GEOLOGICAL AND TECHNICAL ASSESSMENT REPORT
FOR THE CHEVRON PROPERTY

NORTH WESTERN BRITISH COLUMBIA
ATLIN MINING DIVISION

Prepared for
RAM EXPLORATIONS LTD.

Author
C. VON EINSIEDEL, P.GEO.

Effective Date
December 30, 2013

SOW NO: 5469185
ITEM 2: TABLE OF CONTENTS

ITEM 1: TITLE PAGE 1
ITEM 2: TABLE OF CONTENTS 2
ITEM 3: SUMMARY 5
ITEM 4: INTRODUCTION AND TERMS OF REFERENCE 7
ITEM 5: RELIANCE ON OTHER EXPERTS 7
ITEM 6: PROPERTY DESCRIPTION AND LOCATION 8
ITEM 7: ACCESSIBILITY, CLIMATE, PHYSIOGRAPHY & INFRASTRUCTURE 10
ITEM 8: HISTORY OF EXPLORATION 10
ITEM 9: GEOLOGICAL SETTING 11
ITEM 10: DEPOSIT TYPES 12
ITEM 11: MINERALIZATION 12
ITEM 12: EXPLORATION 13
12.1 Summary of exploration work 13
12.2 Statement of Costs 14
ITEM 13: DRILLING 14
ITEM 14: SAMPLING METHOD AND APPROACH 15
ITEM 15: SAMPLE PREPARATION, ANALYSIS AND SECURITY 15
ITEM 16: DATA VERIFICATION 15
ITEM 17: ADJACENT PROPERTIES 16
ITEM 18: MINERAL PROCESSING AND METALLURGICAL TESTING 16
ITEM 19: MINERAL RESOURCE AND MINERAL RESERVE ESTIMATE 16
APPENDIX 1: LIST OF REPORT FIGURES

Fig. 1: REGIONAL LOCATOR MAP SHOWING NW BC STAKED AREAS, ADVANCED PROJECTS, PARKS AND ACCESS ROADS

Fig. 2: REGIONAL GEOLOGICAL MAP SHOWING NW BC ADVANCED EXPLORATION PROJECTS

Fig. 3: PROJECT AREA GEOLOGICAL MAP SHOWING MINFILE OCCURRENCES

Fig. 4: DETAIL PROJECT MAP SHOWING TOPOGRAPHY AND MINERAL TENURE NUMBERS

Fig. 5: COMPILATION MAP SHOWING SOIL AND ROCK SAMPLING AREAS COMPLETED BY PREVIOUS OPERATORS AND LOCATION OF 2013 SAMPLING PROGRAM

Fig. 6: LOCATOR MAP SHOWING LIMITS OF COPPER GEOCHEMICAL ANOMALY, KNOWN AREAS OF MINERALIZATION AND LOCATION OF 2013 SAMPLING PROGRAM

Fig. 7: DETAIL MAP SHOWING SOIL SAMPLE LOCATIONS AND SAMPLE ID NUMBERS (1:5,000)

Fig. 8: DETAIL MAP SHOWING SOIL SAMPLE LOCATIONS AND ASSAY DATA BY COPPER (ppm) (1:5,000)

Fig. 9: DETAIL MAP SHOWING SOIL SAMPLE LOCATIONS AND ASSAY DATA BY GOLD (ppb) (1:5,000)

APPENDIX 2: 2010 SOIL GEOCHEMICAL SAMPLE ASSAY CERTIFICATES

Appendix 2.1: ALS Certificate No. VA13165937
Item 3: Summary

The Chevron claims are located 140 km south of Atlin in the Tatsamenie Lake area in the Atlin Mining Division, northern B. C., Canada. The property is within NTS map sheet 104 K.O59. The property is made up of 3 Claims totaling 321.33 hectares (or 793 acres). The project is considered an early stage exploration prospect. The nearest access is the former Golden Bear mine road to the south of the claims which provides land access to within 29 km of the property. Helicopter support from either Dease Lake or Atlin is required to access the property.

Mineralization on the property consists of multiple narrow, east-northeast striking quartz veins (2 to 50 centimetres wide) hosted in hornfelsed and pyritic sediments occurring peripheral to a Tertiary diorite stock. The veins are traceable for over 150 metres and exhibit mineral zoning of arsenopyrite-stibnite and galena-chalcopyrite-sphalerite assemblages from east to west respectively. Mineralization also occurs in a quartz-carbonate alteration zone within the centre of the property containing combinations of; massive sphalerite-galena-pyrrhotite-pyrite-stibnite-chalcopyrite and tetrahedrite within a 10 to 60 centimetre wide quartz vein that is traceable for 50 m.

According to the published Minfile Record 104K075 the last known systematic exploration in the area was performed by Chevron Canada Ltd. in 1983. According to ARIS Report No.11479 Chevron discovered numerous, narrow, polymetallic veins in 1982 and completed a program of reconnaissance scale soil and rock sampling (ARIS Report No:11479).

ARIS Report No.17910 dated March, 1988 and describes the 1987 work program carried out by Stetson Resource Management and Waterford Resources Ltd. as consisting of geological mapping, prospecting and soil sampling. A total of 401 soil samples were collected at 25 meter intervals along grid lines in the central part of the property and along two soil lines. In addition a total of 141 rock samples were collected of which 124 samples were sent for analysis.

ARIS Report No.21779 dated October 1991 describes the 1991 work program carried out by Waterford Resources Inc. as consisting of geological mapping, grid based soil geochemistry and geophysics comprising ground magnetic and VLF-EM surveys. A total of 667 soil samples and were collected at 25 meter spaced intervals on flagged grid lines used for 23.8 km of ground magnetic and VLF-EM surveys.

ARIS Report No.27761 dated December 2004 describes a small work program carried out in 2004 by Solomon Resources consisting of rock sampling and soil sampling consisting of 16 rock and 63 soil samples. Figure No.4 shows the outline of each of the various work programs relative to the current claim boundaries.

In summary, the technical data contained in ARIS Report No.s 21779 and 27761 provides the most detailed geological, geochemical and geophysical data for the current property. For this reason the large format (1:5,000 scale) technical drawings used in Report No.21179 are used as the base maps for compilation of all of the other data sets that have been collected by the various previous operators. Data for the geochemical survey completed by Chevron in 1983 (copper and gold values only) is shown
graphically on the corresponding soil geochemical maps from report no.21179 (figure no.6 and 7). Data for the soil sampling completed by Solomon Resources in 2004 is also shown graphically on these figures however, due to the overlap of the soil data from the 1988 and 1991 programs carried out by Waterford Resources (Stetson Resource Management) only the outline of the areas worked on in 1988 is shown.

In summary the sampling carried out by Chevron in 1983 identified an exploration target that warranted additional exploration work. The subsequent exploration work carried out by Stetson / Waterford and Solomon Resources between 1988 and 2004 has provided additional sample results that have confirmed the results documented by Chevron and defined at least three distinct target areas of interest within the current property.

The mineralization within the Chevron property was described in 1991 as consisting of three east-northeast oriented vein systems. In this report these three systems are referred to as: (1) the Razor Blades – Vein Creek Zone; (2) the Whoop – Goat Creek Zones; and, (3) the Central Zones (referred to in the 1991 report as the Cold Creek – Big Mac Area). These areas are labeled on Figure 5.

Between 2007 and 2012 the current owners compiled the historic data for the Chevron property and made several helicopter assisted site visits. Based on sampling programs in the plateau area between the Whoop – Goat Creek Zones it was concluded that previous mapping and sample locations may not be accurately located on current base maps.

Prior to the current program the Chevron Property consisted of 5 tenures totaling 1,132.97 hectares. In June of 2012 two of these tenures comprising 811.64 hectares were allowed to lapse to reduce annual maintenance costs. The present Chevron Property consists of three tenures totaling 321.33 hectares.

On August 12, 2013, the owners made another site visit to the Chevron Property to assess a gossan zone that was identified during a previous helicopter recon program but was not visited at that time due to time constraints. The gossan zone straddles the southwestern corner of the Chevron Property within the area of the reduction completed in 2012. The gossan zone is outside of the known mineralized areas that were identified by Chevron and the other previous property owners. The objective of the field program was to assess the significance of the zone and determine whether or not the claim area should be expanded to include the gossan zone. A total of 9 soil samples were collected and submitted for assay at ALS Chemex facility in North Vancouver. Samples were collected at 10 meter intervals along a profile line that crossed the gossan zone. Samples were collected at each station from depths between 10cm and 20cm using a mattock. All samples were placed in Kraft paper sample bags, sealed and labelled with a unique sample numbers. The location of each sample was noted, in UTM coordinates with the aid of a hand-held GPS (Garmin 60Cx; accuracy ±5m). The samples were then shipped by the author to the ALS Chemex laboratory in North Vancouver.

Results of the sampling program did not identify any anomalous base or precious metal values and the ground surrounding the current Chevron Property was subsequently staked by unrelated third parties.
Item 4: Introduction and Terms of Reference

The author was retained to review historic technical reports related to the Chevron Property, design and supervise a preliminary exploration program to verify the historic data and if warranted, outline recommendations for a follow-up exploration program.

This report was prepared in accordance with National Instrument 43-101. The Qualified Person who is the author of this report has supervised various exploration projects in the Province of British Columbia. The author visited the Chevron property August 12, 2013. The scope of the personal inspection of the property was to assess a gossan zone observed in the south western part of the property.

Item 5: Reliance on Other Experts

The author has prepared this report based on information which is believed to be accurate but which is not guaranteed. The available technical data for the Chevron Property consists of regional geological information compiled by the BC Ministry of Energy and Mines and documentation regarding field investigations completed within the project area by various previous operators including Chevron Minerals, Stetson Resources, Waterford Resources and Solomon Resources. Sources are listed in the References section of this report and are cited where appropriate in the body of the report. The technical reports listed in the References section of this report appear to have been completed by professional geologists without any promotional or misleading intent and the author has no reason to doubt the accuracy or completeness of the contained information.

To the best of the author’s knowledge at the time of writing of this report, the Chevron Property is free of any liens or pending legal actions and is not subject to any underlying royalties, back-in rights, payments or other encumbrances other than as disclosed in section 6 of this report. To the best of the author’s knowledge, there are no known existing environmental liabilities to which the property is subject, other than the requirement to mitigate any environmental impact on the claims that may arise in the course of normal exploration work and the requirement to remove any camps constructed on the Chevron Property or any equipment used in exploration of the claims in the event that exploration work is terminated.

The author conducted an online title search on December 30, 2013 to verify that all of the mineral claims that comprise the Chevron Property are in good standing with the BC Ministry of Energy and Mines.
Item 6: Property Description and Location

All of the claims which comprise the Chevron Property were staked pursuant to the BC Ministry of Energy and Mines MTO system (Mineral Titles Online System). The earliest expiry date of the claim package is September 28, 2016. The location of the property relative to other mining claims, local communities, parks and access roads is shown in figure 1. The individual claim tenure numbers are shown in figure 2. The Property is located on NTS Mapsheet 104K08E and 104K09E.

The Chevron Property is located within the Atlin Mining Division of northwest British Columbia (Fig.1). The property is approximately 110 km from the coast and overlooks the Sheslay River Valley to the east. The nearest communities are Telegraph Creek 90 km to the southeast and Juneau, Alaska 120 km to the west. Permanent helicopter and float plane bases at Dease Lake 130 km to the east and Atlin 150 km to the northwest provide the best points of access to the property. The Golden Bear mine road to the south provides land access to within 29 km of the property. The mine road was blocked off in September 2004 and now vehicle access is only possible to within 80 km of the property. Helicopter is required to access the property.

6.2 Physiography and Climate

The Chevron Property is located in the Stikine Plateau on the lee side of the Coast Mountain Range. The property is situated on two north-south oriented remnant peneplains, or plateaus connected by a northeast trending ridge. Several deep gullies have incised into the sides of the plateau. Topographical relief within the claim group is in the order of 900m above sea level (a.d.) with elevations ranging from 920m to slightly greater than 1800m asl. The gullies were likely formed by pocket glaciers and have steep talus covered slopes and precipitous outcrop cliffs. The entire property drains along steep gullies to second order tributaries of the Sheslay River, a tributary of the west flowing Taku River system. The majority of the property is above the treeline, although stands of stunted balsam fir and willow shrubs occupy the lower valleys bottoms. The area is subject to moderate, but wet summers and cold winters.

Temperatures typically range between 5°C and 15°C in summer and -30°C and -10°C in winter. Precipitation is lowest in the spring months and snow accumulations can be expected to exceed 1.5m. The Chevron property is located on the lee edge of the Coast Range and can be expected to be marginally drier than the highlands to the west.

6.3 Property Status and Ownership

The mineral cell title claim statistics are summarized in Table 1; note that this claim information is not a legal title opinion but is a compilation of claims data based on the author’s review of the government of the British Columbia Mineral Rights inquiry website (BC Mineral Titles December 30, 2013). The mineral claims do not have to be legally surveyed since they are BC Government established cell claims.
Table 1. List of mineral tenures - Chevron Property

<table>
<thead>
<tr>
<th>Tenure No.</th>
<th>Area (in ha.)</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>552110</td>
<td>50.72</td>
<td>Sept. 28, 2016</td>
</tr>
<tr>
<td>552110</td>
<td>186.02</td>
<td>Sept. 28, 2016</td>
</tr>
<tr>
<td>566327</td>
<td>84.57</td>
<td>Sept. 28, 2016</td>
</tr>
</tbody>
</table>

Total area: 321.33 ha.

BC Ministry of Mines Regulations

The Chevron Property is not subject to any royalties, back in rights, payments or other agreements. Title to the claims is maintained through the performance of annual assessment filings and payment of required fees. Prior to July 1, 2012, for the first three years a minimum of $4.00 per hectare in eligible exploration expenditures needed to be incurred. In subsequent years a total of $8.00 per hectare in eligible exploration expenses needed to be incurred. Effective July 1, 2012, new regulations came into effect that changed the requirements from a 2-tier system to a 4-tier system and have significantly increased the minimum exploration expenditures that are required to maintain mineral tenures in good standing. Under the new regulations all mineral tenures are deemed to be in their first anniversary year and the new minimum exploration expenditures will be $5.00 per hectare for anniversary years 1 and 2, $10.00 per hectare for anniversary years 3 and 4; $15.00 per hectare for anniversary years 5 and 6 and $20.00 per hectare for each subsequent anniversary year.

To the best of the author’s knowledge, government permits are not required to carry out the proposed Stage 1 Program but will be required to carry out any follow up diamond drilling program recommended after completion of this program. These programs will require application to the Ministry of Energy and Mines for permits and the Issuer may be required to post security equivalent to the estimated costs of any reclamation work which will be required after completion of the proposed exploration work. To the best of the author’s knowledge approval from local First Nations communities may also be required to carry out follow up diamond drill testing. The reader is cautioned that there is no guarantee that the Issuer will be able to obtain approval from local First Nations. However, the author is not aware of any problems encountered by other junior mining companies in obtaining approval to carry out similar programs in nearby areas nor is the author aware of any instances where local First Nations communities have objected to exploration work in the general project area.

To the best of the author’s knowledge the surface rights to the Property are currently held by the Province of British Columbia. In the event that a significant mineralized zone is identified an application that includes detailed environmental impact studies must be made to the BC Land Title and Survey Authority (LTSA) for surface rights prior to initiation of any advanced exploration or mining activities. The reader is cautioned that there is no guarantee that areas for potential mine waste disposal, heap leach pads, or areas for processing plants will be available within the subject property.

Chevron Property Technical Assessment Report
Item 7: Accessibility, Climate, Physiography and Infrastructure

The only direct access to the Tatsamenie Lake area is by helicopter.

The nearest communities to the property are the town of Atlin Lake, 140 km to the north and the town of Dease Lake approximately 120 kilometers to the east. Groceries, gas and basic supplies can be bought in Atlin Lake or Dease Lake.

The climate of the Tatsamenie Lake area is defined as sub-arctic. The mean summer and winter temperatures are in the range of 15°C and -24°C respectively and the mean summer and winter precipitation average for northern B.C. are in the range of 25 cm and 22 cm respectively with a majority of the winter precipitation being in the form of snow. There are seven separate drainages that flow from the property; three to the south, one to the east (that into the Sheslay River) and 3 to the north (that flow in to Tatsatua Creek and ultimately into the Sheslay River). It is understood that all of these have year round water.

There is no infrastructure on the property.

Item 8: Exploration History

The Chevron property was first staked as the Vein claims by Chevron Minerals Ltd. in 1982 after regional heavy mineral stream sediment sampling survey work conducted by Chevron identified a precious metal anomaly in the area. Chevron’s work included geological mapping, prospecting and preliminary soil sampling. In 1983, Chevron collected 549 soil samples and 71 rock samples. Their conclusion was that a gold bearing arsenopyrite-stibnite quartz-chalcopryite-sphalerite-galena vein system was crosscutting the local country rocks. Chevron then allowed their claims to lapse in 1986, likely due to their focused interest in the development of their Muddy Lake (Golden Bear) Property to the south with partner North American Metals Ltd. According to ARIS Report No.11479 Chevron discovered numerous, narrow, polymetallic veins in 1982 and completed a program of reconnaissance scale soil and rock sampling (ARIS Report No:11479).

The property was re-staked in 1987 as the Vine claims and optioned to Waterford Resources Inc. An exploration program was carried out for Waterford by Stetson Resource Management Cop. under the direction of J.C. Freeze (P.Geo) in 1987. Stetson’s program consisted of geological mapping, prospecting, detailed rock chip and soil sampling. Freeze concluded that mineralization on the Vine property fit Lindgren’s (1933) criteria for a mesothermal ore deposit, as is the case with the Golden Bear Deposit. ARIS Report No.17910 dated March, 1988 and describes the 1987 work program carried out by Stetson Resource Management and Waterford Resources Ltd. as consisting of geological mapping, prospecting and soil sampling. A total of 401 soil samples were collected at 25 meter intervals along grid lines in the central part of the property and along two soil lines. In addition a total of 141 rock samples were collected of which 124 samples were sent for analysis.
ARIS Report No.21779 dated October 1991 describes the 1991 work program carried out by Waterford Resources Inc. as consisting of geological mapping, grid based soil geochemistry and geophysics comprising ground magnetic and VLF-EM surveys. A total of 667 soil samples and were collected at 25 meter spaced intervals on flagged grid lines used for 23.8 km of ground magnetic and VLF-EM surveys.

In 2004, a portion of the original Vine claims was restaked by Clive Aspinall (P.Eng) under a LO1 with Solomon ARIS Report No.27761). Solomon personnel spent a total of 4 person days on the property on August 7th and 8th, 2004. A total of 16 rock (7 float and 9 bedrock) and 63 soil samples were collected during the exploration program. The work included 2 detailed soil sampling lines on the ridge along the projected strike extent of the Cold Creek quartz-carbonate alteration zone as was recommended by Stetson (1988). The soil lines were spaced 50 m apart from each other and had an individual sample spacing interval of 10 m. Inside of the Big Onion Tributary gully, 2 detailed follow-up soil sampling lines were run above and below a gold-copper soil geochemical anomaly that was identified from Chevron’s 1983 survey, in an attempt to narrow down a source. Limited rock sampling and prospecting was also conducted, primarily in the gully surrounding Big Onion Creek and the gully opposite the Cold Creek quartz-carbonate alteration zone.

Item 9: Geological Setting

According to Hichley and Tupper, 2004, the area of interest for this project lies immediately to the northeast of the Coastal Plutonic Complex and to the southwest of the Nahlin Thrust Fault (Fig. 3). The oldest rocks in the region are those of the Upper Paleozoic Stikine Assemblage that were formed in a volcanic arc-type depositional environment and whose ages may range from Devonian to Permian (Sherlock et al., 1994 and Nelson and Payne (1984) in Mihalynuk, 1994). The Stikine Assemblage rocks found to the south and west of Tatsamenie Lake include recrystallized limestones, dolomitic limestones, minor cherts and argillites (Bradford and Brown, 1993; Oliver, 1995; Souther, 1971; BCGS). Overlying these rocks, both to the west and to the south of Tatsamenie Lake are a series of Stikine Assemblage tine grained clastic metasedimentary rocks and intercalated metavolcanic rocks mostly altered to greenstones and phyllites as well as chert, jasper, greywacke and limestone. Other Stikine Assemblage rocks in the area include rhyolites and felsic volcanics, marine sedimentary rocks, a sequence of coarse clastic sedimentary rocks to the southwest and volcaniclastic rocks to the northwest.

Upper Triassic Stuhini Group rocks are found extensively throughout the area, especially in the central northwest-southeast axis of the region. Stuhini rocks were deposited in an arc-type environment and comprise andesite and basalt flows, pillow lavas, green augite-phyric pillowed flows, volcanic breccias, lapilli tuffs, feldspar-phyric flows and massive Nonan limestones as well as argillites, siltstones and limestones. The Stuhini Group also includes the Sinwa Formation limestones and their accompanying minor sedimentary rocks (Bradford and Brown, 1993; Mihalynuk, 1994; and Souther, 1971).

Large bodies of quartz diorite intrusives, strongly foliated diorite and minor granodiorite that Souther (1971) believed to be Lower or Middle Triassic in age are found to the east and west of Tatsamenie Lake.

Chevron Property Technical Assessment Report
North of Trapper and Tatsamenie Lakes is the Laberge Group, a belt of Lower to Middle Jurassic sedimentary rocks that include the Inklin and Takwahoni Formations. The Inklin Formation comprises well bedded greywacke, siltstone, silty sandstone, mudstone, limy pebble conglomerate and the Takwahoni Formation includes granite-boulded-chert-pebble conglomerates, greywacke, quartz sandstones, siltstones and shales (Souther, 1971).

The Late Cretaceous and Early Tertiary Sloko Group intrusive and extrusive rocks are ubiquitous throughout the Tulsequah region, especially to the south of the King Salmon Thrust Fault. Sloko rocks include rhyolite, dacite and trachyte flows, pyroclastics and volcanic sedimentary rocks as well as rhyolitic and felsic dykes. Souther (1971) also believed that a series of widespread similarly aged felsite, quartz feldspar porphyry and quartz monzonite intrusions were associated with these Sloko extrusives.

Item 10: Deposit Types

Many of the mineral occurrences within the Tulsequah map area can be divided into three northwest trending belts that include: Cu and Cu-Mo porphyry systems associated with the Coastal Batholith; Au-Ag-base metal vein and Au-rich massive sulphide occurrences associated with Mid-Paleozoic to Triassic volcano-sedimentary sequences west of the Nahlin Thrust Fault; and, Cu-porphyry systems west of the Nahlin Thrust Fault. The most significant of these include the Tulsequah-Taku and Golden Bear mine camps located within the central of these belts.

According to Freeze, 1991, the observed mineralization may have some genetic similarities to the mineralization developed at the Golden Bear deposit.

Typical geophysical signature: Associated structures may be defined by ground magnetic, very low frequency or electromagnetic surveys. Airborne surveys may identify prospective regional-scale major structures. Recent developments in 3D IP surveying technology appear to provide a viable method for assessing the variability in chargeability and resistivity response. The variability may reflect mineralogical changes within mineralized zones or structures and may aid in selection of drill targets.

Item 11: Mineralization

Stetson Resources (1988) outlined that mineralization primarily occurs within two main zones referred below as the Big Onion-Vein Zone and the Cold Creek Zone (Fig. 4). The Big Onion-Vein Zone contains a series of quartz-carbonate veins with goldsilver-copper-lead-zinc-antimony-arsenic. The mineralized veins outcrop in Vein Creek and in Big Onion Tributary, 1 km apart and on strike. A gold and copper soil geochemical anomaly also occurs on the plateau between the two creeks. Stetson obtained 11.25 g/t gold over 15 cm in Vein Creek (Chevron obtained 7.54 g/t Au) and 2.72 g/t gold over 20 cm in Big Onion Tributary.
According to the BC Minfile summary available online the Cold Creek mineralized zone to the south comprises a quartz-carbonate alteration zone approximately 2.8 ni wide that trends to the northeast from Cold Creek, cross-cutting the local lithologies. The alteration zone contains a northeasterly striking quartz vein that is 40 to 60 cm thick over a 30 m strike length with massive sphalerite, galena, pyrrhotite, pyrite, stibnite and chalcopyrite blebs that had up to 3.63 g/t gold over 60 cm. The vein then strikes to the west and contains massive galena, tetrahedrite, chalcopyrite and pyrite over a 20 m strike length as well as 1.75 g/t gold and 2,876 g/t silver over 25 cm. At the eastern end of the alteration zone is a crackle breccia with quartz and massive pyrite that contained 1.80 g/t gold in a grab sample. One of the objectives of the 2011 field program was to examine the crackle breccia however the zone was not observed at the locations examined. The available historic data suggests potential for the discovery of vein type gold mineralization. Figures 5, 6, 7, and 8 show available data.

ITEM 12 EXPLORATION

Item 12.1 Exploration (2013)

Between 2007 and 2010 the current owners compiled the historic data for the Chevron property and made several helicopter assisted site visits. Based on sampling programs in the plateau area between the Whoop – Goat Creek Zones it was concluded that previous mapping and sample locations may not be accurately located on current base maps.

Prior to the current program the Chevron Property consisted of five tenures totaling 1,132.97 hectares. In June of 2012 two of these tenures were comprising 811.64 hectares were allowed to lapse to reduce annual maintenance costs. The present Chevron Property consists of three tenures totaling 321.33 hectares.

On August 12, 2013, the owners made another site visit to the Chevron Property to assess a gossan zone that was identified during a previous helicopter recon program but not visited at that time due to time constraints. The gossan zone straddles the southwestern corner of the Chevron Property within the area of the reduction completed in 2012. The gossan zone is outside of the known mineralized areas that were identified by Chevron and the other previous property owners. The objective of the field program was to assess the significance of the zone and determine whether or not the claim area should be expanded to include the gossan zone. A total of 9 soil samples were collected and submitted for assay at ALS Chemex facility in North Vancouver.

Results of the sampling program did not identify any anomalous base or precious metal values and the ground surrounding the current Chevron Property was completely staked by unrelated third parties.

The assay results for the soil samples that were collected are included in Appendix 2.1. Sample locations are shown in figure 7, figure 8 and figure 9. Assay results for report no. 13165937 are included in appendix 2.1. Note that the sample reference numbers are calculated by number of meters from the first sample and that there were typographic errors in the report – the first sample number should be 659832 / 6486903. See schedule included in Appendix 2.1.

Chevron Property Technical Assessment Report
Item 12.2 Statement of Costs

The site visit to the Chevron property was completed as part of a larger regional exploration program. Only direct costs related to the Chevron property were included in the Statement of Costs.

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobilization costs (pro-rated)</td>
<td>$959.59</td>
</tr>
<tr>
<td>Charges for geologist and technician (one day)</td>
<td>1,200.00</td>
</tr>
<tr>
<td>Helicopter charges (pro-rated)</td>
<td>1,424.85</td>
</tr>
<tr>
<td>Fuel charges</td>
<td>484.89</td>
</tr>
<tr>
<td>Assay Charges (VA13165937)</td>
<td>230.67</td>
</tr>
<tr>
<td>Preparation of technical report</td>
<td></td>
</tr>
<tr>
<td>-technical mapping 10 hours @ $65</td>
<td>650.00</td>
</tr>
<tr>
<td>-report preparation 9 hours @ $90</td>
<td>810.00</td>
</tr>
<tr>
<td>Total costs allocated to Sericite:</td>
<td>$6,759.90</td>
</tr>
</tbody>
</table>
Item 13: Drilling

There has been no historic drilling on the Chevron Property.

Item 14: Sampling method and approach

The objective of sampling program carried out in 2013 was to assess a gossan zone located in the southwestern part of the Chevron Property. Samples were collected at 10 meter intervals along a profile line that crossed the gossan zone. Samples were collected at each station from depths between 10cm and 20cm using a mattock. All samples were placed in Kraft paper sample bags, sealed and labelled with a unique sample numbers. The location of each sample was noted, in UTM coordinates with the aid of a hand-held GPS (Garmin 60Cx; accuracy ±5m). The samples were then shipped by the author to the ALS Chemex laboratory in North Vancouver. See Section 15 for details on analytical methods.

The assay results for the soil samples that were collected are included in Appendix 2.1. Sample locations are shown in figure 7, figure 8.

Item 15: Sample preparation, analysis and security

The published technical reports which detail previous exploration work on the Chevron Property indicate that standard QA and QC procedures were implemented by the laboratories that analyzed the samples and that the variability of all reported analyses are within acceptable industry standards.

The samples collected during the 2013 program were collected by independent geologists and field technicians. During the field program samples were stored in vehicles that were used in completion of the field work and were transported to the authors residence in Mission BC. All samples were checked for sample identification numbers and overall quality by the author and were transported by the author to the ALS Chemex facility in North Vancouver.

All samples collected during the 2013 exploration program were submitted to ALS Chemex, of North Vancouver, for analysis. The -80 micrometer mesh sieved fraction of the soil samples was dissolved in an aqua regia solution (3:1 mixture of hydrochloric and nitric acid) and analyzed for a series of elements by ICP-AES. The Elements analyzed for and the detection limits are listed in Table 12.5.1. ALS Chemex employs standard QA and QC protocols on all sample analyses including inserting one blank, reference standard and duplicate analysis in every twenty samples analyzed. No additional QA and QC procedures were implemented as part of the program. Sample Certificates from the 2013 exploration program are included in Appendix 2.1. In the authors opinion the sample security employed by the field personnel involved in the sample collection and the sample preparation and analytical procedures employed by ALS Chemex are adequate for the exploration program carried out on the Chevron Property.
<table>
<thead>
<tr>
<th>Element</th>
<th>LDL</th>
<th>Element</th>
<th>LDL</th>
<th>Element</th>
<th>LDL</th>
<th>Element</th>
<th>LDL</th>
<th>Element</th>
<th>LDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>0.5 ppm</td>
<td>K</td>
<td>0.01 %</td>
<td>Ni</td>
<td>1.0 ppm</td>
<td>Al</td>
<td>0.01 %</td>
<td>Zn</td>
<td>2 ppm</td>
</tr>
<tr>
<td>Co</td>
<td>1.0 ppm</td>
<td>La</td>
<td>10 ppm</td>
<td>P</td>
<td>10 ppm</td>
<td>Th</td>
<td>20 ppm</td>
<td>As</td>
<td>2 ppm</td>
</tr>
<tr>
<td>Cr</td>
<td>1.0 ppm</td>
<td>Mg</td>
<td>0.01 %</td>
<td>Pb</td>
<td>2.0 ppm</td>
<td>Ti</td>
<td>0.01 %</td>
<td>B</td>
<td>10 ppm</td>
</tr>
<tr>
<td>Cu</td>
<td>1.0 ppm</td>
<td>Ag</td>
<td>0.2 ppm</td>
<td>S</td>
<td>0.01 %</td>
<td>Tl</td>
<td>10 ppm</td>
<td>Ba</td>
<td>10 ppm</td>
</tr>
<tr>
<td>Fe</td>
<td>0.01 %</td>
<td>Mn</td>
<td>5.0 ppm</td>
<td>Sb</td>
<td>2 ppm</td>
<td>U</td>
<td>10 ppm</td>
<td>Be</td>
<td>0.5 ppm</td>
</tr>
<tr>
<td>Ga</td>
<td>10 ppm</td>
<td>Mo</td>
<td>1.0 ppm</td>
<td>Sc</td>
<td>1 ppm</td>
<td>V</td>
<td>1 ppm</td>
<td>Bi</td>
<td>2 ppm</td>
</tr>
<tr>
<td>Hg</td>
<td>1.0 ppm</td>
<td>Na</td>
<td>0.01%</td>
<td>Sr</td>
<td>1 ppm</td>
<td>W</td>
<td>10 ppm</td>
<td>Ca</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

ALS Vancouver is in compliance for the requirements of ISO 9001:2000 through February 12, 2011 (ALS Laboratory Group, 2010). ALS Vancouver is accredited through the Standards Council of Canada (SCC) for Metallic Ores and Products Mineral Analysis testing for several techniques including Fire Assay with an Atomic Absorption (AA) finish, Fire Assay with a gravimetric finish and ICP-AES using a four acid digestion.

Item 16: Data Verification

The present Chevron Property covers the known mineralized zones identified by Chevron in 1983 and extended by various previous operators.

Item 17: Adjacent Properties

There are no significant adjoining mineral properties.

Item 18: Mineral Processing and Metallurgical Testing

There is no mineral processing or metallurgical testing data available from the Chevron Property.

Item 19: Mineral Resource and Mineral Reserve Estimates

There is no mineral resource compliant with CIM Standards on Mineral Resources and Reserves (CIM, 2000) and therefore no NI 43-101 compliant resource for the Chevron Property.

Item 20: Other relevant data and information

There is no other relevant data or information concerning the Chevron Property.
Item 21: Interpretation and Conclusions

The Chevron Property covers a series of known, vein type occurrences which may have some genetic similarities to the mineralization identified at the Golden Bear Mine.

Based on the available technical data the Chevron Property is considered a property of merit and in the author’s opinion additional exploration work is warranted.

Item 22: Recommendations

The Chevron Property has potential to host porphyry copper – gold and vein type gold mineralization. The historic work completed by Chevron and various other previous owners needs to be verified, the locations of the known mineralized zones need to be accurately identified and the soil survey grids need to be extended to evaluate the overall extent of the various known mineralized zones. Stage 1 should consist of verification sampling of all of the known mineralized areas. The estimated cost of Stage 1 is $60,000.00.

Proposed Stage 1 Exploration Program

- Engineering and project supervision, reports $ 7,500
- Field costs, vehicle rentals 2,500
- Crew travel expenses, accommodation 5,000
- Reconnaissance soil surveys
 - soil sample collection for 400 samples 15,000
 - soil sample assays 5,000
- Contingency 5,000

Total estimated cost of Stage 1 $ 60,000
Item 23: Sources of information

BC Ministry of Energy and Mines online database and BCMEM Minfile Listing: http://www.empr.gov.bc.ca/Mining/Geoscience/geoData/Pagers/default.aspx

Minfile No. 104K 079

ARIS Report No.17910: Freeze, J.C., Robb, W.D., Weatherill, J.F/, Dynes, W.J., dated March, 1988 and describes the 1987 work program carried out by Stetson Resource Management and Waterford Resources Ltd. as consisting of geological mapping, prospecting and soil sampling. A total of 401 soil samples were collected at 25 meter intervals along grid lines in the central part of the property and along two soil lines. In addition a total of 141 rock samples were collected of which 124 samples were sent for analysis.

RIS Report No.21179: Kiesman, W., dated October 1991 describes the 1991 work program carried out by Waterford Resources Inc. as consisting of geological mapping, grid based soil geochemistry and geophysics comprising ground magnetic and VLF-EM surveys. A total of were collected from various mineralized zones and a total of 667 soil samples and were collected at 25 meter spaced intervals on flagged grid lines used for 23.8 km of ground magnetic and VLF-EM surveys.

ARIS Report No.27761: Aspinall, C. dated December 2004 describes a small work program carried out in 2004 by Solomon Resources Ltd. consisting of 16 rock and 63 soil samples.
CERTIFICATE OF QUALIFIED PERSON, CARL A. VON EINSIEDEL

I, Carl A. von Einsiedel, PGeo. hereby certify that:

1) I am an independent consulting geologist with a business address at #8888 Shook Road, Mission, BC, V2V-7N1

2) I am a graduate of Carleton University, Ottawa, Ontario (1989) with a B.Sc. in Geology.

3) I am a registered Professional Geologist in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC – License no. 21474).

4) I have worked as a geologist for a total of 21 years since graduation from university. I have work experience in most parts of Canada, as well as the United States and Mexico. I have intrusión related gold deposit exploration experience in British Columbia and the Yukon.

5) I fulfill the requirement to be a "qualified person" for the purposes of NI 43-101.

6) I am responsible for all sections of this technical report.

7) I have not had prior involvement with the property that is the subject of the Technical Report.

8) I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

9) I am fully independent of the issuer applying all of the tests in section 1.4 of National Instrument 43-101

10) I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

11) I consent to the public filing of the Technical Report for regulatory purposes provided that I am given the opportunity to read the written disclosure being filed and that it fairly and accurately represents the information in the Technical Report that supports the disclosure.

12) As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Carl von Einsiedel, P.Geo.

Dated at Vancouver, B.C. this 30th day of December 2013

Chevron Property Technical Assessment Report
Key

- **Reconnaissance geochemical survey completed by Chevron Minerals 1983, A.R. No.11479**
- **Areas of rock sampling and grid soil sampling completed by Stetson Resource Management Corp. 1988 A.R. No. 17910**
- **Grid based geochemical survey completed by Waterford Resources Inc., 1990, A.R. No.21779**
- **Grid based ground magnetic and VLF survey completed by Waterford Resources Inc., 1990, A.R. No.21779**
- **Areas of rock sampling and soil sampling completed by Solomon Resources Ltd., 2004, A.R. No.27761**

Tenure data from ILMB aardvark.gov.bc.ca
1:50,000 scale topographic data from geogratis.ca

RAM EXPLORATIONS LTD.

CHEVRON PROJECT, NORTHWEST BC

COMPILATION MAP SHOWING SOIL AND ROCK SAMPLING AREAS COMPLETED BY PREVIOUS OPERATORS

DATE: 2010 06 29
SCALE: 1:25,000
PROJECTION: NAD 83 Zone 8
2013 Soil geochem by Cu ppm

- > 300
- 200 to 300
- 100 to 200
- < 100
Appendix 2.1 Corrected UTM Locations

<table>
<thead>
<tr>
<th>UTM Easting NAD83 Zone 8</th>
<th>UTM Northing NAD83 Zone 8</th>
<th>Sample ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>659832</td>
<td>6486903</td>
<td>chev01</td>
</tr>
<tr>
<td>659838</td>
<td>6486906</td>
<td>chev02</td>
</tr>
<tr>
<td>659844</td>
<td>6486904</td>
<td>chev03</td>
</tr>
<tr>
<td>659850</td>
<td>6486903</td>
<td>chev04</td>
</tr>
<tr>
<td>659855</td>
<td>6486904</td>
<td>chev05</td>
</tr>
<tr>
<td>659869</td>
<td>6486911</td>
<td>chev06</td>
</tr>
<tr>
<td>659887</td>
<td>6486917</td>
<td>chev07</td>
</tr>
<tr>
<td>659913</td>
<td>6486920</td>
<td>chev08</td>
</tr>
<tr>
<td>659913</td>
<td>6486920</td>
<td>chev09</td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS VA13165937

CERTIFICATE COMMENTS

LABORATORY ADDRESSES

Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.

Applies to Method:

Au-ICP21
LOG-22
WEI-21

ME-ICP41
SCR-41
CERTIFICATE VA13165937

Project: CHEVRON
P.O. No.:
This report is for 9 Soil samples submitted to our lab in Vancouver, BC, Canada on 12-SEP-2013.
The following have access to data associated with this certificate:
CARL VON EINSIEDEL

SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEI-21</td>
<td>Received Sample Weight</td>
</tr>
<tr>
<td>LOG-22</td>
<td>Sample login - Rcd w/o BarCode</td>
</tr>
<tr>
<td>SCR-41</td>
<td>Screen to ~180um and save both</td>
</tr>
</tbody>
</table>

ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
<th>INSTRUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au-ICP21</td>
<td>Au 30g FA ICP-AES Finish</td>
<td>ICP-AES</td>
</tr>
<tr>
<td>ME-ICP41</td>
<td>35 Element Aqua Regia ICP-AES</td>
<td>ICP-AES</td>
</tr>
</tbody>
</table>

To: RAM EXPLORATION LTD.
ATTN: CARL VON EINSIEDEL
8888 SHOOK ROAD
MISSION BC V2V 7N1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Colin Ramshaw, Vancouver Laboratory Manager
Certificate of Analysis VA13165937

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>WEI-21 Recvd Wt.</th>
<th>ME-ICP41 Ag</th>
<th>ME-ICP41 Al</th>
<th>ME-ICP41 As</th>
<th>ME-ICP41 B</th>
<th>ME-ICP41 Ba</th>
<th>ME-ICP41 Bi</th>
<th>ME-ICP41 Ca</th>
<th>ME-ICP41 Cd</th>
<th>ME-ICP41 Cr</th>
<th>ME-ICP41 Co</th>
<th>ME-ICP41 Cu</th>
<th>ME-ICP41 Fe</th>
<th>ME-ICP41 Ga</th>
</tr>
</thead>
<tbody>
<tr>
<td>659332-6486403</td>
<td>0.42</td>
<td><0.2</td>
<td>2.93</td>
<td>39</td>
<td><10</td>
<td>160</td>
<td>0.8</td>
<td>3</td>
<td>0.27</td>
<td><0.5</td>
<td>30</td>
<td>39</td>
<td>160</td>
<td>8.57</td>
</tr>
<tr>
<td>659338-6486406</td>
<td>0.32</td>
<td><0.2</td>
<td>3.34</td>
<td>76</td>
<td><10</td>
<td>200</td>
<td>1.0</td>
<td>3</td>
<td>0.05</td>
<td><0.5</td>
<td>161</td>
<td>13</td>
<td>326</td>
<td>10.55</td>
</tr>
<tr>
<td>659344-6486404</td>
<td>0.28</td>
<td>0.2</td>
<td>2.20</td>
<td>17</td>
<td><10</td>
<td>100</td>
<td>0.5</td>
<td>4</td>
<td>0.18</td>
<td><0.5</td>
<td>29</td>
<td>25</td>
<td>158</td>
<td>8.69</td>
</tr>
<tr>
<td>659350-6486403</td>
<td>0.38</td>
<td>0.2</td>
<td>2.58</td>
<td>19</td>
<td><10</td>
<td>170</td>
<td>0.5</td>
<td>4</td>
<td>0.10</td>
<td><0.5</td>
<td>40</td>
<td>31</td>
<td>204</td>
<td>9.41</td>
</tr>
<tr>
<td>659355-6486404</td>
<td>0.42</td>
<td>0.3</td>
<td>2.47</td>
<td>22</td>
<td><10</td>
<td>140</td>
<td>0.5</td>
<td>2</td>
<td>0.13</td>
<td><0.5</td>
<td>37</td>
<td>42</td>
<td>186</td>
<td>8.41</td>
</tr>
<tr>
<td>659369-6486411</td>
<td>0.32</td>
<td><0.2</td>
<td>2.04</td>
<td>12</td>
<td><10</td>
<td>100</td>
<td>0.7</td>
<td>3</td>
<td>0.65</td>
<td><0.5</td>
<td>28</td>
<td>7</td>
<td>65</td>
<td>5.71</td>
</tr>
<tr>
<td>659387-6486417</td>
<td>0.34</td>
<td>0.2</td>
<td>2.67</td>
<td>17</td>
<td><10</td>
<td>120</td>
<td>0.5</td>
<td>3</td>
<td>0.21</td>
<td><0.5</td>
<td>25</td>
<td>19</td>
<td>123</td>
<td>6.86</td>
</tr>
<tr>
<td>659413-6486420</td>
<td>0.38</td>
<td>0.2</td>
<td>0.86</td>
<td>44</td>
<td><10</td>
<td>210</td>
<td>0.9</td>
<td>3</td>
<td>0.45</td>
<td>0.6</td>
<td>25</td>
<td>3</td>
<td>65</td>
<td>7.59</td>
</tr>
<tr>
<td>659413-6486420B</td>
<td>0.38</td>
<td>0.2</td>
<td>1.26</td>
<td>34</td>
<td><10</td>
<td>200</td>
<td>1.1</td>
<td>2</td>
<td>0.48</td>
<td><0.5</td>
<td>28</td>
<td>3</td>
<td>65</td>
<td>7.77</td>
</tr>
</tbody>
</table>

***** See Appendix Page for comments regarding this certificate *****
<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Method</th>
<th>Analyte</th>
<th>Units</th>
<th>LOR</th>
<th>K (ppm)</th>
<th>La (ppm)</th>
<th>Mg (ppm)</th>
<th>Mn (ppm)</th>
<th>Mo (ppm)</th>
<th>Na (ppm)</th>
<th>Ni (ppm)</th>
<th>P (ppm)</th>
<th>Pb (ppm)</th>
<th>S (ppm)</th>
<th>Sb (ppm)</th>
<th>Sc (ppm)</th>
<th>Sr (ppm)</th>
<th>Th (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>659332-6486403</td>
<td>1</td>
<td>ME-ICP41</td>
<td>10</td>
<td>0.01</td>
<td>0.76</td>
<td>691</td>
<td>3</td>
<td>0.07</td>
<td>39</td>
<td>1300</td>
<td>8</td>
<td>0.27</td>
<td>9</td>
<td>8</td>
<td>92</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>659338-6486406</td>
<td>1</td>
<td>ME-ICP41</td>
<td>10</td>
<td>0.01</td>
<td>0.26</td>
<td>7820</td>
<td>2</td>
<td>0.04</td>
<td>147</td>
<td>1250</td>
<td>7</td>
<td>0.32</td>
<td>10</td>
<td>25</td>
<td>100</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>659344-6486404</td>
<td><1</td>
<td>ME-ICP41</td>
<td>10</td>
<td>0.01</td>
<td>0.56</td>
<td>870</td>
<td>1</td>
<td>0.09</td>
<td>23</td>
<td>1590</td>
<td>7</td>
<td>0.39</td>
<td>4</td>
<td>13</td>
<td>76</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>659350-6486403</td>
<td><1</td>
<td>ME-ICP41</td>
<td>10</td>
<td>0.01</td>
<td>0.62</td>
<td>1030</td>
<td>6</td>
<td>0.08</td>
<td>30</td>
<td>1700</td>
<td>7</td>
<td>0.45</td>
<td>4</td>
<td>16</td>
<td>113</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>659355-6486404</td>
<td><1</td>
<td>ME-ICP41</td>
<td>10</td>
<td>0.01</td>
<td>0.70</td>
<td>1150</td>
<td>2</td>
<td>0.07</td>
<td>29</td>
<td>1600</td>
<td>11</td>
<td>0.34</td>
<td>6</td>
<td>17</td>
<td>72</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>659369-6486411</td>
<td>1</td>
<td>ME-ICP41</td>
<td>30</td>
<td>0.01</td>
<td>0.50</td>
<td>1570</td>
<td>4</td>
<td>0.03</td>
<td>19</td>
<td>1550</td>
<td>24</td>
<td>0.06</td>
<td>4</td>
<td>9</td>
<td>73</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>659387-6486417</td>
<td>1</td>
<td>ME-ICP41</td>
<td>20</td>
<td>0.01</td>
<td>0.79</td>
<td>837</td>
<td>4</td>
<td>0.04</td>
<td>22</td>
<td>1750</td>
<td>19</td>
<td>0.13</td>
<td>3</td>
<td>6</td>
<td>44</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>659413-6486420</td>
<td>1</td>
<td>ME-ICP41</td>
<td>30</td>
<td>0.01</td>
<td>0.19</td>
<td>1805</td>
<td>3</td>
<td>0.03</td>
<td>21</td>
<td>1470</td>
<td>35</td>
<td>0.18</td>
<td>8</td>
<td>9</td>
<td>74</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>659413-6486420B</td>
<td><1</td>
<td>ME-ICP41</td>
<td>30</td>
<td>0.01</td>
<td>0.18</td>
<td>1405</td>
<td>4</td>
<td>0.04</td>
<td>22</td>
<td>1750</td>
<td>42</td>
<td>0.27</td>
<td>8</td>
<td>10</td>
<td>62</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***** See Appendix Page for comments regarding this certificate *****
<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Method</th>
<th>Analyte Units</th>
<th>LOR</th>
<th>Ti</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>Zn</th>
<th>Au</th>
<th>Au-ICP21</th>
</tr>
</thead>
<tbody>
<tr>
<td>659332-6486403</td>
<td>ME-ICP41</td>
<td>%</td>
<td>0.11</td>
<td><10</td>
<td><10</td>
<td>119</td>
<td><10</td>
<td><10</td>
<td>63</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>ME-ICP41</td>
<td>ppm</td>
<td>0.01</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>659338-6486406</td>
<td><0.01</td>
<td><10</td>
<td><10</td>
<td></td>
<td><10</td>
<td>73</td>
<td><10</td>
<td><10</td>
<td>78</td>
<td>0.004</td>
</tr>
<tr>
<td>659344-6486404</td>
<td>0.09</td>
<td><10</td>
<td><10</td>
<td></td>
<td><10</td>
<td>122</td>
<td><10</td>
<td><10</td>
<td>86</td>
<td>0.004</td>
</tr>
<tr>
<td>659350-6486403</td>
<td>0.10</td>
<td><10</td>
<td><10</td>
<td></td>
<td><10</td>
<td>131</td>
<td><10</td>
<td><10</td>
<td>149</td>
<td>0.005</td>
</tr>
<tr>
<td>659355-6486404</td>
<td>0.10</td>
<td><10</td>
<td><10</td>
<td></td>
<td><10</td>
<td>152</td>
<td><10</td>
<td><10</td>
<td>132</td>
<td>0.004</td>
</tr>
<tr>
<td>659369-6486411</td>
<td>0.02</td>
<td><10</td>
<td><10</td>
<td></td>
<td><10</td>
<td>97</td>
<td><10</td>
<td><10</td>
<td>107</td>
<td>0.004</td>
</tr>
<tr>
<td>659387-6486417</td>
<td>0.08</td>
<td><10</td>
<td><10</td>
<td></td>
<td><10</td>
<td>96</td>
<td><10</td>
<td><10</td>
<td>114</td>
<td>0.005</td>
</tr>
<tr>
<td>659413-6486420</td>
<td><0.01</td>
<td><10</td>
<td><10</td>
<td></td>
<td><10</td>
<td>62</td>
<td><10</td>
<td><10</td>
<td>140</td>
<td>0.004</td>
</tr>
<tr>
<td>659413-6486420B</td>
<td><0.01</td>
<td><10</td>
<td><10</td>
<td></td>
<td><10</td>
<td>96</td>
<td><10</td>
<td><10</td>
<td>128</td>
<td>0.003</td>
</tr>
</tbody>
</table>

***** See Appendix Page for comments regarding this certificate *****