TECHNICAL ASSESSMENT REPORT
on the
ALICE SHEA PROPERTY

Mines Act Permit MX-1-646
62 km East of Dease Lake, B. C.
in the Skeena Mining Division

NTS Location at 1:50,000 Scale NAD 27 Base Map
104I 7

Centered on
Latitude 128 degrees, 58 minutes, 30 seconds
Longitude 58 degrees, 21 minutes, 1 second

CLAIMS
Tenure Numbers
641723,642271,671763,691084,1012407,1012415,1012414

Claim Owner:
248025 CanRoc Minerals Inc. 100.0%

Operator:
Canroc Minerals Inc.
1614 Hector Road NW.
Edmonton, Alberta
T6R 2Z5

Consultant and Author:
Malcolm Warwick
Consulting Geologist
Park Drive
Vancouver, B. C.

Tel/Fax: (604) 266-5203

Nov. 15, 2012
Amended Version
December 20, 2013
Table of Contents

1 - Introduction..1
 BC Location Map...1
 Area Location Map...2
2 - Property...3
3 - Claim Map...4
4 - Location, Access and Description..5
 Physiography:...5
 Figure 4 Tree Coverage on Alice Shea Property..6
 History Of The Wheaton River Placer Gold Camp:...6
5 - Work Program...11
 Physical Work...11
 Geochemical Sampling Program..11
 Stream Sediments...12
 Results from Stream Sediment Sampling program.....................................16
 Helicopter mapping and survey work...17
 Geological Mapping...19
 Regional Geology Map, Property Scale..19
 Interpretive Work...24
 Geophysical Requirements..32
 Structural Geology..35
6 - Economic Geology...38
7 - Conclusions..39
8 - RECOMMENDATIONS..40
 Phase 1:...40
 Phase 2:...40
 Phase 3A:...40
 Additional Phases:..41
9 - References...42
10 - APPENDICES..43
 Statement of Qualifications of author;...43
 Certificates of Analysis from laboratory...44
1 - Introduction

CanRoc Mineral undertook a programme to investigate the placer property known as the Alice Shea placer claims in the upper Wheaton Creek area, in the Stikine Mining Division of British Columbia. The writer visited the property in September of 2012 with three assistants. During September 2012, the writer (M. Warwick) directed a crew of three in an extended investigation of the placer potential of the claims. A total of 16 man days were spent in this activity.

The object of the surveys was to aid in the geological understanding on the claims for the purpose of evaluation of placer gold mineralization as found in the Wheaton River Placer Camp. Location Maps

BC Location Map
Area Location Map
2 - Property

The property consists of 7 claims totalling 44 units covering 747.53 hectares. The claims are listed in the following table.

<table>
<thead>
<tr>
<th>Tenure Number</th>
<th>Type</th>
<th>Claim Name</th>
<th>Good Until</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>531723</td>
<td>Placer</td>
<td>IMEX14</td>
<td>20150930</td>
<td>237.7622</td>
</tr>
<tr>
<td>642271</td>
<td>Placer</td>
<td>IMEX05</td>
<td>20150930</td>
<td>84.9538</td>
</tr>
<tr>
<td>671733</td>
<td>Placer</td>
<td>IMEX03</td>
<td>20150930</td>
<td>67.9589</td>
</tr>
<tr>
<td>691064</td>
<td>Placer</td>
<td>IMEX04</td>
<td>20150930</td>
<td>101.9771</td>
</tr>
<tr>
<td>1012407</td>
<td>Placer</td>
<td>HAPPY CREEK 1</td>
<td>20150930</td>
<td>50.9624</td>
</tr>
<tr>
<td>1012414</td>
<td>Placer</td>
<td>SHEA</td>
<td>20150930</td>
<td>50.9947</td>
</tr>
<tr>
<td>1012415</td>
<td>Placer</td>
<td>LUCKY CREEKS</td>
<td>20150930</td>
<td>152.9292</td>
</tr>
</tbody>
</table>

Total Area: 747.5383 ha
3 - Claim Map

Alice Shea Creek Claim Map

Mineral Titles Layers
- Alice Shea Creek Tenure
- All Mineral Tenures

Topographic Layers
- Railways 1:20K
- Roads 1:20K
- Gravel Road
- Paved Road
- Rough Road
- Lakes 1:20K
- Rivers 1:20K

Grid Layers
- Grid 1:20K - labels
- Grid 1:20K - outline

BC Border Layers
- BC Border 1:50K

SCALE 1 : 50,783

[Map Image]
4 - Location, Access and Description

The geographical coordinates are 58°21'01" N latitude and 128°58'30" W longitude.

The central part of the property is found 65 km SE of the village of Dease Lake, B.C. on Alice Shea Creek. The northeasterly flowing Turnagain River is located 9 km north of the property.

Road access to these claims from the Provincial highways system is practically non-existent, being only by tote road from Dease Lake to the active placer mining operation on the lower Wheaton Creek, a distance of over 60 km. From this point a rough bulldozer track makes contact with the junction of Alice Shea Creek and Wheaton Creek and on to the ridge top on either side of Wheaton Creek. There is an extensive historic road/trail network throughout the property.

Consequently, practical access to the claims is either by helicopter from Dease Lake, or by float plane which can land by the "Boulder City" base camp on the Turnagain River, from where a network of dirt roads runs to the claims. Heavier equipment can be brought in over the winter tractor trail while the ground was still frozen in early spring and late fall. Industrial 6 wheel drive trucks capable of crossing numerous unbridged rivers service “Boulder City” in the summer and fall. It is also possible to charter these vehicles.

Physiography:

The property lies at the southern end of the Stikine Ranges which is a physiographic division of the Cassiar Mountains. The terrain varies from moderate to steep slopes and trends, the topography is dominated by the northerly-trending creeks.

Elevations vary from 1250 metres a.s.l. on Wheaton river along northern boundary of the property, to 1,900 metres a.s.l. on the northern slope of Mt. Shea on the southern edge of the property.

The forest cover consists primarily of cedar, light in density and with light to moderate undergrowth. The tree line follows approximately the 1550 metre altitude level with dense tangled shrubbery gradually decreasing toward higher altitudes.

The property is in the area characterized by a northern continental climate, with long and cold winters and short warm summers. Snow cover is usually moderate.
Figure 4 Tree Coverage on Alice Shea Property

History Of The Wheaton River Placer Gold Camp:

“In 1932 a party of about 10 prospectors went into the Turnagain country to prospect the creeks at the head of that river. Coarse gold was found by Carl Johnson and his partner on Wheaton (Boulder) Creek; just above the falls. ...

For 1932 Carl Johnson reported a recovery of 24 ounces of gold from Wheaton Creek just above the falls. Jack Wheaton bought the Johnson and leases in 1933, and staked a third lease for himself, ...

By 1936 Wheaton Creek had been staked up to and beyond Alice Shea Creek, and Alice Shea Creek had been staked to its head.”

From 1935 to 1939, the total production of crude gold has been 4852 ounces, This came mainly from two leases on Wheaton Creek and one on Alice Shea Creek.

Alice Shea Creek is the one important gold-producing tributary of Wheaton. It rises at the foot of Mt. Shea flows northward for a mile and a half, then turns westward and

1 Holland, S.S., BRITISH COLUMBIA DEPARTMENT OF MINES, Bulletin 2: Placer-Gold Deposits, Wheaton (Boulder) Creek, Cassiar District. 1940. pg.25
2 ibid pg. 2
joins Wheaton Creek ... about 4 1/2 miles south of the Turnagain.3

In 1937 the large nugget weighing 52 ounces 15 dwt. was found by V. Shea on lease No.355 on Alice Shea Creek.4

\begin{table}[h]
\begin{tabular}{|c|c|c|}
\hline
Year & Alice Creek3 (56) & Value \\
\hline
1874-75 & & \\
1876-80 & & \\
1881-85 & & \\
1886-90 & & \\
1891-95 & & \\
1896-1900 & & \\
1901-05 & & \\
1906-10 & & \\
1911-15 & & \\
1916-20 & & \\
1921-25 & & \\
1926-30 & & \\
1931-35 & & \\
1936-40 & 331 & 9,246 \\
1941-45 & & \\
\hline
Totals & 331 & 9,246 \\
\hline
\end{tabular}
\end{table}

3 ibid pg. 10
4 ibid pg. 25
Table XXXIX - Placer Gold Production from Stikine Mining Division⁵

Alice Shea Creek above the Wheaton Valley produced 331 ounces of gold from 1936 to 1940. It is unlikely there will more than 100 ounces of gold remaining in the river gravels above the delta on Alice Shea creek.

Most of the gold so far recovered from Alice Shea Creek has been exceedingly coarse (this) may be attributed to the steepness of the creek grade which allowed most of the fine gold to move downstream to a flatter grade.6

![Longitudinal profile along Wheaton, Philippon, and Alice Shea Creeks](image)

It is likely that the 3 unit cells in the upper NorthEast corner of CanRoc's placer claim, IMEX 14, is enriched by placer gold washed out from Alice Creek.

The Alice Creek ‘delta' is likely to contain gravel beds that were much thicker than those reported upstream along the creek bed.

The 1930's placer operations in the 'delta' area reported not reaching the bedrock.

Modern equipment would be able to reach bedrock.

Most of the gold from Alice Shea Creek has been recovered from lease No. 355. The

6 Holland, S.S., BRITISH COLUMBIA DEPARTMENT OF MINES, Bulletin 2: Placer-Gold Deposits, Wheaton (Boulder) Creek, Cassiar District. 1940. pg.30
three other leases have been prospected and coarse gold found on them. All the gold recovered so far has been from the shallow gravel over lying bed-rock in the bottom of the creek, from the top of the bed-rock, or from cracks within the bed-rock.\(^7\)

The previous extract emphasizes the importance that future placer operations must reach bedrock.

\(^7\) Holland, S.S., BRITISH COLUMBIA DEPARTMENT OF MINES, Bulletin 2: *Placer-Gold* Deposits, *Wheaton* (Boulder) *Creek*, Cassiar District. 1940. pg. 29
5 - Work Program

Physical Work

No physical work was completed on the property. An extensive network of small, historic roads and trails, visible on satellite imagery, extend throughout the property. These trails were confirmed and partially mapped during helicopter overflights.

Both chainsaw and axes would be required to gain access by removing windfall trees blocking roads and removal of evergreen trees from roadways. Where underbrush is to be removed alongside existing roads it should be stacked in old cleared 'log' dump areas. Numerous minor washouts need repair with shovels or small excavators.

The use of 'quads' or four-wheeler all-terrain vehicles (ATV), would dramatically improve access to the property.

To gain ground access to the property the existing bulldozer trail from Boulder City needs to be graded and cleared. The existing route has very steep and washed out sections that should be surveyed and possibly rerouted or recut for safe, reliable access.

The extensive network of historic trails and road should be used as necessary for access and safety. The existing historic trails that crisscross the property should be recut with a modern bulldozer. Heavy equipment required for proper sampling and evaluation programmes needed prior to resumption of placer-gold mine operations should make maximum use the existing network.

Geochemical Sampling Program

Description Of The Methods

A suction/sluice type of stream sediment sampling technique was used on the property.

“This suction sampling technique is a geochemical method employed in the discovery and exploration of lode gold and sulphide deposits; and for diamond indicator minerals. Metals being shed by these deposits can be detected in glacial deposits and streams which are down ice or stream from the deposits. This method is designed primarily to pick up mechanically-transported indicator minerals for diamonds; or metals (e.g. gold, platinum, lead, zinc, tungsten) rather than ions transported in solution.

It is a superior method to classical till or esker sampling for diamond exploring, or stream sediment ("silt") sampling, hand-panning, moss mat sampling, or "heavy" sampling for metals. A larger volume of material (commonly up to 1.0 m3) is processed to a concentrate. The choice of an appropriate sample site and the use of a suction nozzle ensures that a geochemically valid sample of sediment is collected.”

8 Alex Burton, private notes: File: BCI\bcirpt4.doc
Stream Sediments

The following photo shows the Alice Shea Creek running north from the alpine into the treeline.
At this sample site, roughly 20 buckets of river gravels were processed through a double sluice. This is roughly equivalent to ½ of a cubic yard of material. The sample material was run through a ½” ‘grizzly’ before sluicing. Black sand concentrate was collected from the sluices. About 4 gallons of this concentrate was collected. The sample was hand panned and 4 colour flecks of gold were removed from the sample. The panned concentrate which contain about 7 small awaruite nuggets was remixed with the original full sample of black sand. The visible gold was removed to reduce ‘gold nugget’ effect on planned geochemical analysis. The bucket was sealed with its lid and rolled for 50 metres. The bucket dumped on a plastic sheet. There was a 5mm poly bag with its sides rolled down in the centre of the sheet. A 0.28 kg sample was collected from the within the poly bag. This sample was submitted for analysis. It was sample Alice 03. The discharge from the sluices was also sampled and a shovel load from the bucket used the catch the discharge, weighed 0.24 kg. This was sample Alice 04.

9. 1 cubic yard = 27 cubic ft. 1 cubic ft = 7.5 gallons (water) (7.5 x 27 = 202.5 gal / cy)
202.5gal / 5 = 40.5 (5 gal buckets = 1 cubic yard)
These samples were collected from Suction/Sluice sample site 3 shown on the following extract from the property geology map.

At sluice sample site 2 roughly 10 buckets of river gravels were processed through a double sluice. The 2 foot long sluices were made by Keene Engineering (see Photo). They were 6.5 inch wide and 3 inches deep.

This is roughly equivalent to ¼ of a cubic yard of material. Black sand concentrate was collected from the sluices. About 1.5 gallons of this concentrate was collected. The sample was hand panned and 1 colour fleck of gold was removed from the sample. The panned concentrate which contain about 10 small awaruite nuggets was remixed with the original full sample of black sand. A 0.3 kg sample was collected and submitted for analysis. It was sample Alice 02.

Sample Alice 01 was collected from the surface of the Alice Shea creek delta. Roughly 5 buckets of river gravels were collected by shovel and run through a single Keene sluice. The results from this sample are highly suspect due to sampling error.

The following photo shows the section of creek where sample Alice 02 was collected.

10 Sluices connected in 'series', increases filtering power, same capacity
Visible in the upper left corner of the above photo, a roofed historical wooden structure (elevated meat cache) from Shea’s 1930’s Mining Camp. The floor dimensions of the structure are roughly 2.5 square meters. The creek below the structure was sampled using a suction/sluice technique described previously. This was the area of the creek which produced the 52 troy oz Turnagain nugget. The start of the canyon section of Alice Shea creek can be seen in the background.

Results from Stream Sediment Sampling program.
Fire Assay yield the total gold in a sample. It even detects gold locked within another mineral. However, it should also be recognized that a wide variety of minerals and metals such as chromite, in moderate to high concentrations, can interfere with the fire assay process, generally leading to low precious metal recoveries.

Cyanide leach techniques yield the amount of ‘free’ gold in a sample.

The stream sediment sampling program confirm there is still significant gold in the placer gravels collected from Alice Shea creek.

Helicopter mapping and survey work.

In addition to confirming geological outcrops in the Alice Shea creek and Wheaton river portions of the property, numerous helicopter landings were carried out to check previous regional geology mapping in the immediate surrounding area. This work confirmed the likeihood of the property's proximity to the gold source of Wheaton River placer deposits.

Bedrock in many places is obscured by a widespread cover of overburden. Bedrock outcrops predominantly in the creek canyons and on the ridgetops and higher summits. The following geological map show areas where bed-rock is exposed and where it has been observed.
The claims are underlain by rocks of the Cache Creek Group which are Mississippian to Permian in age. The general trend of contacts and bedding planes in the area and through the property is N60°W, which is the same as the Nahlin thrust fault located 1.5 km southwest of the property.
Geological Mapping

Regional Geology Map, Property Scale
Starting in the south west corner of the map above, regional geology shown on the property scale map, is the following sequence of rock units and geological events.

Inklin formation is the youngest rock near the property. It is Lower Jurassic and maybe Middle Jurassic in age. The rock material is penetratively cleaved, phyllitic slate, greywacke, pebble and cobble conglomerate.

The major, north-northwest-trending Nahlin fault more or less marks the western extent of the Cache Creek terrane. It is a steeply dipping to vertical fault (or series of faults). These faults are grossly coincident with the boundaries between the Cache Creek and
Stikinia terrane, a volcanic arc environment formed during the Paleozoic and Mesozoic periods. The Stikinia – Cache Creek accretionary event was complete by the Middle Jurassic.

The Cache Creek Terrane is dominantly oceanic in lithology but includes some assemblages of island arc or rift affinity. The terrane ranges in age from Devonian through Early Jurassic.

On the property adjacent to the Nahlin fault a belt of greenstone, mafic volcanic rocks of uncertain age are superceded by the volcanics and sediments of the Kedhada Formation.

The 'next' sequence of ultramafic rocks including peridotite, dunite, pyroxenite, are generally serpentized, locally includes pods of nephrite jade and small bodies of listwanite, rodingite, and talc. These rocks are spatially related to numerous placer gold deposits.

“Listwanite forms when fluids rich in carbon dioxide permeate and alter previously altered ultramafic rocks, usually serpentinite. Distinctive iron-magnesium carbonates and chromium mica (mariposite in North American terminology or fuchsite in Europe and Russia) are formed.”

In addition to confirming geological outcrops in the Alice Shea creek and Wheaton river portions of the property, numerous helicopter landings were carried out to check previous regional geology mapping in the immediate surrounding area. This work confirmed the likelihood of the property's proximity to the gold source of Wheaton River placer deposits. New Developments

Interpretive Work

“Regional Geology (gold genesis)” was developed using the following exploration guidelines:

“The fundamental depositional control for this deposit type is the localization of hydrothermal alteration sites along major fault zones within, marginal to, or containing ultramafic rocks … margins of serpentinized ultramafic bodies are also potential sites of alteration and mineralization.”\(^{13}\)

\(^{13}\) ibid
As the source rock erode, gold particles migrate downslope.
Possible migration routes for the gold particles are shown below, “Regional Geology (gold recharge)”. The following drawings illustrates how the lighter and heavier start to separate in the overburden as the minerals migrate downslope from their subsurface exposures.

The majority of the gold mineralization, underlying this property, probably does not
occur in quartz veins.

Three new placer targets are developed based upon this reinterpretation of bedrock geology. Placer-Gold targets areas are highlighted in red on the following map.
The Alice Creek “delta' target and Wheaton River targets are likely to contain gravel beds that were much thicker than those reported upstream along the creek bed. The following page of illustrations reinforce how important it will be to locate and reach bedrock for placer operation in the wider and deeper Wheaton River valley.
Placer operations downstream at Boulder City confirm the need to reach bedrock.
Geophysical Requirements

The Wheaton River south of the junction with Alice Shea runs through a wide U shaped valley. The areal extent and depths on the overburden and gravels in this valley needs to be determined. A seismic survey is recommended to gather this information.

In the following photo, the Wheaton River runs along the western (left) edge photo. The
Alice Shea Creek has been divided into two channels. The channel along the southern (bottom) edge of the photo runs 400m along the channel partially reworking the gravels in the Wheaton River valley.

A bulldozer trail cuts N-S through the centre of the photo.

20 gallons of gravels were processed through the suction/sluice equipment from the northern channel of the Alice Shea Creek as it leaves the north (top) central edge of the photo.
The following photo is looking north, from above Alice Shea Creek delta, towards Wheaton River Canyon. The bedrock uplift that form the canyon walls acts to partially dam Wheaton River gravels back up the valley onto the property. Note the bulldozer trail running along the river on the plateau beside the canyon.

The following photo is looking south, from above Alice Shea Creek delta, towards the flat U shaped valley of Wheaton River. This area of the property would be well suited for a seismic survey to determine depth to bedrock plus location and extent
of gravels beds in the valley.

It worth emphasizing that 1930’s placer operations in the area reported not reaching the bedrock. Modern equipment would be able to reach bedrock, in essence making these virgin gravels. The two new placer targets developed from the reinterpretation of regional bedrock geology, are located in this portion of the Wheaton river valley.

Structural Geology

It is believed that the mixing of rocks from diverse terranes occurred achieved at the time of plate collision by steep reverse faulting, imbricate thrusting and stacking of various oceanic and ocean margin lithologies with lenses of underlying gabbroic and ultramafic rocks.

“The Intermontane tectonic belt is underlain by at least four allochthonous oceanic and off-shore island-arc terranes that evolved separately in middle and late Paleozoic and early Mesozoic time and were subsequently accreted to the North American craton. These are Stikinia and Cache Creek on the west and Quesnellia and Slide Mountain terranes on the east. Although knowledge of the temporal and spatial conditions of accretion is incomplete, it is known that the eastern terranes onlap the continental rocks and that this onlapping or docking was mostly achieved by middle Mesozoic” (Price et al., 1985)\(^{14}\).

The concept of mixing of rocks from diverse terranes in the formation of the province has been widely recognized for the past 30 years.

In the following figure the major tectonic belts and terranes in the Canadian Cordillera, simplified from Monger and Berg (1984)\(^{15}\).

\(^{14}\) *Price, R.A., Monger, J.W.H. and Roddick, J.A.* (1985): Cordilleran Cross-Section; Calgary to Vancouver, in Field Guides to Geology and Mineral Deposits in the Southern Canadian Cordillera; Geological Society of America, Cordilleran Section Meeting, Vancouver, B.C., pages 3-1 to 3-85

The Intermontane Belt, has proven to be a wide strip of productive gold bearing rocks which stretch the length of the province.

The following map shows a more recent colour version of the main geological terranes (strips of different tectonic plates) of British Columbia. The map is the copyright of British Columbia Geological Survey.
The central belt of rock (Bridge River and Cache Creek) contains strips of gold rich ocean crust and mantle that were tucked under or flipped up onto the North American continental crust by tectonic forces.

The possible target gold deposit type for the Alice Shea Creek headwater region might belong to a well-recognized group of deposits referred to as mesothermal, orogenic or greenstone-hosted quartz-carbonate gold vein deposits. Other examples of this type of deposit include the Mother Lode district in California and most of the greenstone hosted gold deposits in the Canadian shield, including the Timmins, Val d'Or and Red Lake camps.

In BC, the lode gold production between 1890 and 2003 is put at 30M oz\(^{16}\). Gold recovered from mesothermal veins accounted for 44.4% of this total\(^{17}\). The government reported 'Vein' deposits have yielded and still have resources of over 13 million ounces.

17 ibid
6 - Economic Geology

Recorded gold placer production from Wheaton river between 1931 and 1945 totalled 241,212 grams (7,755 ounces). Current annual production from the Wheaton River gold camp for the past 10 years has been less than 500 oz. per season. Current production is from the placer to paleo-placers near Boulder City.

The following aerial photo is of a Boulder City trommel placer operation that was decommissioned at the end of this season.

Alice Shea Creek was diligently worked between 1936-40 and produced 331 oz\(^{18}\). The current property covers roughly 1/3 of Alice Shea Creek. It is highly unlikely that placer resources on this portion of Alice Shea Creek gravels exceed 100 oz.

Portions of the Wheaton River valley that are covered by this property have not been tested to bedrock. Current Boulder City and previous Alice Shea Creek operational experience confirm the absolute necessity for placer testing to bedrock.

7 - Conclusions

The Alice Shea Creek area placer claims owned by CanRoc Minerals are valuable. There is placer gold in the creek.

The watershed of Alice Shea creek contain a significant 'lode' source of gold for the Wheaton Gold Camp.

The Upper Wheaton River has not been mined by modern placer mining techniques. The modern mining of the Lower Wheaton River was more productive than the historic mining. Power modern equipment were able to unlock deeply buried (paleo) gold-producing placer gravels.

The 'lode' sources that feed Alice Shea creek may feed the Upper Wheaton river. Economic recovery of gold from Alice Shea creek and Upper Wheaton river will require a multi-year and multi-million dollar investment of time and money.
8 - RECOMMENDATIONS

It is recommended that a work program in three phases be undertaken to determine the economic potential of the property.

Phase 1:
Prepare appropriate permits.
Seismic survey across 3 target areas on the property.
Locate, sample and remap all outcrops on the property.
Locate, map, and restore the historic road network to provide access to ATV's plus transport of heavy equipment and drilling platforms necessary to test gravels to bedrock.
Dig test pits on the delta of Alice Shea Creek to determine gold values. This will also provide the opportunity to gain operational experience in the remote Wheaton River valley.
Investigate acquiring hard rock mineral claims that underlie the placer property.

Phase 2:
Determine if placer operations will be carried out exclusively or if they can be carried out in conjunction with hard rock mineral exploration. The hard rock exploration phase may need to be delayed or maybe both operations can proceed together. It is recommended that the two operations if at all possible be combined. Logistics and other cost savings of a joint operation would be highly advantageous.

Phase 3A:
If the property is to be carried out solely as a placer operation a detail evaluation program is required. It would need to include an economic feasibility study. Details for this program fall outside of the scope of this assessment report. However, the following summary indicates what such evaluation programs often entail.

Placer Evaluation Program
Water permits for the evaluation program.
Earliest possible start date would be May 2013. The sampling phase is expected take 60 to 90 days to complete.
The cost of the program is estimated at approximately $400,000 CAD, and consists of a series of 12 or more test pits down to the water table in the gravels. Samples taken need to be accurately located, logged in detail and run through a gravel washing plant, sluices and jigs on site. Aside from assays of free gold, the concentrates produced will be individually analyzed in detail to identify the occurrence and characteristics of the PGEs. If PGEs exist in commercial quantities these samples will provide the data
required to design a recovery method to produce an economic grade black sand concentrate.

Additional Phases:

The implementation of additional phases will be contingent on the location of one or more zones that indicate the presence of economic grade mineralization over mineable widths.

The costs and scope of this phase cannot be determined at this early stage.
9 - References

Price, R.A., Monger, J.W.H. and Roddick, J.A. (1985): Cordilleran Cross-Section; Calgary to Vancouver, in Field Guides to Geology and Mineral Deposits in the Southern Canadian Cordillera; Geological Society of America, Cordilleran Section Meeting, Vancouver, B.C., pages 3-1 to 3-85

10 - APPENDICES

Statement of Qualifications of author;

Affidavit

CERTIFICATE

I, Malcolm Warwick, of the city of Vancouver, in the Province of British Columbia, do hereby certify:

That I am an Consulting Geologist.

I further certify that:

1. I am a graduate of the University of Western Ontario (1981) and hold a Honours B.Sc. degree in Geology.
2. I have been practising my profession for the past thirty years.
3. The information for the accompanying report is based on pertinent publications and from the writer's examination of the property rock samples, maps and files.
4. I do not have direct or indirect interest in the property described herein, or in the securities of Canroc Minerals Inc. (248025)

December 20, 2013

Vancouver, B.C.

Malcolm Warwick B.Sc.
Consulting Geologist
Certificates of Analysis from laboratory

CERTIFICATE VA12241332

Project: Alice

To: WARWICK, MALCOLM
 #137 PARK DRIVE
 VANCOUVER BC V6P 2K4

This report is for 5 Sediment samples submitted to our lab in Vancouver, BC, Canada on 12 OCT 2013.

The following have access to data associated with this certificate:

SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME-21</td>
<td>Assessed Sample Weight</td>
</tr>
<tr>
<td>LO-22</td>
<td>Sample login - acid and baseCode</td>
</tr>
<tr>
<td>SP-21</td>
<td>Split sample - riffle splitter</td>
</tr>
<tr>
<td>CR-33</td>
<td>Fire cupping - 2% - 3mm</td>
</tr>
<tr>
<td>RL-31</td>
<td>X-rave split to 15% - 75um</td>
</tr>
</tbody>
</table>

ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME-MS1</td>
<td>48-element four acid ICP-MS</td>
</tr>
<tr>
<td>HM-CH1</td>
<td>Trace Hg - cold vapor ICP</td>
</tr>
<tr>
<td>Au-GM21</td>
<td>Au 30g Na-300m from WET-38W</td>
</tr>
<tr>
<td>Au-AH13</td>
<td>Au/zirconia-coated and ALS</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS</td>
</tr>
</tbody>
</table>

This is the final report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

CERTIFICATE OF ANALYSIS VA12241332

44
<table>
<thead>
<tr>
<th>Sample Description</th>
<th>REE (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
<td>0.0</td>
<td>240</td>
<td>1.0</td>
<td>12.4</td>
<td>160</td>
<td>164</td>
<td>158</td>
</tr>
<tr>
<td>+AIV 0-0</td>
<td>0.11</td>
<td>1.1</td>
<td>120</td>
<td>1.1</td>
<td>13.5</td>
<td>1.9</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>+AIV 0-1</td>
<td>0.18</td>
<td>1.5</td>
<td>104</td>
<td>1.0</td>
<td>10.3</td>
<td>7.0</td>
<td>35.4</td>
<td>35.4</td>
</tr>
<tr>
<td>Reference Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**** See Appendix Page for comments regarding this certificate ****