GEOPHYSICAL REPORT

ON

AIRBORNE MAGNETIC AND VLF-EM SURVEYS

OVER THE

MARBLE ARCH CLAIM GROUP

TWELVE MILE CREEK, KASLO AREA

SLOCAN MINING DIVISION

BRITISH COLUMBIA

PROPERTY

: Southeast corner is 12 km N50°W of Kaslo, B.C.
: 49° 59' north latitude
: 117° 05' west longitude
: N.T.S. 82F/14E

WRITTEN FOR

: STRYDER EXPLORATIONS LTD.
: #1808-1450 West Georgia Street
: Vancouver, B.C. V6G 2T8

SURVEYED BY

: COLUMBIA AIRBORNE GEOPHYSICAL SERVICES (1984) LTD.
: #1808-1450 West Georgia
: Vancouver, B.C. V6G 2T8

WRITTEN BY

: David G. Mark, Geophysicist
: GEOTRONICS SURVEYS LTD.
: #403-750 West Pender St.
: Vancouver, B.C., V6C 2T8

DATED

: April 9, 1985

GEOTRONICS SURVEYS LTD.
Engineering & Mining Geophysicists
VANCOUVER, CANADA
TABLE OF CONTENTS

GEOLOGICAL BRANCH ASSESSMENT REPORT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>i</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>ii</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION AND GENERAL REMARKS</td>
<td>1</td>
</tr>
<tr>
<td>PROPERTY AND OWNERSHIP</td>
<td>2</td>
</tr>
<tr>
<td>LOCATION AND ACCESS</td>
<td>2</td>
</tr>
<tr>
<td>PHYSIOGRAPHY</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY OF PREVIOUS WORK</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>INSTRUMENTATION AND THEORY:</td>
<td></td>
</tr>
<tr>
<td>a) Magnetic Survey</td>
<td>7</td>
</tr>
<tr>
<td>b) VLF-EM Survey</td>
<td>8</td>
</tr>
<tr>
<td>SURVEY PROCEDURE</td>
<td>9</td>
</tr>
<tr>
<td>DATA REDUCTION AND COMPILATION</td>
<td>10</td>
</tr>
<tr>
<td>DISCUSSION OF RESULTS:</td>
<td></td>
</tr>
<tr>
<td>a) Magnetics</td>
<td>10</td>
</tr>
<tr>
<td>b) VLF-EM</td>
<td>12</td>
</tr>
<tr>
<td>c) Lineations</td>
<td>13</td>
</tr>
<tr>
<td>SELECTED BIBLIOGRAPHY</td>
<td>15</td>
</tr>
<tr>
<td>GEOPHYSICIST'S CERTIFICATE</td>
<td>18</td>
</tr>
<tr>
<td>AFFIDAVIT OF COSTS</td>
<td>19</td>
</tr>
</tbody>
</table>

GEOTRONICS SURVEYS LTD.
LIST OF ILLUSTRATIONS

At Back of Report

Property Location Map 1: 8,600,000 Map 1
Claim Map 1: 50,000 Map 2

In Back Pocket

Airborne Magnetic & VLF-EM Survey Results

1: 10,000 Map 3
SUMMARY

Airborne magnetic and VLF-EM surveys were carried out over the Marble Arch Claim Group owned by Rayrick Grubstaking Syndicate of Vancouver, B.C. during the latter part of December, 1984. The claim is located to the immediate southwest of Kaslo River on Twelve Mile Creek, 12 km N50°W of the town of Kaslo. Access is gained by a helicopter or four-wheel drive vehicle. The terrain consists of steep and rugged slopes forested with moderately dense coniferous trees. The purpose of the surveys was to aid in the mapping of geology as well as to locate probable areas for exploration of gold/silver mineralization.

The Marble Arch Claim Group occurs within the Kootenay Arc. It is most underlain by sediments of the Slocan Group. Porphyritic granite of the Nelson Batholith intrudes into the Slocan sediments along the southern edge of the property and in northwesterly trends within the center of the property. To the immediate northeast of the property occur rocks of the Kaslo Group. On the property occurs gold, silver, lead and zinc mineralization within five prospects mostly within the Slocan sediments and also within Nelson granites. Also in the area, primarily to the east and northeast, occurs gold, silver, lead and zinc mineralization usually hosted by an andesite flow breccia of the Kaslo Group near the contact with the Slocan Group. Soil sampling in the area on nearby properties has revealed strong anomalies in gold within the Slocan sediments.

The airborne surveys were flown at about a 50-meter terrain clearance on contour lines with a separation of 100 to 200 meters. The instruments used were a Sabre Electronics proton precession magnetometer and a Sabre Electronics VLF-EM receiver. The magnetic data were picked from the strip charts and hand contoured. The contours were drawn on a survey plan on which the VLF-EM anomalies were plotted as well.
CONCLUSIONS

1. The magnetic survey indicates most of the property is underlain by the Slocan sediments as has been mapped by the G.S.C. It also maps the Nelson Batholith along the southern edge of the property. The Nelson intrusives within the center of the property have little magnetic expression indicating they are either altered or are a different phase or rock type from the batholith.

2. The VLF-EM survey revealed 9 conductors, 2 of which occur close to the Slocan/Nelson contact. This contact is known in the area to be related to gold and sulphide mineralization. The other conductors occur entirely within the Slocan Group.

3. Both the VLF-EM and magnetic surveys revealed lineations within the survey area that are likely caused by fault, shear and/or contact zones. These can be important indicators of sulphide and native gold mineralization especially where the lineations cross. Two prospects occur close to a north-northeasterly-trending lineation.

GEOTRONICS SURVEYS LTD.
RECOMMENDATIONS

The airborne geophysics has revealed some target areas throughout the property such as the VLF-EM highs. It is recommended to check these out by prospecting, geological mapping and possibly soil geochemistry. Soil geochemistry lines could be run in the areas of interest, such as across the VLF-EM conductors. Ground VLF-EM and magnetic surveying may be quite useful as well in finding and delineating more accurately the target areas.

It is not expected, however, that all gold-silver-sulphide mineralization in the area will be reflected by the airborne VLF-EM survey. It is simply a start as far as defining target areas, since the property is so large.

However, if one wants to cover the property effectively, the following program is recommended:

1. Take large soil samples every 50 m along contour lines preferably about 100 m apart in elevation. In the lab, the total sample should be pulverized, and not screened at all in order to preclude the screening out of coarser gold. The anomalous samples should then be followed up by sampling on a tight grid, say 15 to 20 m centers on a grid, say 200 m square.

 In addition, soil sampling should be continued around the property's prospects such as has been done around the Marble Arch.
2. At the same time, careful geological mapping and prospecting should be carried out preferably by a geologist and prospector. One large benefit of this will be a better interpretation of any geophysics that are carried out. Special attention should be paid to the VLF-EM conductors.

3. The defined soil anomalies should then be 'cat' trenched, if access and terrain permit.

4. Resistivity - IP mapping and/or MaxMin EM should then be considered in order to optimize drill targets.

5. Diamond drilling should then be carried out using a large diameter drill and a face discharge bit.
GEOPHYSICAL REPORT

ON

AIRBORNE MAGNETIC AND VLF-EM SURVEYS

OVER THE

MARBLE ARCH CLAIM GROUP

TWELVE MILE CREEK, KASLO AREA

SLOCAN MINING DIVISION

BRITISH COLUMBIA

INTRODUCTION AND GENERAL REMARKS

This report discusses the survey procedure, compilation of data and the interpretation of low-level airborne magnetic and VLF-EM surveys carried out over the Marble Arch Claim Group within the Kaslo area during the latter part of December, 1984. The surveys were carried out by Lloyd Brewer, instrument operator and project manager, and John Kime, navigator, both of whom are of Columbia Airborne Geophysical Services (1984) Ltd. A total of 137.2 line km of airborne surveys were done over the property and surrounding area.

The object of the two surveys was to aid in the geological mapping of lithology and structure for the purpose of exploration of the type of gold/silver mineralization as is found in the Kaslo area. Magnetic surveys have especially been proven to be a good geological mapping tool. Also the VLF-EM has responded to some of the mineralization in the area.
PROPERTY AND OWNERSHIP

The property consists of six claims containing 52 units as shown on Map 2 and as described below:

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>No. Units</th>
<th>Record No.</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marble Arch 1</td>
<td>12</td>
<td>2820</td>
<td>Feb. 9, 1986</td>
</tr>
<tr>
<td>Marble Arch 1</td>
<td>6</td>
<td>3781</td>
<td>April 15, 1987</td>
</tr>
<tr>
<td>Marble Arch 2</td>
<td>4</td>
<td>3782</td>
<td>April 15, 1987</td>
</tr>
<tr>
<td>Marble Arch 3</td>
<td>12</td>
<td>3783</td>
<td>April 15, 1987</td>
</tr>
<tr>
<td>Marble Arch 4</td>
<td>3</td>
<td>3784</td>
<td>April 15, 1987</td>
</tr>
<tr>
<td>Marble Arch 5</td>
<td>15</td>
<td>3785</td>
<td>April 15, 1987</td>
</tr>
</tbody>
</table>

The expiry date shown takes into account the surveys under discussion as being accepted for assessment credits.

The property was previously owned by Almine Resources Ltd. of Vancouver, British Columbia, and is presently being optioned to Stryder Explorations Ltd.

LOCATION AND ACCESS

The southeastern corner of the property is found 12 km N50°W of the town of Kaslo, B.C. on the southwestern side of the Kaslo River on Twelve Mile Creek. The peak of Mount Holmes occurs 1.5 km to the south and Texas Peak, 1.5 km to the west.

The geographical coordinates for the center of the property are 49° 59' north latitude and 117° 05' west longitude.

Access to the property is best gained by a 4-wheel drive vehicle. One travels for 17 km northwesterly out of Kaslo along Highway 31A. At this point a switchbacking road runs
southwesterly more or less along Twelve Mile Creek and through the entire property. The northern boundary of the property is about 2 km along the road from the highway. The more remote parts of the property, especially the northwest, are best accessed by helicopter.

PHYSIOGRAPHY

The property is located within the Kokanee Range which is part of the Slocan Ranges. This mountain system lies on the eastern part of the Selkirk Mountains which is a physiographic division of the Columbia Mountains. The terrain is rugged with steep slopes throughout the whole property.

Elevations vary from 945 meters (3,100 feet) a.s.l. at the northeastern corner of the property close to the Kaslo River, to 2,265 meters (7,400 feet) a.s.l. within the western part of the property. This gives a relief of 1,320 meters (4,300 feet).

The main water sources would be the northeasterly-flowing Twelve Mile Creek and the southeasterly-flowing Kaslo River as well as their tributaries.

The forest cover is moderately dense and consists of hemlock, fir, cedar, spruce and tamarack.

HISTORY OF PREVIOUS WORK

Exploration in the area probably dates back to the turn of the century. On the property itself occurs five different showings on which were dug adits, shafts, pits, and/or trenches. Six tons were shipped from the Helen showing.
The only other work known to be done on the claims was a limited soil sample survey on a grid (about 800 m by 500 m) in the area of the Marble Arch and California prospects. The work was carried out by Almine Resources Ltd. and the results are given in a report by Mark C. Hansen, geologist, dated June 22, 1984.

GEOLOGY

The following is taken from Hansen's report on the property as well as geological mapping done by G.S.C. geologists.

The Stryder property occurs within the central section of the Kootenay Arc. The Arc is composed of a band of sedimentary, volcanic and metamorphic rocks that extend from northern Washington where they strike northeasterly, to north of Revelstoke where they strike northwesterly. The age of the rocks varies from Precambrian to Jurassic.

The oldest rocks in the area are those of the Kaslo Group which occur near the northeast corner of the property. It is of Mississippian(?) to Triassic(?) in age and consists of mafic volcanic breccia, andesite, basalt, chlorite schist, tuffaceous argillite, talc and serpentinite. Sills and small plugs of gabbro or diorite that probably are of this group occur throughout the older sediments.

The Slocan Group is the youngest and covers most of the property. It is Upper Triassic in age and consists of undifferentiated slate, argillite, limestone, quartzite and tuffaceous sediments with some dolomite. On the property itself, Hansen reports the sediments striking northwest and dipping to the southwest. The sediments are largely argillite and phyllite, with subordinate limestone and quartzite. The Slocan Group is cut, concordantly and discordantly, by (mostly felsitic) dykes and sills.
Where Slocan Group rocks are in contact with intrusive they are typically highly metamorphosed and somewhat contorted.

Occurring along the southern edge of the property and along two northwesterly trends within the center of the property is the Nelson Batholith of Jurassic age. In this area it consists mainly of porphyritic granite.

Dyke-shaped intrusives trend northwesterly and north-northwesterly through the northern half of the property. The petrology varies from granite to quartz diorite and is of unknown age.

The following is a description of the five properties taken from Hansen's report.

Big Ben
There are two mentions of this showing; in the Annual Report of the Minister of Mines (1926), and a quote by Cairnes (1935) from this annual report. The workings consist of one 20' (6.1m) shaft within granite. This is sunk on a vein, 18" to 20" (460mm to 510mm) wide, oriented 075°/67°NW. Mineralization consists of galena, pyrite, and quartz. A grab sample assayed 0.1202 Au/t (3.7g/tne), 94.502 Ag/t (2887.9g/tne), 81.2% lead, 0.9% zinc.

Marble Arch
The Marble Arch is described in the same two references as the Big Ben. Workings consist of a shallow shaft and two adits within calc-shist. These develop a "quartz-filled fissure containing streaks of high-grade ore." The vein, oriented 070°/50°SE, is reported to be about 4" (100mm) wide. A sample across the vein assayed 0.14oz Au/t (4.3g/tne), 393.6oz Ag/t (12,028.4g/tne), 70.3% lead.
California
In addition to the above two references the California is also mentioned in the 1927 Report of the Minister of Mines. It consists of two sets of workings. The lower consists of two adits [57'(17.4m) and 60'(18.3m) in length] developed on a fissured band of altered, schistose limestone. The limestone, oriented 330°/60°NE, 11' to 20' (3.4m to 6.1m) wide, is sparsely mineralized with disseminated galena and sphalerite, along with surface patches of goethite and/or limonite. The upper workings, consisting of a shallow shaft and adit, developed such iron cappings, apparently "gossanous" in nature.

Keno
This showing is described by Cairnes (1935). The workings consist of 3 adits, the upper one of which has a raise to the surface at 42' (12.8m), then splits at 54' (16.5m). The east fork of this adit extends for 50' (15.2m), the south for 46' (14m). The workings develop a shear zone, oriented 180°/50°E, in limestones and argillites. The shear is 1' to 4' (0.3m to 1.2m) wide, consisting of fractured and slickensided sediment. Mineralization, consisting of galena, tetrahedrite, and quartz, is sparse.

Helen
References to this showing are; Cairnes (1935), Minister of Mines Reports for 1917, 1918, 1919. Workings consist of 1,200' (366m) of raise, shaft, adit, and stope, with 40' (12.2m) of surface trenching. Two adits and one shaft provided access to the underground workings. The lode which has been developed is 3' to 4' (0.9m to 1.2m) wide, oriented 055°/45°SW, and consists of sheared granite and metamorphosed sediments. Vein
mineralization consists of galena and sphalerite. Replacement mineralization in the form of "carbonate ore" was also encountered. A channel sample of the carbonate ore assayed 0.04 oz Au/t (1.2 g/tne), 56 oz Ag/t (1,711.4 g/tne), and 12% zinc. A grab sample from a 2 ton stockpile of vein mineralization assayed 0.04 oz Au/t, 150.5 oz Ag/t (4,599.3 g/tne), 66% lead and 4% zinc. A shipment of 6 tons of ore in 1915 averaged 178 oz Ag/t (5,439.7 g/tne) and 61% lead.

The Helen and Keno workings have yet to be relocated. The Big Ben, Marble Arch, and California workings have been observed, all underground workings are presently inaccessible.

Much mineralization has been found in the area related to the Kaslo Group/Slocan Group contact, most notably on the Red Diamond property 3 km to the east. Usually the host rock is an andesite flow breccia with the mineralization being sulphides of iron, lead, zinc, copper and silver, with gold values. Also on the Red Diamond property, soil anomalies in gold have been located within the Slocan and Kaslo Groups.

INSTRUMENTATION AND THEORY

a) **Magnetic Survey**

The magnetic data are detected using a nuclear free precession proton magnetometer, manufactured by Sabre Electronic Instruments Ltd. of Burnaby, B.C. The magnetometer measures the total count of the earth's magnetic field intensity with a sensitivity of one gamma. The data are recorded on magnetic tape and 12 cm analog strip chart.
The magnetic patterns obtained from a regional airborne survey are directly related to the distribution of magnetite in the survey area. However, the geology cannot be deduced from iso-magnetic maps by simply assuming that all magnetic highs are underlain by gabbro or ultramafic rocks, and that all magnetic lows are caused by limestone or chert. The problem with such a simplistic approach is that magnetite is not uniformly distributed in any type of rock. Other problems arise from the fact that most geologic terrains have rocks of high susceptibility superimposed on less 'magnetic' rocks, and vice versa. Cultural features such as powerlines, pipelines and railways also complicate matters. So many variables can be involved that it may be impossible to make a strictly accurate analysis of the geology of an area from magnetic data alone. It is preferable to use other information such as geological, photogeological and electromagnetic in combination with magnetic data to obtain a more accurate geological analysis.

b) **VLF-EM Survey**

A two-frequency omni-directional receiver unit, manufactured by Sabre Electronic Instruments Ltd., of Burnaby, B.C., was used for the VLF-EM survey. The transmitter used was the one located at Annapolis, Maryland, transmitting at 21.4 KHz.

The VLF (Very Low Frequency) method uses powerful radio transmitters set up in various parts of the world for military communications. These powerful transmitters can induce electric currents in conductive bodies thousands of kilometers away from the radio source. The induced currents set up secondary magnetic fields which can be detected at surface through deviations in the normal VLF field. The VLF method is inexpensive and can be a useful initial tool for mapping structure and prospecting. Successful use of the VLF requires that the strike of the conductor
be in the direction of the transmitting station so that the lines of magnetic field from the transmitter cut the conductor. Thus, conductors with northeasterly to southeasterly strikes should respond to Annapolis transmissions.

It is impossible to determine the quality of conductors with any reliability, using field strength data alone. The question of linearity is in doubt if the conductor does not appear to cross the adjacent flight lines. The relatively high frequency results in a multitude of anomalies from unwanted sources such as swamps, creeks and cultural debris. However, the same characteristic also results in the detection of poor conductors such as faults, shear zones, and rock contacts, making the VLF-EM a powerful mapping tool.

SURVEY PROCEDURE

A two-meter bird was fitted with a magnetometer coil and two omni-directional EM receivers and towed beneath the helicopter on a 10-meter cable. The terrain clearance for the bird was 50 m.

The surveys were contour-line flown at a line spacing of 100 to 200 m. Navigation was visual, using 1:50,000 scale maps blown up to 1:10,000.

The aircraft used to conduct this survey was a Bell Jet Ranger helicopter. Airspeed was a constant 60 KPH so that creek valley sand canyons were penetrated thoroughly. The slow airspeed provided safety, detailed coverage of boxed-in areas, and consistency of data retrieval, which is critical in rugged terrain, such as within this survey.
The number of line km flown as shown on Map 3 is 137.2

The project supervisor, Mr. L. Brewer, has over 4 years of experience in conducting aerial magnetic and electromagnetic surveys from rotary-wing aircraft, under all types of terrain conditions.

DATA REDUCTION AND COMPILATION

The observant magnetic total field was recorded on analogue strip charts. These were played-back together with audio recordings containing fiducial markers, and the fiducial markers were transferred to the strip charts. The fiducial markers were identified with topographic features along the flight lines.

The magnetic data were taken from the strip charts and plotted at a scale of 1:10,000 (1 cm = 100 m). The data were then contoured at a 25-gamma interval onto Map 3.

The VLF-EM anomalies were taken from the strip charts and plotted on the sheet with the magnetics. A distinction has been made on the map between weaker and stronger anomalies.

DISCUSSION OF RESULTS

a) Magnetics

The magnetic field over most of the property is very quiet which is very typical of sediments. The intensity is 350 to 550 gammas which can be considered as the magnetic background. The sediments, as mentioned above, are mainly those of the Slocan Group.
A relatively strong magnetic high occurs on the southern boundary of the property. It reaches a high of 775 gammas which is about 300 gammas above the local background. The high is reflecting the Nelson Batholith which G.S.C. geologists claim is composed of porphyritic granite in this area.

To the immediate north of the high occurs a strong easterly-trending low. It is suspected this low, which is as low as 200 gammas, is caused by the dipole effect from the strong magnetic high produced from the Nelson Batholith. The writer has noted this on other surveys in the area. It could well be that this low is reflecting the northern boundary of the Batholith.

Magnetic lows often occur along creek valleys, and/or areas of low topography. The reasons for this are as follows:

1. Valleys almost always contain deeper overburden which means the detecting element is further from the bedrock causing the magnetic field.

2. If the survey is flown across the valley or gulley, then the detecting element is also further from the bedrock.

3. Gulleys and valleys are often caused by faults or shear zones which are often reflected by magnetic lows.

Several small magnetic highs of quite low magnetic intensity occur throughout the survey area. These are probably related to the Nelson Batholith as well. However, the two northwesterly trends of Nelson Batholith intrusive occurring within the center of the property do not seem to be reflected by the magnetics, except, perhaps, by the spot highs. It is suspected, therefore,
that the intrusives are altered, or that they are a non-magnetic phase of the batholith, that is, a slightly different rock type.

b) **VLF-EM**

The major cause of VLF-EM anomalies, as a rule, are geological structure such as fault, shear and breccia zones. It is therefore logical to interpret VLF-EM anomalies to likely be caused by these structural zones. Of course, sulphides may also be a causative source. But in the writer's experience, when VLF-EM anomalies correlate with sulphide mineralization, the anomalies are usually reflecting the structure associated with the mineralization rather than the mineralization itself.

There is some variation in intensity from one VLF-EM anomaly to the next. This is not only due to the conductivity of a causative source, but also the direction it strikes relative to the direction to the transmitter. In other words, those conductors lying close to the same direction as the direction to the transmitter can be picked up easier than those that are lying at a greater angle. Depending upon its conductivity, a conductor may not be picked up at all if it is at too great an angle.

The Marble Arch Claim Group occurs in extremely rough topography which adversely affects the VLF-EM results. The noise level is greatly increased which can thus obliterate signals from EM conductors such as geological structure and/or mineral zones. Therefore, the VLF-EM system may have responded to some of the known mineral zones but the signal may have been masked by the noise level.

However, nine EM conductors have been mapped which stand out above the noise level, though some barely. These have been labelled by the lower case letters a to i, respectively.
The conductors vary in length from 250 m for conductors c and h, to 1,300 m for conductor e. Many or possibly all of the conductors are caused by structure, but certainly the longer, more lineal-shaped conductors are more indicative of geological structure. Examples are conductors a, b, and e.

The strike of conductors a, c, part of d, and i is northwesterly; that of b, part of d, e, f, and h is northerly; and that of g is northeasterly.

The underlying rock type for all conductors seems to be the Slocan sediments. However, conductor a and an unnamed conductor to the south occur close to the Nelson granite contact. In fact the magnetics suggest that these conductors are reflecting the contact itself. Conductors d and e appear to occur close to the two northwesterly-trending intrusives within the center of the property.

As best can be determined, none of the conductors correlate with any of the mineral prospects. However, the Keno prospect appears to occur to the immediate north of conductor d. Thus there is the possibility that d is the southern extension of the Keno mineralization.

c) **Lineations**

Lineal trends considered to be indicative of geological structure have been drawn on Map 3 taking into account:

a) Magnetic lows which are often caused by the magnetite within the rocks being altered by geological structure processes.
b) VLF-EM anomalies which more often than not are reflecting structure.

c) Topographic depressions such as creek valleys which are usually caused by structure.

Several lineations that are indicative of faults and contacts have been mapped across the property striking in different directions but primarily northwest, and secondarily northeast. This is not surprising since the predominant trend of the geological structure in the general area is northerly. The northeast trend indicated cross-structure. Some or parts of the lineations in other areas have been known to correlate directly with lithologic contacts and shear zones.

One north-northeasterly-trending structure correlates closely with two mineral prospects; the Big Ben, and the California.

The lineations cross each other on the property in different areas. Structure is often important for the emplacement of mineralizing fluids especially where lineations intersect. Thus these areas may have greater exploration interest.

Respectfully submitted,
GEOTRONICS SURVEYS LTD.

David G. Mark,
Geophysicist

May 9, 1985
SELECTED BIBLIOGRAPHY

Annual Reports of the Minister of Mines, B.C.: for the years; 1917, 1918, 1919, 1926, 1927.

Barr, D.A. - Gold in the Canadian Cordillera, C.I.M. Bulletin Vol. 73, No. 818, P. 68-69, June 1980

Cairnes, C.E., Slocan Mining Camp, B.C., GSC Mem. 173, 1934

Cairnes, C.E., Description of Properties, Slocan Mining Camp, B.C., GSC Mem. 184, 1935.

Hansen, Mark C.: Geological Report on the Marble Arch Claim Group, Slocan Mining Division, Twelve Mile Creek, B.C., prepared for Almine Resources Ltd., June 22, 1984

Little, H.W., Nelson Map-Area, West Half, British Columbia (82F W1/2), Mem. 308, GSC., 1960

GEOPHYSICIST'S CERTIFICATE

I, DAVID G. MARK, of the City of Vancouver, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geophysicist of Geotronics Surveys Ltd., with offices located at #403-750 West Pender Street, Vancouver, British Columbia.

I further certify:

1. That I am a graduate of the University of British Columbia (1968) and hold a B.Sc. degree in Geophysics.

2. I have been practising my profession for the past 16 years and have been active in the mining industry for the past 19 years.

3. That I am an active member of the Society of Exploration Geophysicists and a member of the European Association for Exploration Geophysicists.

4. This report is compiled from data obtained from airborne magnetic and VLF-EM surveys carried out by Columbia Airborne Geophysical Services (1984) Ltd., under the supervision of L. Brewer during the latter part of December, 1984.

5. I have no direct or indirect interest in any of the properties mentioned within this report, nor in Stryder Explorations Ltd., nor do I expect to receive any as a result of writing this report.

May 9, 1985

David G. Mark
Geophysicist
AFFIDAVIT OF COSTS

I, Lloyd Brewer, president of Columbia Airborne Geophysical Services (1984) Ltd., certify that the airborne magnetic and VLF-EM surveys were flown in December of 1984, and that they were flown at a cost of $100/km, the total number of km being 137.2 to give a total cost of $13,720.00.

May 9, 1985

Lloyd Brewer
CLAIM LOCATION MAP

STRYDER EXPLORATIONS LTD.

MARBLE ARCH CLAIM GROUP
BLUE RIDGE, KASLO AREA
SLOCAN M.D., B.C.

SCALE: 1:100,000
DATE: May 85
N.T.S.: 82 F/14 E
MAP: 2
DRAFTED BY: B.D.S.