PROSPECTING & TECHNICAL REPORT

Tenure #563579 - SALLY

Alberni Mining Division
Vancouver Island B.C.

NTS 92L. 016

UTM
644939 5556414

September 7, 2008

Vincent John Buddick
FMC #205212

Report By:
Vincent John Buddick
North Island Exploration

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

30,219
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Location</td>
<td>1</td>
</tr>
<tr>
<td>Topography, Vegetation and Climate</td>
<td>1</td>
</tr>
<tr>
<td>History</td>
<td>1</td>
</tr>
<tr>
<td>Geology</td>
<td>5</td>
</tr>
<tr>
<td>Summary of Work (Purpose, Technical Data and Observations)</td>
<td>10</td>
</tr>
<tr>
<td>Notes on Mapping</td>
<td>10</td>
</tr>
<tr>
<td>Conclusion</td>
<td>10</td>
</tr>
<tr>
<td>Author's Qualifications</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>12-14</td>
</tr>
<tr>
<td>Software Programs</td>
<td>15</td>
</tr>
<tr>
<td>Appendix 1: Cost Statement</td>
<td>20-21</td>
</tr>
</tbody>
</table>
Illustrations

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>SALLY - 1:250,000</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>SALLY - 1:50,000</td>
<td>3</td>
</tr>
<tr>
<td>Figure 3</td>
<td>SALLY - 1:20,000</td>
<td>4</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Distribution of Wrangellia</td>
<td>7</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Regional Mesozoic-Cenozoic Stratigraphy of N. Vancouver Island</td>
<td>8</td>
</tr>
<tr>
<td>Figure 6</td>
<td>SALLY - Local Geology</td>
<td>9</td>
</tr>
<tr>
<td>Figure 7</td>
<td>SALLY - Mapping Grid</td>
<td>16</td>
</tr>
<tr>
<td>Figures 8-10</td>
<td>Mapping 1:5,000</td>
<td>17-19</td>
</tr>
</tbody>
</table>
Introduction

This report details the technical work carried out on tenure #563579 - SALLY. The tenure consists of 24 cells or 497 hectares and was staked on July 24, 2007. The tenure is 100% owned by myself, Vincent John Buddick, FMC #205212. This was the first year I have owned the claim. A project of general reconnaissance, prospecting and mapping was performed on September 10, 2007 and June 3, 4 and 15, 2008. Approximately 50 hectares was examined in this initial quest. 32 hours of field work was recorded when the project completed.

Location

The tenure is situated on traditional lands of The Maa-nulth First Nations. A letter of intention was sent to their respective band office, describing the nature of planned projects.

Located on northwest Vancouver Island, NTS 92L. 01 6, the tenure can be accessed with a high clearance vehicle via Highway 19/Atluck Road/Sally Road. Total driving distance from Woss BC to the tenure boundary is 48 kilometers. Sally Road accesses the north portion, and parallels inside the west boundary. All other mapped roads and spurs have become moderate to densely overgrown with alders. Access from these spurs is quite labourious, but does allow for inspection of outcrop. A camp was set up at Atluck Lake, 11 kilometers away.

Three maps illustrate the location in 1:250,000, 1:50,000 and 1:20,000 scales. See figures 1, 2 and 3.

Topography, Vegetation and Climate

The topography on the tenure consists of steep mountainous terrane. Elevations rise from 285m along Sally Creek, to 1070m near the east boundary. The north portion of the tenure is drained by the east fork of Sally Creek. The south portion is drained by a west flowing tributary of the Artlish River. The lower elevations have been logged off and are advanced into various stages of secondary growth.

Vegetation is typical of the west coast. The second growth areas can be very thick and challenging to traverse, with a lot of fallen logs to maze around or over. Albeit in some areas a traverse thru the second growth, parallelling the densely overgrown logging road, proved the safer and more efficient route.

The area is in close proximity to the Pacific Ocean and receives above average west coast rainfalls from October thru March. The very wet and long winter of 2007/2008 lead to above average water levels in the creeks this late spring. A few washouts were noted exposing minor amounts of unexplored outcrop.

History

There is no recorded work history on this tenure. A search of ARIS and minfile databases returns no results. The Regional Geochemical Survey did some generalized testing near the mouth of the south flowing creek which drains into the Artlish River, showing a greater than 95th percentile of arsenic and copper.
This map is a user-generated static output from an internet mapping site and is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. THIS MAP IS NOT TO BE USED FOR NAVIGATION.
This map is a user generated static output from an Internet mapping site and is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. THIS MAP IS NOT TO BE USED FOR NAVIGATION.
Geology

Vancouver Island belongs to the Insular Tectonic Belt, the westernmost subdivision of the Canadian Cordillera. Wrangellia, an accreted oceanic plateau (Green Andrew R., et al.), forms the dominant terrane. See figure 4, Distribution of Wrangellia.

The Wrangellia Terrane is a complex and variable terrane that extends from Vancouver Island to central Alaska. Wrangellia is most commonly characterized by widespread exposures of Triassic flood basalts and complementary intrusive rocks (Jones et al., 1977). Triassic flood basalts extend in a discontinuous belt from Vancouver and Queen Charlotte Islands (Karmutsen Formation), through southeast Alaska and the Kluane Ranges in southwest Yukon, and into the Wrangell Mountains and Alaska Range in east and central Alaska (Nikolai Formation). This belt of flood basalts has distinct similarities and is recognized as representing a once-contiguous terrane (Jones et al., 1977).

Wrangellia has a long and diverse geologic history spanning much of the Phanerozoic. On Vancouver Island, the oldest rocks of Wrangellia, which lie at the top of an imbricated stack of northeast-dipping thrust sheets (Monger and Journeay, 1994), are Late Silurian to Early Permian arc sequences (Muller, 1980; Brandon et al., 1986; Sutherland Brown et al., 1986). In the Late Triassic, rapid uplift associated with a rising plume head lead to eruption of voluminous flood basalts as part of an extensive oceanic plateau (Richards et al., 1991). As volcanism ceased, the oceanic plateau soon began to subside and accumulate deep-water carbonate sediments (Jeletzky, 1970; Carlisle and Suzuki, 1974). Sedimentation within the Wrangellia Terrane lasted until the Early Jurassic, when the resurgence of arc volcanism developed in response to subduction, forming the Bonanza arc (Armstrong and MacKevett, 1977; DeBari, 1999).

The enormous exposures of the Karmutsen appear to represent a single flood basalt event (Richards et al., 1989). A mantle plume initiation model has been proposed for the Wrangellia flood basalts based on (1) relatively limited geochemical data, (2) the nature of the underlying and overlying formations, (3) rapid uplift prior to volcanism, (4) the lack of evidence of rifting associated with volcanism and (5) the short duration and high eruption rate of volcanism (Richards et al., 1991). The basalt flows are estimated to have erupted a minimum volume of 1x10^6 km^3 (Panuska, 1990) within a maximum of five million years (Carlisle and Suzuki, 1974). During the 80 million years or so between arc activity and emergence of oceanic plateau flood basalts, as the continents gathered into a great landmass, Wrangellia became part of a composite terrane (Plafker et al., 1989). By the Middle Pennsylvanian, Wrangellia may have joined with the Alexander Terrane (Gardner et al., 1988) or been in close proximity (stratigraphic continuity) with the Alexander Terrane (Yorath et al., 1985). The ocean-bound Wrangellia Terrane amalgamated with the Taku Terrane of southeast Alaska and the Peninsular Terrane of southern Alaska by as early as the Late Triassic (Plafker et al., 1989). Paleomagnetic and faunal evidence indicate the Wrangellia Terrane originated far to the south of its present position (Hillhouse, 1977; Yole and Irving, 1980; Hillhouse et al., 1982; Hillhouse and Gromme, 1984). Wrangellia accreted to the North American craton by the Late Jurassic or Early Cretaceous (Monger et al., 1982; Tipper, 1984; Plafker et al., 1989; Gehrels and Greig, 1991; van der Heyden, 1992; Monger et al., 1994).
The regional geology consists of two thick volcanic/sedimentary cycles. The first is the Vancouver Group of Triassic age consisting of Karmutsen volcanics, Parson Bay and Quatsino limestone. Secondly the Bonanza Group volcanics of Lower Jurassic age. These packages are intruded by the Island Intrusives of the Middle Jurassic age, see figure 5, Regional Mesozoic-Cenozoic Stratigraphy of Northern Vancouver Island (modified after Muller, et al. 1974, 1981). The area was mapped for the GSC in 1974 by Muller, Northcote and Carlisle.

Local geology on the claim is dominated by Bonanza Group volcanics. See figure 6, SALLY - Local Geology. This map shows the Mineral Titles On-line grid transposed on the Digital Geology Map of British Columbia, January 2005, N.W.D. Massey, et al. Large beds of Parson Bay and Quatsino limestone lie to the north and east. Faults and plutons generally trend northwest-southeast in this area.

Vancouver Island has numerous highly mineralized areas. Strongly mineralized zones are known to exist in the northwest area of the island. Five specific deposit types are found:
1) Porphry copper-molybdenum deposits
2) Copper-iron-gold skarns
3) Base metal skarns
4) Copper bearing quartz veins and shear zones (with precious metals)
5) Epithermal gold deposits
Figure 4
Distribution of Wrangellia

Terrane map of western Canada and Alaska (modified after Wheeler et al. [1991]) showing the distribution of the Wrangellia Terrane (WR) in British Columbia, the Yukon and Alaska.
Figure 5
Regional Mesozoic - Cenozoic Stratigraphy of Northern Vancouver Island
(modified after Muller et al., 1974, 1981)

<table>
<thead>
<tr>
<th>Era</th>
<th>Group/Formation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERTIARY Neogene</td>
<td>Alert Bay Volcanics</td>
<td>300m Basaltic to dacitic flows, tuffs, with interbedded conglomerates and coeval dykes and plutonic rocks</td>
</tr>
<tr>
<td>CRETACEOUS</td>
<td>Nanaimo Group</td>
<td>120m Sandstone, siltstone, shale, conglomerate, coal</td>
</tr>
<tr>
<td>JURASSIC Lower</td>
<td>Bonanza volcanics</td>
<td>300m to 1000m Sandstone, conglomerate, siltstone, shale, coal</td>
</tr>
<tr>
<td></td>
<td>Harbledown Formation</td>
<td>75m to 275m Conglomerate, sandstone and siltstone</td>
</tr>
<tr>
<td></td>
<td>Parson Bay Formation</td>
<td>> 1000m Predominantly subaerial tuffs and lavas of basaltic to andesitic composition, local interbedded clastic sediments and/or limestone, interfused by conglomeratic cobbles and blocks of the island Plutonic Suite.</td>
</tr>
<tr>
<td></td>
<td>Quatsino Fm.</td>
<td>200m to 600m Upper: Calcareous siltstone, Lower: Feldspathic wacke</td>
</tr>
<tr>
<td></td>
<td>Upper Vancouver Group</td>
<td>Parson Bay Formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quatsino Fm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper Vancouver Group</td>
</tr>
<tr>
<td></td>
<td>Kamatsen Formation</td>
<td>600m to 1000m Pillow breccia with well bedded tuff and breccia in lower part</td>
</tr>
<tr>
<td></td>
<td>'Daonella Beds'</td>
<td>2500m Pillow basalts</td>
</tr>
<tr>
<td></td>
<td>Buttle Lake Group</td>
<td>800m to 1000m Shales and meta-sediments with abundant basaltic sills</td>
</tr>
<tr>
<td></td>
<td>Sicker Group</td>
<td>< 350 m Limestone and lesser siltstone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper: Limestone, chert and argillite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: Augite-bearing agglomerate, lapilli tuff, pillow lavas, epiclastic, breccia and minor chert</td>
</tr>
</tbody>
</table>

(Paleozoic to Permian)
Figure 6 SALLY - Local Geology

- Karmutsen Volcanics
- Quatsino Limestone
- Parson Bay Limestone
- Bonanza Volcanics
- Island Intrusives

Fault

Scale: 0 1 2 km
Summary of Work

This initial project of general reconnaissance, prospecting and mapping focussed on gaining a general understanding of the tenure. A stop and go vehicle method was used along the lower Sally Road. All higher roads were unnavigable by vehicle and were hiked. Outcrop in road-cut along with notable areas of talus and float, were mapped. Traverses were completed in a few safe locations. Creeks beds were inspected near intersections with logging roads. One day was spent inspecting a portion of the east fork of Sally Creek. All outcrops and areas of interest were marked and stored as GPS waypoints. Numerous samples were collected for possible further study. All data was recompiled and hand drawn on 1:5,000 maps, which are keyed into a main mapping grid. See figures 7-10. The current year’s mapping project shows the mapped pluton to the south has extensions further north into the tenure
The very wet and long winter of 2007/2008 lead to above average water levels in the creeks this late spring. Several washouts were noted exposing minor amounts of unexplored outcrop. Some of these washouts were noted in distant creeks, using binoculars. These areas were noted and will possibly be visited in future project.
A point of interest is the disappearing Sally Creek. A dry creek-bed transforms into an impassable, 20m wide, medium-flow channel, as you traverse up-creek 1000m south from the bridge. The actual transition zone about 500m up. Vast amounts of water would be flowing underground. A feature to factor into any stream sediment sampling consideration.

Notes on Mapping

1) Various sizes of semi angular amygdaloidal red rhyolite and amygdaloidal grey volcanic float concentrated in 200m zone of creek. Vugs in dark grey volcanic up to 4mm, filled with quartz/calcite. Vugs in red rhyolite up to 8mm and filled with quartz/calcite and epidote.
2) Minor amounts of pyrite, cubes up to 2mm hosted in 15x20x10cm angular calcite float. Part of float specimen also shows altered volcanic contact.
3) Fine pyrite in fractures up to 1.5mm wide, hosted in semi-angular skarned fine grained green volcanic float.
4) 3mm pyrite crystals in larger calcite/volcanic float rock.
5) Minor flecks of pyrite in thin fractures hosted in a very dark coarse volcanic, grading into diorite. Epidote in numerous veins causes smooth green shears on some fractured surfaces.
6) 5mm veins of pyrite and lesser chalcopyrite in roadside talus. Hosted in a skarned volcanic not seen in this general area. Origins questionable.

Conclusion

The tenure has only been partially explored. The limited amount of work done this year provided satisfactory results. The sulphide occurrences are encouraging. Precious metal mineralizations have been recorded in the vicinity and further exploration is warranted. Interest is now being focussed on the south portion where new intrusives were mapped.
Author’s Qualification

I, Vincent John Buddick, of 1508 Marina Way, Nanoose Bay, British Columbia, hereby certify;

1) I have completed the British Columbia Institute of Technology, Introduction to Prospecting and Exploration course, in two parts; mine 1003/spring 2007 and mine 1004/fall 2007.

2) I have been physically prospecting for 2 years.

3) I am the sole owner of North Island Exploration, 1508 Marina Way, Nanoose Bay, British Columbia, and currently hold 100% interest in the for mentioned tenure.

Vince Buddick,
Prospector

Date: Sept 07, 2008
References

Software Used

1) Adobe Reader/7.0
2) ArcExplorer/2.0
3) Arcsoft/Photoimpression 2000
4) Garmin/MapSource/6.11.6
5) GoogleEarth/4.0.2091
6) Hewlitt-Packard/Photo Imaging Software/2.5.0.1
7) Kodak/EasyShare/6.4.0.100
8) Microsoft/Excel 2000/9.0.2720
9) Microsoft/Paint/5.0
10) PowerArchiver 2004/9.10.06
11) TopoCanada/v2/2.00
12) Wordperfect10/10.0.0.518
SALLY - Mapping Grid

Figure 7
<table>
<thead>
<tr>
<th>Personnel (Name) / Position</th>
<th>Exploration Work type</th>
<th>Comment</th>
<th>Days</th>
<th>Rate</th>
<th>Subtotal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vince Buddick, Owner</td>
<td>Field Days (list actual days)</td>
<td>September 10 2007</td>
<td>1</td>
<td>$400.00</td>
<td>$400.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>June 03, 04 and 15 2008</td>
<td>3</td>
<td>$400.00</td>
<td>$1,200.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1,600.00</td>
<td>$1,600.00</td>
</tr>
<tr>
<td>Office Studies</td>
<td>List Personnel (note - Office only, do not include field days)</td>
<td>Literature search</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Database compilation</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer modelling</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reprocessing of data</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General research</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Report preparation</td>
<td></td>
<td>$1.00</td>
<td>$400.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other (specify)</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$400.00</td>
<td>$400.00</td>
</tr>
<tr>
<td>Airborne Exploration Surveys</td>
<td>Line Kilometres / Enter total invoiced amount</td>
<td>Aeromagnetics</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radiometrics</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electromagnetics</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravity</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digital terrain modelling</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other (specify)</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Remote Sensing</td>
<td>Area in Hectares / Enter total invoiced amount or list personnel</td>
<td>Aerial photography</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LANDSAT</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other (specify)</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Ground Exploration Surveys</td>
<td>Area in Hectares/List Personnel</td>
<td>Geological mapping</td>
<td></td>
<td>note: expenditures here should be captured in Personnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regional</td>
<td></td>
<td>note: expenditures for your crew in the field</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reconnaissance</td>
<td></td>
<td>should be captured above in Personnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prospect</td>
<td></td>
<td>field expenditures above</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Underground</td>
<td>Define by length and width</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trenches</td>
<td>Define by length and width</td>
<td>$0.00 $0.00</td>
<td></td>
</tr>
<tr>
<td>Ground geophysics</td>
<td>Line Kilometres / Enter total amount invoiced list personnel</td>
<td>Radiometrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magnetics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digital terrain modelling</td>
<td></td>
<td>note: expenditures for your crew in the field</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electromagnetics</td>
<td></td>
<td>should be captured above in Personnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP/AP/EP</td>
<td></td>
<td>field expenditures above</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMT/CSAMT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resistivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complex resistivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seismic reflection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic refraction</td>
<td>Well logging</td>
<td>Define by total length</td>
<td>Geophysical interpretation</td>
<td>Petrophysics</td>
<td>Other (specify)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Geochemical Surveying</td>
<td>Number of Samples</td>
<td>No.</td>
<td>Rate</td>
<td>Subtotal</td>
<td>$0.00</td>
</tr>
<tr>
<td>Drill (cuttings, core, etc.)</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stream sediment</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td>note: This is for assays or laboratory costs</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogeochemistry</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole rock</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrology</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (specify)</td>
<td>$0.00</td>
<td>$0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drilling	No. of Holes, Size of Core and Metres	No.	Rate	Subtotal	$0.00	$0.00
Diamond	$0.00	$0.00				
Reverse circulation (RC)	$0.00	$0.00				
Rotary air blast (RAB)	$0.00	$0.00				
Other (specify)	$0.00	$0.00				

Other Operations	Clarify	No.	Rate	Subtotal	$0.00	$0.00
Trenching	$0.00	$0.00				
Bulk sampling	$0.00	$0.00				
Underground development	$0.00	$0.00				
Other (specify)	$0.00	$0.00				

Reclamation	Clarify	No.	Rate	Subtotal	$0.00	$0.00
After drilling	$0.00	$0.00				
Monitoring	$0.00	$0.00				
Other (specify)	$0.00	$0.00				

Transportation	2 vehicles; 2wd, 4wd	No.	Rate	Subtotal	$0.00	$0.00
Airfare	$0.00	$0.00				
Taxi	$0.00	$0.00				
Truck rental	$0.00	$225.00				
Kilometers	$0.00	$246.17				
ATV	$0.00	$0.00				
Fuel	$0.00	$111.90				
Helicopter (hours)	$0.00	$0.00				
Fuel (litres/hour)	$0.00	$0.00				
Actual vehicle costs	$583.07					
20% maximum of $2339	$467.80					

<p>| Accommodation & Food | Rates per day | |
| Hotel | $0.00 | $0.00 | |
| Camp | 4.00 | $50.00 | $200.00 |
| Meals | actual | $0.00 | $88.00 |
| | | $288.00 | $288.00 |</p>
<table>
<thead>
<tr>
<th>Category</th>
<th>Item Description</th>
<th>Quantity</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous</td>
<td>Telephone</td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>Other (Specify)</td>
<td>Office</td>
<td>4.00</td>
<td>$5.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$23.00</td>
</tr>
<tr>
<td>Equipment Rentals</td>
<td>Field Gear (Specify)</td>
<td>GPS/camera/batteries</td>
<td>4.00</td>
<td>$7.00</td>
</tr>
<tr>
<td></td>
<td>Other (Specify)</td>
<td></td>
<td></td>
<td>$28.00</td>
</tr>
<tr>
<td>Freight, rock samples</td>
<td></td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0.00</td>
</tr>
<tr>
<td>TOTAL Expenditures</td>
<td></td>
<td></td>
<td></td>
<td>$2,806.80</td>
</tr>
</tbody>
</table>