAL POST (No. 1)
CLAIM NAME ELSA 3
LOCATOR LEONARD GAL
AGENT FOR RICK WALKER
DATE COMMENCED OCT. 18/95
TIME COMMENCED 1:14 PM
DIR. TO F.P. 160°
METRES TO RIGHT 500

I have securely affixed the portion of the metal identification tag embossed "FINAL POST (No. 2)" to the final post (or the witness post*) and impressed this information on the tag:

TAG NUMBER 656422 M
FINAL POST (No. 2)
CLAIM NAME ELSA 3
LOCATOR LEONARD GAL
AGENT FOR RICK WALKER
DATE COMMENCED OCT. 18/95
DIST. FROM I.P. 500 M
TIME COMMENCED 1:29 PM

*If witness post placed for final post:
 Bearing to true position of final post______________ metres.

I have complied with all the terms and conditions of the Mineral Tenure Act and Regulation pertaining to the location of 2 post claims and have attached a plan of the location on which the positions of the initial and final posts (and witness post if applicable) are indicated.

Do you intend to extract Industrial Minerals from this tenure? Yes ☐ No ☒

Signature of Locator

Leonard Gal

GOVERNMENT AGENT CRANBROOK
CCT 20 1995
DATE 285.00
RECORDING STAMP

MTL 105 REV 06/97
M28 63
Province of British Columbia Ministry of Energy, Mines and Petroleum Resources

RECORD OF 2 POST CLAIM — MINERAL TENURE ACT
(Section 23)

DO NOT WRITE IN THIS SHADEd AREA

Nelson

Tenure No. 341043

Date of Record OCT 18, 1975

APPLICATION TO RECORD A 2 POST CLAIM

PLEASE PRINT CLEARLY

I. Name
 LEONARD GAL
 AGENT FOR
 RICK WALKER

 3220 SEYMOUR ST.
 Address
 VIV 1L3
 POSTAL CODE

 1916 5TH ST. SOUTH
 Address
 VICTORIA 8C
 POSTAL CODE

 109149
 Client No.
 130328
 Client No.

 hereby apply for a record of a 2 post claim for the location as outlined on the attached copy of mineral titles reference map No. B2F/8W, in the NELSON Mining Division.

 Describe how you gained access to the location; include references to roads, trails, topographic features, permanent landmarks and a description of the legal post location.

 DRIVE UP GOAT RIVER ROAD TO APPROXIMATELY 17 KM POINT.
 INITIAL POST IS LOCATED 400 M FROM THE CONFLUENCE OF CAMERON CREEK WITH GOAT RIVER ON A BEARING OF 240°.

 I have securely affixed the portion of the metal identification tag embossed "INITIAL POST (No. 1)" to the initial post and impressed this information on the tag:

 TAG NUMBER 656423 M

 INITIAL POST (No. 1)

 CLAIM NAME ELSA Y
 LOCATOR LEONARD GAL
 AGENT FOR RICK WALKER
 DATE COMMENCED OCT. 18/95
 TIME COMMENCED 1:15 PM
 DIR. TO F.P. 160°
 METRES TO RIGHT —
 METRES TO LEFT 500

 I have complied with all the terms and conditions of the Mineral Tenure Act and Regulation pertaining to the location of 2 post claims and have attached a plan of the location on which the positions of the initial and final posts (and witness post if applicable) are indicated.

 Do you intend to extract Industrial Minerals from this tenure? Yes No X

 Signature of Locator
 LEONARD GAL

 I have securely affixed the portion of the metal identification tag embossed "FINAL POST (No. 2)" to the final post (or the witness post") and impressed this information on the tag:

 TAG NUMBER 656423 M

 FINAL POST (No. 2)

 CLAIM NAME ELSA Y
 LOCATOR LEONARD GAL
 AGENT FOR RICK WALKER
 DIST. FROM I.P. 500 M
 DATE COMPLETED OCT. 18/95
 TIME COMPLETED 1:30 PM
 "If witness post placed for final post:
 Bearing to true position of final post
 distance _______ _______ metres.
Appendix C

Analytical Results
CERTIFICATE OF ANALYSIS AK 96-13

DYNAMIC EXPLORATION LTD.
1916-5th STREET SOUTH
CRANBROOK, B.C.
V1C 1K4

ATTENTION: RICK WALKER

No. of samples: 12
Sample Type: Rock

<table>
<thead>
<tr>
<th>ET #.</th>
<th>Tag #</th>
<th>BeO</th>
<th>P2O5</th>
<th>SiO2</th>
<th>MnO</th>
<th>Fe2O3</th>
<th>MgO</th>
<th>AI2O3</th>
<th>CaO</th>
<th>TiO2</th>
<th>Na2O</th>
<th>K2O</th>
<th>L.O.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.06</td>
<td>0.62</td>
<td>41.37</td>
<td>0.15</td>
<td>8.97</td>
<td>13.82</td>
<td>9.70</td>
<td>11.30</td>
<td>1.26</td>
<td>1.68</td>
<td>1.96</td>
<td>8.90</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.16</td>
<td>0.12</td>
<td>39.73</td>
<td>0.19</td>
<td>10.59</td>
<td>12.20</td>
<td>13.71</td>
<td>17.34</td>
<td>1.65</td>
<td>0.52</td>
<td>0.98</td>
<td>2.60</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.04</td>
<td>0.34</td>
<td>36.03</td>
<td>0.08</td>
<td>5.79</td>
<td>8.13</td>
<td>9.32</td>
<td>15.88</td>
<td>1.02</td>
<td>2.28</td>
<td>0.99</td>
<td>21.10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.04</td>
<td>0.23</td>
<td>28.58</td>
<td>0.11</td>
<td>6.05</td>
<td>11.37</td>
<td>6.37</td>
<td>17.70</td>
<td>0.90</td>
<td>0.02</td>
<td>0.94</td>
<td>25.70</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.05</td>
<td>0.41</td>
<td>37.18</td>
<td>0.12</td>
<td>7.30</td>
<td>11.05</td>
<td>8.91</td>
<td>15.08</td>
<td>1.14</td>
<td>0.91</td>
<td>0.42</td>
<td>17.40</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.14</td>
<td>0.65</td>
<td>42.35</td>
<td>0.16</td>
<td>10.06</td>
<td>11.07</td>
<td>13.18</td>
<td>12.47</td>
<td>2.30</td>
<td>1.59</td>
<td>1.11</td>
<td>4.31</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.15</td>
<td>0.37</td>
<td>43.44</td>
<td>0.12</td>
<td>7.34</td>
<td>10.08</td>
<td>9.00</td>
<td>11.08</td>
<td>1.34</td>
<td>0.04</td>
<td>4.23</td>
<td>11.80</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.05</td>
<td>0.19</td>
<td>56.82</td>
<td>0.09</td>
<td>6.94</td>
<td>4.65</td>
<td>10.68</td>
<td>7.37</td>
<td>0.79</td>
<td>1.76</td>
<td>1.25</td>
<td>9.31</td>
</tr>
<tr>
<td>9</td>
<td>RW 95-2</td>
<td>0.16</td>
<td>0.83</td>
<td>48.95</td>
<td>0.20</td>
<td>11.48</td>
<td>9.77</td>
<td>13.39</td>
<td>2.28</td>
<td>2.47</td>
<td>0.47</td>
<td>3.31</td>
<td>8.69</td>
</tr>
<tr>
<td>10</td>
<td>RW 95-3</td>
<td>0.16</td>
<td>0.83</td>
<td>31.86</td>
<td>0.31</td>
<td>10.22</td>
<td>13.56</td>
<td>7.57</td>
<td>12.85</td>
<td>1.54</td>
<td>0.01</td>
<td>1.75</td>
<td>19.50</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.05</td>
<td>0.52</td>
<td>36.34</td>
<td>0.16</td>
<td>8.21</td>
<td>15.06</td>
<td>7.94</td>
<td>14.40</td>
<td>1.74</td>
<td>0.01</td>
<td>0.30</td>
<td>18.30</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.09</td>
<td>1.03</td>
<td>48.05</td>
<td>0.28</td>
<td>9.36</td>
<td>5.44</td>
<td>11.43</td>
<td>7.52</td>
<td>1.40</td>
<td>1.92</td>
<td>2.09</td>
<td>11.40</td>
</tr>
</tbody>
</table>

Q/C DATA:
Repeat: BLA 95-1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>BeO</th>
<th>P2O5</th>
<th>SiO2</th>
<th>MnO</th>
<th>Fe2O3</th>
<th>MgO</th>
<th>AI2O3</th>
<th>CaO</th>
<th>TiO2</th>
<th>Na2O</th>
<th>K2O</th>
<th>L.O.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BLA 95-1</td>
<td>0.04</td>
<td>0.70</td>
<td>40.35</td>
<td>0.15</td>
<td>9.16</td>
<td>13.79</td>
<td>9.70</td>
<td>11.43</td>
<td>1.29</td>
<td>1.85</td>
<td>2.04</td>
<td>9.50</td>
</tr>
</tbody>
</table>

STANDARDS:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>BeO</th>
<th>P2O5</th>
<th>SiO2</th>
<th>MnO</th>
<th>Fe2O3</th>
<th>MgO</th>
<th>AI2O3</th>
<th>CaO</th>
<th>TiO2</th>
<th>Na2O</th>
<th>K2O</th>
<th>L.O.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eq-1</td>
<td></td>
<td>0.06</td>
<td>0.06</td>
<td>39.42</td>
<td>0.17</td>
<td>17.38</td>
<td>13.11</td>
<td>8.31</td>
<td>14.50</td>
<td>3.59</td>
<td>0.78</td>
<td>0.20</td>
<td>2.40</td>
</tr>
<tr>
<td>Sy-2</td>
<td></td>
<td>0.09</td>
<td>0.39</td>
<td>59.90</td>
<td>0.32</td>
<td>6.04</td>
<td>2.90</td>
<td>11.98</td>
<td>7.76</td>
<td>0.10</td>
<td>4.37</td>
<td>4.29</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Note: Values expressed in percent
| El # | Tag B | Au (ppm) | Ag (ppm) | Ba (ppm) | Br (ppm) | Co (ppm) | Cr (ppm) | Cs (ppm) | Fe (ppm) | Hf (ppm) | Hg (ppm) | Ir (ppm) | Na (ppm) | Nb (ppm) | Sc (ppm) | Se (ppm) | Sn (ppm) | Ta (ppm) | Th (ppm) | U (ppm) | W (ppm) | La (ppm) | Ce (ppm) | Nd (ppm) | Sm (ppm) | Eu (ppm) | Tb (ppm) | Yb (ppm) | Lu (ppm) |
|------|-------|----------|----------|
| 1 | | 2 <0.5 | 300 <0.5 | 48 810 | 2 7.23 | 4 <1 | <5 5.34 | 68 0.3 | 13 <100 5.8 12 2.9 | <1 97 150 49 7.2 | 2.5 10 2.1 3.3 |
| 2 | 6 | <0.5 960 <0.5 | 77 250 | 2 7.90 | 2 <1 | <5 0.0 | 20 <0.1 52 <3 <100 0.7 0.7 <0.5 <1 12 30 16 3.8 1.7 0.7 1.0 0.18 |
| 3 | 4 | 21 330 <0.5 | 25 480 | 3 4.20 | 3 <1 | <5 1.55 | 34 0.3 | 14 <3 <100 3.1 70 1.6 | <1 37 67 28 3.8 1.2 <0.5 1.3 0.23 |
| 4 | <2 | 1.5 180 <0.5 | 48 1800 | <1 5.98 | 2 <1 | <5 0.03 | 33 0.2 | 17 <3 <100 1.8 33 <0.5 | <1 27 49 21 2.9 1.1 <0.5 1.1 0.14 |
| 5 | 5 | 1.4 120 <0.5 | 37 610 | <1 5.44 | 3 <1 | <5 0.08 | <15 0.3 | 16 <3 <100 4.2 8.1 1.4 | <1 49 84 31 4.5 1.5 0.6 1.5 0.23 |
| 6 | <2 | <0.5 1100 <0.5 | 45 480 | 3 7.42 | 3 <1 | <5 1.08 | <15 0.2 | 29 <3 <100 3.6 8.0 1.1 | <1 56 97 33 6.2 2.3 0.7 1.7 0.26 |
| 7 | <2 | 1.7 1100 <0.5 | 31 340 | 3 5.44 | 3 <1 | <5 0.08 | 45 0.2 | 21 <3 <100 2.2 5.2 1.4 | <1 34 67 25 4.2 1.6 0.7 1.4 0.22 |
| 8 | 4 | 3.4 340 <0.5 | 26 360 | 1 5.36 | 3 <1 | <5 1.27 | 29 0.2 | 18 <3 <100 2.1 4.6 1.0 | <1 28 50 20 3.1 1.0 <0.5 1.2 0.19 |
| 9 | <2 | 4.9 1200 <0.5 | 46 570 | 35 8.89 | 9 <1 | <5 0.38 | 340 3.8 | 24 <3 <100 5.1 16 4.4 | <1 130 270 110 14 4.5 1.2 3.5 0.51 |
| 10 | RW 95-2 | <2 | <0.5 240 <0.5 | 51 1500 | 2 7.10 | 3 <1 | <5 0.04 | <15 1.2 | 28 <3 <100 3.9 9.8 1.5 | <1 71 130 40 7.1 2.5 0.8 1.3 0.22 |
| 11 | <2 | 24 680 <0.5 | 31 230 | 2 7.49 | 7 <1 | <5 1.49 | 73 3.3 | 20 <3 <100 7.9 21 4.8 | <1 150 200 100 14 4.3 1.5 3.8 0.56 |
TOTAL DIGESTION

Values in ppm unless otherwise reported

<table>
<thead>
<tr>
<th>EL #</th>
<th>Tag #</th>
<th>Mo (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>Ag (ppm)</th>
<th>Ni (ppm)</th>
<th>Mn (ppm)</th>
<th>Sr (ppm)</th>
<th>Cd (ppm)</th>
<th>Bl (ppm)</th>
<th>V (ppm)</th>
<th>Ca %</th>
<th>P %</th>
<th>Mg %</th>
<th>Ti %</th>
<th>Al %</th>
<th>K %</th>
<th>Y %</th>
<th>Be</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td><2 48</td>
<td><2 77</td>
<td><2 0.3</td>
<td><2 436</td>
<td><2 1084</td>
<td><2 327</td>
<td><2 0.5</td>
<td><2 110</td>
<td><2 7.04</td>
<td><2 0.35</td>
<td><2 7.20</td>
<td><2 108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td><2 55</td>
<td><2 67</td>
<td><2 1.7</td>
<td><2 127</td>
<td><2 1227</td>
<td><2 203</td>
<td><2 0.5</td>
<td><2 304</td>
<td><2 9.66</td>
<td><2 0.40</td>
<td><2 6.49</td>
<td><2 1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td><2 39</td>
<td><2 44</td>
<td><2 0.8</td>
<td><2 176</td>
<td><2 575</td>
<td><2 329</td>
<td><2 0.5</td>
<td><2 86</td>
<td><2 9.07</td>
<td><2 0.125</td>
<td><2 4.63</td>
<td><2 1.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td><2 67</td>
<td><2 98</td>
<td><2 0.8</td>
<td><2 458</td>
<td><2 744</td>
<td><2 204</td>
<td><2 0.5</td>
<td><2 89</td>
<td><2 9.78</td>
<td><2 0.061</td>
<td><2 6.09</td>
<td><2 0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td><2 45</td>
<td><2 67</td>
<td><2 0.8</td>
<td><2 380</td>
<td><2 838</td>
<td><2 520</td>
<td><2 0.5</td>
<td><2 90</td>
<td><2 8.78</td>
<td><2 0.161</td>
<td><2 8.16</td>
<td><2 0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td><2 83</td>
<td><2 80</td>
<td><2 1.4</td>
<td><2 108</td>
<td><2 1358</td>
<td><2 670</td>
<td><2 0.5</td>
<td><2 147</td>
<td><2 8.67</td>
<td><2 0.137</td>
<td><2 5.70</td>
<td><2 0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td><2 59</td>
<td><2 108</td>
<td><2 0.8</td>
<td><2 115</td>
<td><2 868</td>
<td><2 256</td>
<td><2 0.5</td>
<td><2 147</td>
<td><2 8.67</td>
<td><2 0.137</td>
<td><2 5.70</td>
<td><2 0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td><2 47</td>
<td><2 62</td>
<td><2 0.8</td>
<td><2 80</td>
<td><2 975</td>
<td><2 269</td>
<td><2 0.5</td>
<td><2 103</td>
<td><2 8.62</td>
<td><2 0.071</td>
<td><2 5.76</td>
<td><2 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>RW 95-2</td>
<td><2 40</td>
<td><2 126</td>
<td><2 0.7</td>
<td><2 201</td>
<td><2 1305</td>
<td><2 229</td>
<td><2 0.5</td>
<td><2 132</td>
<td><2 1.54</td>
<td><2 0.318</td>
<td><2 5.60</td>
<td><2 1.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>RW 95-3</td>
<td><2 83</td>
<td><2 415</td>
<td><2 3.0</td>
<td><2 258</td>
<td><2 2102</td>
<td><2 923</td>
<td><2 0.5</td>
<td><2 124</td>
<td><2 7.80</td>
<td><2 0.339</td>
<td><2 7.44</td>
<td><2 0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td><2 46</td>
<td><2 191</td>
<td><2 1.0</td>
<td><2 383</td>
<td><2 1054</td>
<td><2 623</td>
<td><2 0.5</td>
<td><2 143</td>
<td><2 8.16</td>
<td><2 0.200</td>
<td><2 7.73</td>
<td><2 0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>3 44</td>
<td>49 93</td>
<td>0.5</td>
<td>115</td>
<td>1913</td>
<td>251</td>
<td><2 0.5</td>
<td><2 112</td>
<td><2 4.63</td>
<td><2 0.416</td>
<td><2 3.17</td>
<td><2 0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 2
DIAMOND EXPLORATION SAMPLE PROCESSING

<table>
<thead>
<tr>
<th>JOB NO.</th>
<th>96-004-8</th>
<th>CLIENT</th>
<th>Dynamic Explorations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE NO.</td>
<td>IRO-95-1</td>
<td>DATE</td>
<td>Feb. 25, 1996</td>
</tr>
<tr>
<td>SAMPLE TYPE</td>
<td>Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of Sample</td>
<td>30.8 kg</td>
</tr>
<tr>
<td>Crushing Time</td>
<td>2 hr</td>
</tr>
<tr>
<td>Milling Time</td>
<td>8.5 hr</td>
</tr>
<tr>
<td>Dispersion Time</td>
<td></td>
</tr>
<tr>
<td>Sieving Time</td>
<td>1.5 hr</td>
</tr>
<tr>
<td>Weight +7 mesh</td>
<td>0 gm</td>
</tr>
<tr>
<td>-7 +35 mesh</td>
<td>142 gm</td>
</tr>
<tr>
<td>-35 +60 mesh</td>
<td>820 gm</td>
</tr>
<tr>
<td>-60 mesh</td>
<td>29.8 kg</td>
</tr>
<tr>
<td>Mineral Separation Time</td>
<td>4 hr</td>
</tr>
<tr>
<td>Weight -7+35 mesh heavy</td>
<td>Ferro-mag</td>
</tr>
<tr>
<td></td>
<td>Non-ferro mag</td>
</tr>
<tr>
<td>Weight -35+60 mesh heavy</td>
<td>Ferro-mag</td>
</tr>
<tr>
<td></td>
<td>Para-mag</td>
</tr>
<tr>
<td></td>
<td>Non-mag</td>
</tr>
<tr>
<td>Mineral Examination Time</td>
<td></td>
</tr>
<tr>
<td>Mineral Grains Analysed</td>
<td></td>
</tr>
</tbody>
</table>
INVOICE

TerraMin Research Laboratories Ltd.
14-2236-30th Avenue NE
Calgary, Alberta T2E 7C7

No. 4138
Date 26-FEB-96
Page 1

Sold
To: Gwen Resources Ltd.
Rick Walker
1595 Griffiths Place
Kelowna, B.C.
V1Z 2T7

Ship
To: Gwen Resources Ltd.
Rick Walker
1595 Griffiths Place
Kelowna, B.C.
V1Z 2T7

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Quantity</th>
<th>Unit</th>
<th>Description</th>
<th>GST</th>
<th>PBT</th>
<th>Unit Price</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>Hours</td>
<td>Lab time</td>
<td>3</td>
<td>0.00</td>
<td>30.00</td>
<td>480.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 • GST @ 7.0%</td>
<td></td>
<td></td>
<td></td>
<td>33.60</td>
</tr>
</tbody>
</table>

Comments
Job 96-004-8 Re: IRO-95-1

Freight
0.00

PST
Total Amount $513.60
TerraMin Research Laboratories Ltd.
14-2236-30th Avenue NE
Calgary, Alberta T2E 7C7

INVOICE

No. 4143
Date: 26-FEB-96
Page: 1

Sold
To: Gwen Resources Ltd.
Rick Walker
1595 Griffiths Place
Kelowna, B.C.
V1Z 2T7

Ship
To: Gwen Resources Ltd.
Rick Walker
1595 Griffiths Place
Kelowna, B.C.
V1Z 2T7

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Quantity</th>
<th>Unit</th>
<th>Description</th>
<th>GST</th>
<th>PST</th>
<th>Unit Price</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.5</td>
<td>Hours</td>
<td>Lab time</td>
<td>3</td>
<td>0.00</td>
<td>30.00</td>
<td>555.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 - GST @ 7.0%</td>
<td></td>
<td></td>
<td></td>
<td>38.85</td>
</tr>
</tbody>
</table>

Comments
Job 96-004-13
Re: IRO-95-2

Freight
0.00

Total
$593.85
DIAMOND EXPLORATION SAMPLE PROCESSING

<table>
<thead>
<tr>
<th>JOB NO.</th>
<th>96-004-13</th>
<th>CLIENT</th>
<th>Dynamic Explorations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE NO.</td>
<td>ISRO-95-2</td>
<td>DATE</td>
<td>Feb. 25, 1996</td>
</tr>
<tr>
<td>SAMPLE TYPE</td>
<td>Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weight of Sample	9.1 kg
Crushing Time	2 hr
Milling Time	8 hr
Dispersion Time	
Sieving Time	3 hr

Weight +7 mesh	0 gm
-7 +35 mesh	685 gm
-35 +60 mesh	1675 gm
-60 mesh	6.7 kg

Mineral Separation Time	5.5 hr	
Weight -7+35 mesh heavy	Ferro-mag	0.04 gm
	Non-ferro mag	8.73 gm

Weight -35+60 mesh heavy	Ferro-mag	0.04 gm
	Para-mag	15.44 gm
	Non-mag	1.68 gm

| Mineral Examination Time | Mineral Grains Analyzed |

Page 1
Appendix D

Statement of Expenditures
STATEMENT OF EXPENDITURES

The following expenses were incurred on the DOTS claim group for the purposes of geological exploration during the periods October 26, 1995 and early March, 1996

PERSONNEL

<table>
<thead>
<tr>
<th>Name</th>
<th>Hours</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rick Walker, P.Geo.</td>
<td>0.5</td>
<td>$400</td>
<td>$200.00</td>
</tr>
<tr>
<td>Len Gal, P.Geo.</td>
<td>0.5</td>
<td>$400</td>
<td>$200.00</td>
</tr>
</tbody>
</table>

EQUIPMENT RENTAL

<table>
<thead>
<tr>
<th>Item</th>
<th>Hours</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck Rental</td>
<td>0.5</td>
<td>$50</td>
<td>$25.00</td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
<td></td>
<td>$31.00</td>
</tr>
<tr>
<td>Mileage</td>
<td>200</td>
<td>$0.20</td>
<td>$40.00</td>
</tr>
<tr>
<td>G.P.S.</td>
<td>0.5</td>
<td>$15</td>
<td>$7.50</td>
</tr>
</tbody>
</table>

FIELD SUPPLIES

<table>
<thead>
<tr>
<th>Item</th>
<th>Hours</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 man</td>
<td></td>
<td>$15</td>
<td>$15.00</td>
</tr>
</tbody>
</table>

REPORT / REPRODUCTION

<table>
<thead>
<tr>
<th>Item</th>
<th>Hours</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Writing</td>
<td>0.5</td>
<td>$400</td>
<td>$200.00</td>
</tr>
</tbody>
</table>

Total: $718.50
STATEMENT OF EXPENDITURES

The following expenses were incurred on the ELSA claim group for the purposes of geological exploration during the periods October 18, 1995 and early March, 1996

PERSONNEL

Rick Walker, P.Geo. - 0.5 day at $400 / day: ... $ 200.00
Len Gal, P.Geo. - 0.5 day at $400 / day: ... $ 200.00

EQUIPMENT RENTAL

Truck Rental - 0.5 day at $50 / day: ... $ 50.00
Fuel: .. $ 31.00
Mileage - 200 km at $0.20 / km: ... $ 40.00
G.P.S. - 0.5 days at $15 / day: ... $ 7.50

ANALYSIS

Petrography - MRWT93-8, MRWT93-13: ... $ 100.00

FIELD SUPPLIES

1 man days at $15 / day: ... $ 15.00

REPORT / REPRODUCTION

Report Writing - 1 day at $400 / day: ... $ 400.00

Total: $1,043.50
STATEMENT OF EXPENDITURES

The following expenses were incurred on the FLORS/IRON claim groups for the purposes of geochemical sampling during the periods October 20, 1995 and early March, 1996

PERSONNEL

Rick Walker, P.Geo. - 1.0 day at $400 / day: .. $ 400.00
Len Gal, P.Geo. - 1.0 day at $400 / day: .. $ 400.00

EQUIPMENT RENTAL

Truck Rental - 1 day at $50 / day: .. $ 50.00
Fuel: .. $ 31.00
Mileage - 200 km at $0.20 / km: .. $ 40.00
G.P.S. - 1 day at $15 / day: .. $ 15.00

ANALYSIS

Petrography - RW95-1, RW95-2, IRO95-2: ... $ 150.00
Processing - IRO95-1: .. $ 513.60
IRO 95-2: .. $ 593.85
Whole Rock and 30 element ICP: .. $ 40.00

FIELD SUPPLIES

2 man days at $15 / day: .. $ 30.00

REPORT / REPRODUCTION

Report Writing - 2 days at $400 / day: .. $ 800.00

Total: $3,063.45
Appendix E

Program Related Documents
province of british columbia
ministry of energy, mines and petroleum resources
mineral tenure act
sections 25.26 & 27

STATEMENT OF WORK — CASH PAYMENT

Indicate type of title: Mineral

Mineral Division: Nelson

PLEASE PRINT CLEARLY

Name: Rick Walter

Address: 650 Brookview Cr

Cranbrook, BC

Telephone: (604) 489-2255

Vic 4RS

Postal Code:

Client Number: 130328

Agent for: SELF

(Names of all recorded title holders):

(Address):

(Phone):

(Telephone):

Client Number:

STATE THAT: (NOTE: If only paying cash in lieu of lease rental, turn to reverse and complete columns G to J and K to T.)

Work has been done on the Claim(s)

Tenure No(s): 341699 - 341702

Work was done from October 26, 1995, to January 30, 1996; and was done in compliance with Section 50 of the Mineral Tenure Act and Section 19(3) of the Regulation: YES [] NO []

WORK PERMIT NO.

TYPE OF WORK

PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamation, and construction of roads and trails. Details as required under Section 13 of the Regulations, including the map and cost statement, must be given on this statement.

PROSPECTING: Details as required under Section 9 of the Regulations must be submitted in a technical report. Prospecting work can only be claimed once by the same owner of the ground, and only during the first three years of ownership.

GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must be submitted in a technical report conforming to Sections 5 through 8 (as appropriate) of the Regulations.

PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 30% of the approved value of geological, geophysical, geochemical, and drilling work on this statement may be withdrawn from the owner's or operator's PAC account and added to the work value on this statement.

NOTE: Where required, the assessment report must be received within ninety days of the earliest due anniversary date on this statement.

<table>
<thead>
<tr>
<th>TYPE OF WORK</th>
<th>VALUE OF WORK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Specify Physical (include details), Prospecting, Geological, etc.)</td>
<td>Physical</td>
<td>*Prospecting</td>
</tr>
<tr>
<td>Prospecting</td>
<td></td>
<td>#617.56</td>
</tr>
<tr>
<td>Report to follow in 90 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>A</td>
<td>B #617.56</td>
</tr>
<tr>
<td>PAC WITHDRAWAL — Maximum 30% of Value in Box C Only from account(s) of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gwen Resources Ltd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Who was the operator (provided the financing)?</td>
<td>Name: Gwen Resources Ltd</td>
<td>Address: 1575 Griffiths Place, Kelowna, BC, Phone 769-6080</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I wish to apply $800 of the total value from Box F as follows:

Columns G through F inclusive MUST BE COMPLETED before work credits can be granted to claims. Columns G through J and G through F inclusive MUST BE COMPLETED before a cash payment or rental payment can be credited. Columns not applicable need not be completed.

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>TENURE No.</th>
<th>No. OF UNITS</th>
<th>CURRENT EXPIRY DATE</th>
<th>Work TO BE Applied</th>
<th>Recording Fees</th>
<th>EXCESS CREDIT</th>
<th>EXCESS CREDIT REMAINING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dots 1</td>
<td>341699</td>
<td>1</td>
<td>04.26/76</td>
<td>$200</td>
<td>2</td>
<td>20</td>
<td>04.26/76</td>
</tr>
<tr>
<td>Dots 2</td>
<td>341700</td>
<td>1</td>
<td>i</td>
<td>$200</td>
<td>2</td>
<td>20</td>
<td>i</td>
</tr>
<tr>
<td>Dots 3</td>
<td>341701</td>
<td>1</td>
<td>i</td>
<td>$200</td>
<td>2</td>
<td>20</td>
<td>i</td>
</tr>
<tr>
<td>Dots 4</td>
<td>341701</td>
<td>1</td>
<td>i</td>
<td>$200</td>
<td>2</td>
<td>20</td>
<td>i</td>
</tr>
</tbody>
</table>

Total of G: $800

NOTICE TO GROUP No. RECORDED

Value of work to be credited to portable assessment credit (PAC) account(s). (May only be credited from the approved value of Box C not applied to claims.)

Name: [signature]
Amount:

Name of owner/operator
1. [signature]
2. [signature]
3. [signature]

1. The undersigned Applicant, hereby acknowledge and understand that it is an offence to knowingly make a false statement or provide false information under the Mineral Tenure Act. I further acknowledge and understand that if the statements made, or information given, in this Statement of Work — Cash Payment are found to be false and the exploration and development has not been performed, as alleged in this Statement of Work — Cash Payment, then the work reported on this statement will be cancelled and the subject mineral claim(s) may as a result, be forfeited to and vest back to the Province.

Signature of Applicant
Province of British Columbia
Ministry of Energy, Mines and Petroleum Resources
MINERAL RESOURCES DIVISION — TITLES BRANCH

Mineral Tenure Act
SECTION 28

NOTICE TO GROUP

INDICATE TYPE OF TITLE
Mineral
(Mineral or Placer)*

Agent for
SELF
(Name(s) of all recorded title holders)

Request that the following mineral titles on map number(s)
82 F/08 W
in the **Nelson** Mining Division(s) be grouped under the group name **DOTS**.

A copy of the mineral/placer titles reference map or a legal survey approved by the Surveyor General is attached.

Notice to Group approved (Yes/No)
(Yes)

NOTE: Mineral claim(s) and lease(s) cannot be grouped with placer claim(s) and lease(s)
Province of British Columbia
Ministry of Energy, Mines and Petroleum Resources
MINERAL RESOURCES DIVISION — TITLES BRANCH

Mineral Tenure Act
Sections 25, 26 & 27

STATEMENT OF WORK — CASH PAYMENT

Indicate type of title
Mineral

Mining Division
Fort Steele

PLEASE PRINT CLEARLY

1. Rick Walker
 655 Brookview C
 Cranbrook, BC
 (604) 489-2255
 (Postal Code) V1G 4R5

Agent for
5GCF

Claim(s)

Tenure No(s): 341040 - 341043

Work was done from October 18, 1995 to October 1, 1996

and was done in compliance with Section 50 of the Mineral Tenure Act

Section 19(3) of the Regulation
YES [] NO []

WORK PERMIT No. __________

TYPE OF WORK

PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamation, and construction of roads and trails. Details as required under section 13 of the Regulations, including the map and cost statement must be given on or attached to this statement.

PROSPECTING: Details as required under section 9 of the Regulations must be submitted in a technical report. Prospecting work can only be claimed once by the same owner of the ground, and only during the first three years of ownership.

GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must be submitted in a technical report conforming to sections 5 through 8 (as appropriate) of the Regulations.

PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 30% of the approved value of geological, geophysical, geochemical and/or drilling work on this statement may be withdrawn from the owner's or operator's PAC account and added to the work value on this statement.

Note: Where required, the assessment report must be received within ninety days of the earliest due anniversary date on this statement.

<table>
<thead>
<tr>
<th>TYPE OF WORK</th>
<th>VALUE OF WORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Specify Physical (include details). Prospecting, Geological, etc.)</td>
<td>Physical</td>
</tr>
<tr>
<td>Prospecting</td>
<td>675</td>
</tr>
</tbody>
</table>

REFUSE TO FOLLOW IN 70 DAYS

TOTALS

A | B | C | D = B + C

PAC WITHDRAWAL — Maximum 30% of Value in Box C Only

Transfer amount in Box F to reverse side of form and complete as required

Who was the operator (provided the financing)?

Name: Garn Resources Ltd
Address: 155 Gaffney Ave
Kelowna, BC
Phone: 769-6980

From account(s) of: Garn Resources Ltd

Transfer amount in Box F to reverse side of form and complete as required
Mineral Tenure Act

SECTION 28

NOTICE TO GROUP

INDICATE TYPE OF TITLE
Mineral

Agent for
SELF

Name
Rick Walker

Address
656 Brookview Crt

Postal Code
V1C 4R5

Telephone
(604) 489-2255

Client Number
130328

(request that the following mineral titles on map number(s) in the Fort Steele Mining Division(s) be grouped under the group name **ELSA)

A copy of the mineral/placer titles reference map or a legal survey approved by the Surveyor General is attached.

Name of Claim
Number of Units
Tenure Number

<table>
<thead>
<tr>
<th>ELSA 1</th>
<th>1</th>
<th>341040</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELSA 2</td>
<td>1</td>
<td>341041</td>
</tr>
<tr>
<td>ELSA 3</td>
<td>1</td>
<td>341042</td>
</tr>
<tr>
<td>ELSA 4</td>
<td>1</td>
<td>341043</td>
</tr>
</tbody>
</table>

Notice to Group approved (Yes/No)
Yes

Total number of units
9

Date
(Signature of Applicant)

Signature of Gold Commissioner

OTE: Mineral claim(s) and lease(s) cannot be grouped with placer claim(s) and lease(s)
I WISH TO APPLY $16,000 OF THE TOTAL VALUE FROM BOX F AS FOLLOWS:

<table>
<thead>
<tr>
<th>CLAIM IDENTIFICATION</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAIM NAME</td>
<td>TENURE NO.</td>
<td>NO. OF UNITS</td>
<td>CURRENT EXPIRY DATE</td>
<td></td>
</tr>
<tr>
<td>Ron 1</td>
<td>341767</td>
<td>1</td>
<td>Oct 22/98</td>
<td></td>
</tr>
<tr>
<td>Ron 2</td>
<td>341708</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ron 3</td>
<td>341709</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floir 1</td>
<td>319355</td>
<td>1</td>
<td>July 19/98</td>
<td></td>
</tr>
<tr>
<td>Floir 2</td>
<td>319356</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floir 3</td>
<td>319357</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floir 4</td>
<td>319358</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floir 5</td>
<td>319359</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floir 6</td>
<td>319360</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPLICATION OF WORK CREDIT

<table>
<thead>
<tr>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORK TO BE APPLIED</td>
<td>VALUE</td>
<td>YEARS</td>
<td>Recording Fees</td>
<td>PRIOR EXCESS CREDIT REMAINING</td>
<td>NEW EXCESS CREDIT REMAINING</td>
</tr>
<tr>
<td>$200</td>
<td>2</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$200</td>
<td>2</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$100</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

CASH IN LIEU OF WORK OR LEASE RENTAL

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASH</td>
<td>LEASE RENTAL</td>
<td>NEW EXPIRY DATE</td>
<td></td>
</tr>
<tr>
<td>$16,000</td>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTICE TO GROUP No. | RECORDED

Value of work to be credited to portable assessment credit (PAC) account(s).

(May only be credited from the approved value of Box C not applied to claims.)

Name

Amount

Name of owner/operator

1. Gwen Resources Ltd

Signature of Applicant

I, the undersigned Applicant, hereby acknowledge and understand that if the statements made, or information given, in this Statement of Work — Cash Payment are found to be false and the exploration and development has not been performed, as alleged in this Statement of Work — Cash Payment, then the work reported on this statement will be cancelled and the subject mineral claim(s) may as a result, forfeit to and vest back to the Province.
INDICATE TYPE OF TITLE: Mineral (Mineral or Placer)*

<table>
<thead>
<tr>
<th>Name of Claim</th>
<th>Number of Units</th>
<th>Tenure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron 1</td>
<td>1</td>
<td>341707</td>
</tr>
<tr>
<td>Iron 2</td>
<td>1</td>
<td>341708</td>
</tr>
<tr>
<td>Iron 3</td>
<td>1</td>
<td>341709</td>
</tr>
<tr>
<td>Flor 1</td>
<td>1</td>
<td>319355-7</td>
</tr>
<tr>
<td>Flor 2</td>
<td>1</td>
<td>319356</td>
</tr>
<tr>
<td>Flor 3</td>
<td>1</td>
<td>319357</td>
</tr>
<tr>
<td>Flor 4</td>
<td>1</td>
<td>319358</td>
</tr>
<tr>
<td>Flor 5</td>
<td>1</td>
<td>319359</td>
</tr>
<tr>
<td>Flor 6</td>
<td>1</td>
<td>319360</td>
</tr>
</tbody>
</table>

Notice to Group approved (Yes/No)

(Signature of Gold Commissioner)

(Date)

*NOTE: Mineral claim(s) and lease(s) cannot be grouped with placer claim(s) and lease(s)
Province of British Columbia
Ministry of Energy, Mines and Petroleum Resources
MINERAL RESOURCES DIVISION — TITLES BRANCH

Mineral Tenure Act
Sections 25, 26 & 27
STATEMENT OF WORK — CASH PAYMENT

Indicate type of title
Mineral

Mineral (Or Placer)

Mining Division
Nelson

PLEASE PRINT CLEARLY

1. Rick Walker
(Name)

656 Brookview Cr
(Address)

Cranbrook, BC

(604) 489-2155
(Telephone)

VIC Y9S
(Postal Code)

Client Number
130328

Agent for
SELF TIM TURLHENVAS
(Owner or site holder)

2720-19th Street South
(Cranbrook, BC)

(604) 480-3112
(Telephone)

VIC Y8W
(Postal Code)

Client Number
126599

I. Work has been done on the
Tenure No.(s)
341707-341709, 319355-319360
Claim(s)

Work was done from
October 22, 1995, to
March 1, 1996
and was done in compliance with Section 50 of the Mineral Tenure Act

Section 19(3) of the Regulation YES [] NO []
WORK PERMIT No.

TYPE OF WORK

PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclamation, and construction of roads and trails. Details as required under section 13 of the Regulations, including the map and cost statement must be given on or attached to this statement.

PROSPECTING: Details as required under section 9 of the Regulations must be submitted in a technical report. Prospecting work can only be claimed once by the same owner of the ground, and only during the first three years of ownership.

GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details must be submitted in a technical report conforming to sections 5 through 8 (as appropriate) of the Regulations.

PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 30% of the approved value of geological, geophysical, geochemical and/or drilling work on this statement may be withdrawn from the owner’s or operator’s PAC account and added to the work value on this statement.

Note: Where required, the assessment report must be received within ninety days of the earliest due anniversary date on this statement.

<table>
<thead>
<tr>
<th>SPECIFY TYPE OF WORK</th>
<th>VALUE OF WORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological (Sampling/Processing)</td>
<td>2278.15</td>
</tr>
</tbody>
</table>

REPORT TO FOLLOW IN 90 DAYS

TOTALS
A + B + C 2278.15
D 2278.15

PAC WITHDRAWAL — Maximum 30% of Value In Box C Only

from account(s) of

"Who was the operator (provided the financing)?"

Name Gwen Resources Ltd
Address 1565 Griffth Pl
Kelowna, BC Phone 778-6080

Transfer amount in Box F to reverse side of form and complete as required.