REPORT ON
THE 2011 GEOLOGICAL MAPPING AND
GEOCHEMICAL SAMPLING PROGRAM
ON THE GRADEN PROPERTY
KAMLOOPS AREA, B.C.

UTM Nad 83 Zone 10- 689000E, 5607700N

For

Jaqueline Denise Anderson

By
Graeme Evans PGeo, BSc

N.T.S 92I/59

08/20/2011
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2-LOCATION, PHYSIOGRAPHY AND ACCESS</td>
<td>1</td>
</tr>
<tr>
<td>3-PROPERTY STATUS</td>
<td>1</td>
</tr>
<tr>
<td>4-PREVIOUS WORK</td>
<td>2</td>
</tr>
<tr>
<td>5-REGIONAL GEOLOGY</td>
<td>2</td>
</tr>
<tr>
<td>6-PROPERTY GEOLOGY (including 2011 geology)</td>
<td>3</td>
</tr>
<tr>
<td>7-CONCLUSIONS AND RECOMMENDATIONS</td>
<td>8</td>
</tr>
<tr>
<td>8-REFERENCES</td>
<td>9</td>
</tr>
<tr>
<td>9-STATEMENT OF QUALIFICATIONS</td>
<td>10</td>
</tr>
<tr>
<td>10-DETAILED COST STATEMENT</td>
<td>11</td>
</tr>
<tr>
<td>11-ASSAY CERTIFICATE</td>
<td>12</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Figures and Maps</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Graden Detail Claim Map</td>
<td>1</td>
</tr>
<tr>
<td>2 General Graden Property Location and Regional Geology of the Iron Mask Batholith</td>
<td>3</td>
</tr>
<tr>
<td>3 General Geology of the Graden Property</td>
<td>3</td>
</tr>
<tr>
<td>4 Admiral Dewey-E Zone-Breccia Area</td>
<td>6</td>
</tr>
<tr>
<td>5 Graden Geology with 2011 Geology</td>
<td>after 8</td>
</tr>
</tbody>
</table>
INTRODUCTION:

The property was acquired by staking of open ground in the southeastern portion of the Iron Mask Batholith. The property covers one of the more promising porphyry Cu-Au systems in the batholith with previous exploration outlining widespread porphyry Cu-Au mineralization. Work in 2011 focussed on a more detailed examination of the Admiral Dewey area. Initial geological mapping in on May 17th and 18th, 2011 located several of the historic showings and verified general geology and initial rock sampling confirms the widespread presence of Cu-Au mineralization in this area.

LOCATION, PHYSIOGRAPHY AND ACCESS:

The property is located 6.0 km’s south of Kamloops B.C. and is in rural farmland with several ranches surrounding and within the property. Numerous public and private roads access much of the property which was previously the local Grandview ski hill. The property covers rolling grassland with numerous farms and hobby farms along main country roads in this community of Knutsford. Numerous fenced fields are used for hay production and general cattle grazing. There are several public and private roads in the area but generally few roads in the central portion. The central area is a topographic high area (50-100 meters relief) where outcrop is much better exposed with 5-10% outcrop. Lower areas around the periphery of the property are heavily glaciated with moraines displaying a NW-SE orientation. The property is centered @ UTM Nad 83 Zone 10- 689000E, 5607700N.

PROPERTY STATUS

The property is recorded as #605068 and is presently in good standing until May 28, 2012 and comprises 328.25ha. The Graden property is 100% owned by Jaqueline Denise Anderson. The three crown grants (L.1560, L.1561, L.1562) internal to the claims are still be held by Abacus Mining.
4/-Previous Work:

Copper showings were located on the hilltop in the early 1900’s with work including hand trenching and small adits driven for exploration purposes. The property has seen several phases of exploration by several companies and includes:

1969: Great Plains Development-Geology, Ground Mag, I.P.
1972: Rolling Hills Copper Mines – Geology
1973: Craigmont Mines-ddh
1978: Cominco 7 percussion drill holes -488 meters, & I.P.
1979: Cominco 14 percussion drill holes-829 meters
1980: Cominco 13 percussion drill holes – 1079 meters
1989: Cominco 41 percussion drill holes- 3507 meters
1989: Afton Operating Corp – Mag, VLF, Soils
1991: Afton Operating Corp. 4 percussion drill holes 359 meters

Many assessment reports are available for these programs and much of the drilling covered a larger area than the present property.

5/-Regional Geology:

The Iron Mask batholith is a late Triassic composite alkaline batholith with a NW trending axis. Earlier more mafic Pothook and Hybrid phases diorites and pyroxenites intruded an alkaline Nicola volcanic arc. These were later intruded by more felsic and evolved intrusive phases namely the Sugarloaf diorites and Cherry Creek monzonites. Both intrusives produced alkaline Cu-Au porphyries and mineralized breccia pipes that were previously mined at Ajax, Crescent, Pothook and Afton. More current activity is underway at New Afton where New Gold will have the New Afton project in production in 2012 on a mineralized breccia-porphyry zone of 47.4MT @ 0.95% Cu, 0.69 g/t Au. This will be by block cave underground mining, a new technique for the Afton camp. Abacus Mining is presently underway trying to develop the Ajax deposit by open pit, current reserves stand @ 442.0MT @ 0.30%Cu, 0.19 g/t Au.

The property covers the central portion of the Iron Mask batholith and is dominated by the two main mineralizing phases of the batholiths namely the Cherry Creek and Sugarloaf phases. Thin veneers of Tertiary Kamloops group volcanics are present in the southwest portion of the property and the Nicola volcanic intrusive contact is in the very northeastern edge of the property. On a regional basis the property covers very promising regional trends including the presence of the two mineralizing intrusive phases along a structural corridor displayed by the airborne magnetics and a large Th/K radiometric anomaly indicating widespread alteration is present on the property. Intrusive breccias associated with mineralization are commonly mentioned in the old reports.
Fig. 2 General Graden Property Location and Regional Geology of the Iron Mask Batholith

Fig. 3 General Geology of the Graden Property w/ 2011 Detail Area
The property is very unusual containing both mineralizing intrusive phases and the historic information indicates the Sugarloaf phase intrudes the Cherry Creek phase. This sugarloaf phase is weakly defined but occurs along a magnetic structural trend and is covered and surrounded by a large K/Th low anomaly which bodes well for a large hydrothermal system to be present.

Alteration & Mineralization:

ADMIRAL DEWEY Area

This is the largest area of mineralization and covers portions of the crown grants and areas to the west. The eastern portion of this area is moderately exposed on the hilltop while the western portion is largely covered by overburden and much of the information is based on shallow drilling. This area has seen the majority of work both surface trenching and a mixture of shallow diamond drill holes and vertical percussion holes loosely on a 100-150 meter spaced grid area over an area of close to 1.0 square kilometer. The strongest alteration and mineralized area lies to the west of crown grant L.1561 and was informally called the E zone outlined by a 400 by 400 meter I.P. chargeability anomaly. Just to the north of this is an E-W trending breccia zone approximately 200 meters wide by 500 meters longing trending into the crown grant area. The drilling was often very shallow and often ended in mineralization with a complex relationship noted with hornblende bearing Sugarloaf diorites intruding the Cherry creek mozonites. Mineralization is described as chalcopyrite with minor pyrite in fractures and breccias zones. The best mineralization appears associated with Sugarloaf diorite and alteration is dominantly pervasive pottassic alteration with minor epidote although albite zones are mentioned in some holes. Detail is further complicated by logging of percussion chips. Drill holes to the south of the crown grants encountered weaker copper values and mention an abundance of chlorite and epidote suggesting this area is the propylitic shell to a larger system.
Some of the better composite intersections in this area include:

DDH-I.M. No.4 – 21.3 m’s @ 0.58% Cu
DDH-I.M. No.3 – 18.3 m’s @ 0.52% Cu
DDH-I.M. No.9 – 134.1 m’s @ 0.16% Cu
Reg 78-05 – 68.9 m’s @ 0.24% Cu (incl. 12.2 m’s @ 1.13% Cu)
P89-20 – 59.1 m’s @ 0.17% Cu
P89-30 – 57.9 m’s @ 0.11% Cu
PR-18 – 88.4 m’s @ 0.26% Cu
PR -19 – 88.3 m’s @ 0.12% Cu
PR-23 – 67.1 m’s @ 0.14% Cu
PR -24 – 30.5 m’s @ 0.59% Cu
PR -27 – 45.7 m’s @ 0.19% Cu
PR-29 – 70.1 m’s @ 0.21% Cu
PR-30- 121.9 m’s @ 0.15% Cu

These do not provide economic grades but demonstrate widespread Cu values in a large target area that has only been poorly tested in a system that is not well understood. Mapping in 2011 located a number of road cut exposures and collapsed trenches in this area as well as a couple of collapsed adits. Good
exposures are throughout the access roads along the east central portion of the Admiral Dewey crown grant area and display widespread alteration and mineralization. Host rocks consist of fine grained to coarser grained equigranular Cherry Creek monzonite with weak pervasive potassic alteration with primary biotite destroyed. Fractures are dominantly 060-090 trending and commonly contain Kspar and calcite veinlets with disseminated pyrite and chalcopyrite with copper oxides commonly seen in road cuts. This is in strong contrast to the western side of the Admiral Dewey C.G. and central portion of the Graden property where trenches expose large areas of hydrothermally altered intrusive breccias of Cherry Creek monzonite. This breccia zone appears elongated in an E-W direction for close to 500 meters of strike length and widths loosely defined over 200 meter widths centred at approximately 688839E, 5607291N. Angular 1-2cm monzonite fragments are strongly potassic altered within a pale green matrix that has no visible primary textures. The matrix consists of milled and altered potassic and albite altered intrusive with commonly fine grained chalcopyrite and bornite in the matrix and preferentially along rims of the intrusive fragments. Veinlets of Kspar, Albite and rare tremolite? crosscut the breccias and often contain disseminated chalcopyrite +/- bornite. This breccia body contains good widespread copper mineralization and appears to core the alteration system. Further mapping and sampling also detected a strong 000-020 subvertical fracture set in this area containing much of the copper mineralization. This suggests generally N-S drilling may strongly understate copper grades and future drilling should include more east-west directed drilling. Part of the mapping was focused on locating distinctive hornblende phryic Sugarloaf diorites historically reported in this area. No outcrops of Sugarloaf diorite were located in the 2011 mapping but biotite altered hornblendes and pyroxene up to 5mm in length were seen in some of the coarser grained Cherry Creek monzonites and these may be transitional to Sugarloaf diorites?. In the SW corner of the Graden property several isolated exposures of vesicular Tertiary basalts were located. Crude layering and vesicular sections, including columnar jointing indicate bedding is virtually flat lying and this is likely a very thin basalt flow capping this area and is only 10-30 meters in thickness similar to the sequence seen in the Phil Copper area. Float of older Iron Mask intrusive of the hybrid phase were located in the western map area but no outcrops were found. The airborne magnetic survey indicates this contact is a northwest trending contact in this area and is a favorable focus for mineralization at the cherry creek hybrid contact at systems such as Afton, DM and Audra.

As part of the more detailed mapping of the Admiral Dewey area in 2011, five representative rock samples were collected in the western portion of the area to determine typical grades as exposed at surface in old workings. These samples returned Cu grades ranging from 0.11-0.87% Cu confirming historic grades in this area. These samples represent a 250 meter east-west section of the area.
<table>
<thead>
<tr>
<th>Sample #</th>
<th>UTM E Nad83Z10</th>
<th>UTM N</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB-01</td>
<td>688837E</td>
<td>5607287N</td>
<td>Rep of 10 meter trench. Sample if medium grained equigranular monzonite of cherry creek but has occasional 5mm HB phenos biotite altered. Moderate pervasive Kspar altn. With weak carb and albite on fractures w/ malachite and hematite</td>
</tr>
<tr>
<td>RB-02</td>
<td>689038E</td>
<td>5607247N</td>
<td>Waste pile from old trench. Fine grained equigranular monzonite w occasional 5mm pyroxene phenos-biotite altered. Moderate patchy Kspar alteration and pyrite-cpy disseminated on north south fractures.</td>
</tr>
<tr>
<td>RB-03</td>
<td>689031E</td>
<td>5607280N</td>
<td>Rep of 10 meter trench. Sample if fgr equigranular monzonite of cherry creek. Moderate pervasive Kspar altn with intense Kspar patches (hydrothermal breccia). With malchite, azurite from cpy and bornite mineralization on fractures.</td>
</tr>
<tr>
<td>RB-04</td>
<td>688984E</td>
<td>5607292N</td>
<td>Dump pile from old adit? Sample if fgr equigranular monzonite of cherry creek. Moderate pervasive Kspar altn with intense Kspar patches (hydrothermal breccia). Equigranular monzonite with moderate pervasive pottasic alteration. With malchite, azurite from cpy and bornite mineralization on fractures.</td>
</tr>
<tr>
<td>RB-05</td>
<td>688863E</td>
<td>5607292N</td>
<td>Rep of 5 meter trench. Sample if medium to coarse grained equigranular monzonite of cherry creek but has occasional 5mm px phenos biotite altered. Moderate pervasive Kspar altn. With weak carb and albite on fractures w/ malachite and hematite. Phase is coarse grained like sample 01.</td>
</tr>
</tbody>
</table>

Table of 2011 Rock Sampling
7-CONCLUSIONS AND RECOMMENDATIONS

The Graden property covers a significant Cu-Au alkaline porphyry system. Previous work has outlined a large area of mineralization that work in 2010 supports as being part of a large hydrothermal system. From data to date the system is hosted in Cherry Creek monzonites and appears cored by a well mineralized intrusive-hydrothermal breccia zone. This breccia zone contains the best mineralization seen to date on the property and has similarities to breccias seen at Afton, Crescent and the Rainbow property.

Future work should include detailed mapping and sampling to better understand mineralization and alteration. If this work remains promising a modern I.P. survey with N-S lines would be justified to further delimit mineralization. If the I.P. work is promising additional deeper drilling is required to define the mineralized system.
8-REFERENCES

Logan, J.M. & Mihalynuk M.G., & Lowe C.-BCMEMPR Open File 2006-12

I, Graeme Evans, do certify that:

1) I am a geologist and have practiced my profession for the last twenty-nine years.

2) I graduated from the University of British Columbia, Vancouver, British Columbia with a Bachelor of Science degree in Geology (1983).

3) I am a member in good standing with the APEGBC as a professional geoscientist (#20191).

4) I was actively involved and supervised the Graden program and authored the report herein. I was present and actively involved in mapping for the entire field program.

5) All data contained in this report and conclusions drawn from it are true and accurate to the best of my knowledge and I have spent several years exploring the Iron Mask batholith for Teck Cominco.

Graeme Evans
P.Geo, BSc. Consulting Geologist
August 20, 2011
10- Detailed Cost Statement

Wages
May 17, 18th, 2011 (1 day total) Graeme Evans
Graeme Evans (P. Geol) 29 years experience
(1 days @ $800.00/day) $800.00

Expenses
Truck rental/ fuel 2 days $140.00
Field Supplies –ie, Printing Base maps and field gear plus meals $80.00
Rock sample analysis (5 samples @ $35.00) $175.00

Report
August 07th, 2011 Graeme Evans (1 day) @ $800/day $800.00

Total Costs Applied $1995.00
ICP CERTIFICATE OF ANALYSIS #2011 - 1052

Graden Geosciences Ltd.

448 Aureole Place
Kamloops BC
V2E 2R2

Steward Group

ECO TECH LABORATORY LTD.

10041 Dallas Drive
Kamloops B.C.
V2C 6T4

www.stewardresourcerecovery.com

Phone 250-573-5700
Fax 250-573-4657

Values in ppm; unless otherwise reported

<table>
<thead>
<tr>
<th>St#</th>
<th>Tag#</th>
<th>Ag</th>
<th>Al</th>
<th>As</th>
<th>Ba</th>
<th>Be</th>
<th>Bi</th>
<th>Ca</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
<th>Hg</th>
<th>K</th>
<th>Mg</th>
<th>Mn</th>
<th>Mo</th>
<th>Na</th>
<th>Ni</th>
<th>P</th>
<th>Pb</th>
<th>S</th>
<th>Sb</th>
<th>Se</th>
<th>Sn</th>
<th>Sr</th>
<th>Tl</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FE-01</td>
<td>0.6</td>
<td>1.03</td>
<td>10.30 &</td>
<td><1</td>
<td><1</td>
<td>1.73</td>
<td><1</td>
<td>12</td>
<td>64</td>
<td>2086</td>
<td>2.49</td>
<td><5</td>
<td>3.33</td>
<td>4</td>
<td>0.34</td>
<td>196</td>
<td>0.11</td>
<td>6</td>
<td>1160</td>
<td>6</td>
<td>0.15</td>
<td><5</td>
<td>5</td>
<td><1C</td>
<td><5</td>
<td>48</td>
<td>0.03</td>
<td><5</td>
<td>3.76</td>
<td><5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>FE-02</td>
<td>0.4</td>
<td>0.92</td>
<td><5</td>
<td>164</td>
<td><1</td>
<td><1</td>
<td>1.74</td>
<td><1</td>
<td>10</td>
<td>64</td>
<td>1054</td>
<td>2.25</td>
<td><5</td>
<td>3.10</td>
<td>6</td>
<td>0.30</td>
<td>206</td>
<td>0.10</td>
<td>4</td>
<td>1150</td>
<td>6</td>
<td>0.24</td>
<td><5</td>
<td>4</td>
<td><1C</td>
<td><5</td>
<td>42</td>
<td>0.13</td>
<td><5</td>
<td>1.14</td>
<td><5</td>
</tr>
<tr>
<td>3</td>
<td>FE-03</td>
<td>0.4</td>
<td>0.95</td>
<td><5</td>
<td>124</td>
<td><1</td>
<td><1</td>
<td>1.11</td>
<td><1</td>
<td>13</td>
<td>64</td>
<td>1216</td>
<td>2.07</td>
<td><5</td>
<td>3.10</td>
<td>8</td>
<td>0.36</td>
<td>156</td>
<td>0.07</td>
<td>4</td>
<td>1220</td>
<td>9</td>
<td>0.13</td>
<td><5</td>
<td>3</td>
<td><1C</td>
<td><5</td>
<td>42</td>
<td>0.09</td>
<td><5</td>
<td>1.18</td>
<td><5</td>
</tr>
<tr>
<td>4</td>
<td>FE-04</td>
<td>1.0</td>
<td>1.29</td>
<td><5</td>
<td>102</td>
<td><1</td>
<td><1</td>
<td>1.73</td>
<td><1</td>
<td>50</td>
<td>62</td>
<td>67.78</td>
<td>3.2</td>
<td><5</td>
<td>3.10</td>
<td>16</td>
<td>12</td>
<td>0.93</td>
<td>330</td>
<td>20</td>
<td>0.07</td>
<td>6</td>
<td>810</td>
<td>6</td>
<td>0.28</td>
<td><5</td>
<td>4</td>
<td><1C</td>
<td><5</td>
<td>24</td>
<td>0.05</td>
<td><5</td>
</tr>
<tr>
<td>5</td>
<td>FE-05</td>
<td>1.0</td>
<td>0.43</td>
<td><5</td>
<td>170</td>
<td><1</td>
<td><1</td>
<td>1.49</td>
<td><1</td>
<td>17</td>
<td>62</td>
<td>288.84</td>
<td>1.32</td>
<td><5</td>
<td>3.11</td>
<td>4</td>
<td>2.01</td>
<td>166</td>
<td>1.05</td>
<td>7</td>
<td>560</td>
<td><3</td>
<td>0.27</td>
<td><5</td>
<td>5</td>
<td><1C</td>
<td><5</td>
<td>26</td>
<td>0.05</td>
<td><5</td>
<td>1.26</td>
<td><5</td>
</tr>
</tbody>
</table>

GC DATA:

Reagent:

<table>
<thead>
<tr>
<th>St#</th>
<th>Tag#</th>
<th>Ag</th>
<th>Al</th>
<th>As</th>
<th>Ba</th>
<th>Be</th>
<th>Bi</th>
<th>Ca</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
<th>Hg</th>
<th>K</th>
<th>Mg</th>
<th>Mn</th>
<th>Mo</th>
<th>Na</th>
<th>Ni</th>
<th>P</th>
<th>Pb</th>
<th>S</th>
<th>Sb</th>
<th>Se</th>
<th>Sn</th>
<th>Sr</th>
<th>Tl</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RE-01</td>
<td>0.6</td>
<td>1.04</td>
<td><5</td>
<td>300</td>
<td><1</td>
<td><1</td>
<td>1.71</td>
<td><1</td>
<td>12</td>
<td>66</td>
<td>2086</td>
<td>2.91</td>
<td><5</td>
<td>3.09</td>
<td>4</td>
<td>0.36</td>
<td>196</td>
<td>0.11</td>
<td>6</td>
<td>1160</td>
<td>6</td>
<td>0.15</td>
<td><5</td>
<td>5</td>
<td><1C</td>
<td><5</td>
<td>48</td>
<td>0.03</td>
<td><5</td>
<td>3.76</td>
<td><5</td>
</tr>
<tr>
<td>2</td>
<td>RE-02</td>
<td>0.6</td>
<td>1.06</td>
<td><5</td>
<td>304</td>
<td><1</td>
<td><1</td>
<td>1.75</td>
<td><1</td>
<td>12</td>
<td>64</td>
<td>290</td>
<td>2.96</td>
<td><5</td>
<td>3.09</td>
<td>4</td>
<td>0.36</td>
<td>205</td>
<td>0.11</td>
<td>5</td>
<td>1170</td>
<td>6</td>
<td>0.19</td>
<td><5</td>
<td>6</td>
<td><1C</td>
<td><5</td>
<td>48</td>
<td>0.09</td>
<td><5</td>
<td>1.78</td>
<td><5</td>
</tr>
<tr>
<td>3</td>
<td>RE-03</td>
<td>0.6</td>
<td>1.06</td>
<td><5</td>
<td>304</td>
<td><1</td>
<td><1</td>
<td>1.75</td>
<td><1</td>
<td>12</td>
<td>64</td>
<td>290</td>
<td>2.96</td>
<td><5</td>
<td>3.09</td>
<td>4</td>
<td>0.36</td>
<td>205</td>
<td>0.11</td>
<td>5</td>
<td>1170</td>
<td>6</td>
<td>0.19</td>
<td><5</td>
<td>6</td>
<td><1C</td>
<td><5</td>
<td>48</td>
<td>0.09</td>
<td><5</td>
<td>1.78</td>
<td><5</td>
</tr>
<tr>
<td>4</td>
<td>RE-04</td>
<td>11.2</td>
<td>0.84</td>
<td>5</td>
<td>66</td>
<td><1</td>
<td><1</td>
<td>1.43</td>
<td><1</td>
<td>30</td>
<td>6</td>
<td>2</td>
<td>97</td>
<td>1.68</td>
<td><5</td>
<td>2.03</td>
<td>4</td>
<td>2.06</td>
<td>370</td>
<td>1.04</td>
<td>5</td>
<td>410</td>
<td>6215</td>
<td>0.79</td>
<td>15</td>
<td><1</td>
<td><1C</td>
<td><5</td>
<td>30</td>
<td>0.05</td>
<td><5</td>
<td>20</td>
</tr>
</tbody>
</table>

CF: Aqua Regia Digest / ICP-AES Finish.

EVIDENCE REPORT

ECO TECH LABORATORY LTD.

Norman Merrith
B.C. Certified Assayer