ASSESSMENT REPORT

OF THE

1991 DIAMOND DRILLING PROGRAM

ON THE

RAIN I CLAIM GROUP
(PHIL 17 and RAIN 1, 2, and 3 CLAIMS)

Omineca Mining Division
NTS 93N/1E

Latitude 55° 02' N / Longitude 124° 03' W

Owned By:
BP RESOURCES CANADA LIMITED
700 - 890 West Pender Street
Vancouver, B.C.
V6C 1K5

Operated By:
PLACER DOME INC.
1055 Dunsmuir Street - Bentall 4
Vancouver, B.C.
V7X 1P1

GEOLOGICAL BRANCH
ASSESSMENT REPORT

21,660

D.R. Barnes
September, 1991
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2. INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>A. Location, Access, Physiography & Climate</td>
<td>2</td>
</tr>
<tr>
<td>B. Claims Status</td>
<td>2</td>
</tr>
<tr>
<td>C. History of Exploration</td>
<td>3</td>
</tr>
<tr>
<td>3. REGIONAL GEOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>4. PROPERTY GEOLOGY</td>
<td>6</td>
</tr>
<tr>
<td>A. Lithologies and Structure</td>
<td>6</td>
</tr>
<tr>
<td>B. Mineralization and Alteration</td>
<td>7</td>
</tr>
<tr>
<td>5. DIAMOND DRILLING</td>
<td>8</td>
</tr>
<tr>
<td>6. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>10</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>11</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Following Page No.

FIGURE NO:

1 LOCATION MAP 2
2 CLAIMS LOCATION MAP 3
3 REGIONAL GEOLOGY 4
4 DRILL HOLE LOCATION MAP 8
5 DRILL HOLE SECTION: 91-855 and 91-850 8

LIST OF TABLES

Following Page No.

TABLE I: TABLE OF FORMATIONS - TAKLA GROUP 4

LIST OF APPENDICES

Following Page No.

APPENDIX NO:

I STATEMENT OF QUALIFICATIONS 11
II STATEMENT OF COSTS 11
III DRILL HOLE LOGS 11
IV DRILL HOLE ANALYTICAL RESULTS 11
1. SUMMARY

From February 8 to February 14, 1991, a program of diamond drilling, comprising 204.83 m in two drill holes, was carried out on the RAIN I claim group by Placer Dome Inc.

BP Resources Canada Limited is the owner of the RAIN I claim group. Placer Dome Inc. conducted the diamond drill program to assess the area for a proposed tailings pond for their Mt. Milligan deposit.

The two diamond drill holes were both collared at the same site on the RAIN I claim. Drill hole 91-855 was abandoned at 52.34 m in overburden and 91-850 was drilled to a depth of 152.40 m intersecting predominantly pyritic, pebbly mudstone.

The program was abandoned after these two holes as another potential tailings pond area was prioritized.

No economic mineralization was intersected in drill hole 91-850 and no further work is warranted in this portion of the claim area.

A total of $21,500 has been applied as assessment on the RAIN I claim group.
2. INTRODUCTION

A. Location, Access, Physiography and Climate

The RAIN I claim group is located south of Rainbow Creek, approximately 66 km north of Fort St. James and 11 km east of the Fort St. James - Manson Creek road (Fig. 1).

Access is by helicopter from local logging roads leading from Mackenzie which come within approximately 5 km of the property.

The RAIN I claim group covers an area of moderate relief with elevations ranging from 1150 to 1450 m. With the exception of swampy valleys near the centre and along the west side of the claim, the slopes are covered by a thick growth of balsam, fir and spruce trees.

The property receives a moderate amount of precipitation during most of the year.

B. Claims Status

The RAIN I claim group (Fig. 2) consists of four claims owned by BP Minerals Limited and BP Resources Canada Limited and comprising 45 contiguous units listed as follows:
<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Units</th>
<th>Record No.</th>
<th>Recording Date</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 17</td>
<td>20</td>
<td>6486</td>
<td>July 20, 1984</td>
<td>July 20, 1991</td>
</tr>
<tr>
<td>RAIN 3</td>
<td>6</td>
<td>10955</td>
<td>August 20, 1989</td>
<td>August 20, 1994</td>
</tr>
</tbody>
</table>

The claims were grouped as the RAIN I claim group on July 2, 1991 in accordance with the Mineral Act.

C. **History of Exploration**

In August, 1984, BP conducted preliminary geological mapping and geochemical sampling. The PHIL 17 claim was staked following the release of results from a government stream sediment survey and covers an area of high magnetic relief with coincident arsenic-antimony anomalies.

Reinterpretation of previous soil sample results was completed by BP during June, 1988. Geological mapping and soil/moss mat/rock sampling surveys were conducted in July, 1988 by BP.

In June, 1989, approximately 120 line-kilometres of low-level (60 m) airborne magnetometer and VLF-EM survey was completed by Aerodat Limited of Mississauga, Ontario, over the property on behalf of BP.

In July, 1989, the Orthoshop of Calgary, Alberta, was contracted by BP to produce an orthophoto map of the project area at a scale of 1:10,000.
3. REGIONAL GEOLOGY

The RAIN I claim group is situated in the central part of the Quesnel Trough, within the Intermontane Tectonic Belt of the Canadian Cordillera. The Quesnel Trough assemblage consists principally of Upper Triassic-Lower Jurassic Takla Group volcanic and sedimentary rocks which are correlative with the Nicola Group in southern B.C. and Stuhini Group in northern B.C. (Richards, 1976, Monger, 1977) (Fig. 3). The volcanic rocks are island-arc type calc-alkaline to alkaline pyroxene-rich flows and volcaniclastic rocks of predominantly submarine origin.

Nelson, et al (1991) has subdivided the Takla Group in the Nation Lakes area into four informal formations, the Rainbow Creek, Inzana Lake, Witch Lake, and Chuchi Lake Formations (Table I). The basal Rainbow Creek Formation consists predominantly of dark grey slate with a minor volcaniclastic component. The overlying Inzana Lake Formation consists of siliceous argillite, volcanic sandstones and siltstones, augite-bearing crystal and lapilli tuffs, and minor limestone. It is transitionally overlain by the Witch Lake Formation which consists mainly of augite porphyry flows and pyroclastics ranging from andesite to trachyte in composition. The uppermost unit, the Chuchi Lake Formation, transitionally overlies the Witch Lake Formation and consists predominantly of matrix-supported grey to maroon, polymictic plagioclase porphyry agglomerates and breccias.
LEGEND

UPPER TRIASSIC - LOWER JURASSIC
- - - - HOGEM BATHOLITH
- - - - TAKLA GROUP

PERMIAN
- - - - CACHE CREEK GROUP

MISSISSIPPIAN
- - - - SLIDE MTN. GROUP

PROTEROZOIC
- - WOLVERINE METAMORPHIC COMPLEX
 - GOLD AND / OR COPPER DEPOSIT
TABLE I: Table Formations - Takla Group
(from Nelson, et al, 1990)

<table>
<thead>
<tr>
<th></th>
<th>DEM LAKE</th>
<th>CHUCHI TO HAT LAKES WESTERN/1K</th>
<th>NORTH OF CHUCHI LAKE</th>
<th>M1, MILLIGAN 93K/10</th>
<th>EASTERN & RAINBOW CREEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHUCHI LAKE FORMATION</td>
<td>mammoth and green ladders</td>
<td>mammoth plagioclase porphyry flow</td>
<td>mammoth vesicular trachyte porphyry</td>
<td>trachyte-brecia, flows</td>
<td>trachyte-brecia, flows</td>
</tr>
<tr>
<td>WITCH LAKE FORMATION</td>
<td>trachyte breccia</td>
<td>trachyte breccia/flow</td>
<td>bedded epiclastic sediments</td>
<td>bedded epiclastic sediments</td>
<td>bedded epiclastic sediments</td>
</tr>
<tr>
<td>INZANA LAKE FORMATION</td>
<td>lapilli tuff</td>
<td>volcanic sandstone/siltstone</td>
<td>argillite</td>
<td>argillite</td>
<td>argillite</td>
</tr>
<tr>
<td>RAINBOW CREEK FORMATION</td>
<td>fault</td>
<td>limit of mapping</td>
<td>slate/siltstone</td>
<td>slate/siltstone</td>
<td>slate/siltstone</td>
</tr>
</tbody>
</table>

Legend:
- Mammoth vesicular trachyte porphyry
- Trachyte breccia, flows
- Bedded epiclastic sediments
- Volcanic sandstone/siltstone
- Argillite
This assemblage is intruded by the Lower Jurassic to Cretaceous Omineca intrusions, principally the multi-phase Hogem Batholith, as well as smaller intrusions of acid to alkaline affinity, some of which are considered to be co-magmatic with the Takla Group. Northwest and northeast trending transcurrent and block faulting and minor folding have offset and juxtaposed major sections of the volcanic stratigraphy into contact with the intrusive and sedimentary rocks.
4. **PROPERTY GEOLOGY**

A. **Lithologies and Structure**

The property is underlain by northwest trending and moderately easterly-dipping andesitic flows, tuffs and breccias. The fragmentals contain lesser amounts of interbedded flows. The fragmental rocks are green to black in colour, polylithic and contain abundant augite phenocrysts. The flows are green augite (± plagioclase ± hornblende) porphyries which locally display flow brecciation. This correlates with Nelson's (1991) uTrWL (Witch Lake) Formation.

A sedimentary unit consisting of black argillite, greenish tuffaceous sandstone and siltstone has been reported to the northwest of the PHIL 17 claim. This correlates with Nelson's (1991) uTrRC (Rainbow Creek) Formation.

Light to medium grey-green, fine-grained feldspar porphyry and darker grey, medium-grained hornblende (± augite) diorite dykes/sills cut the section.

Humphreys (1984) postulated a northeast trending fault separating the sediments from the volcanics. There is a possibility of folding in the eastern part of the property where the volcanics are more strongly foliated. He also reported weakly developed graded bedding in the tuffs which suggested younging to the northeast.
B. Mineralization and Alteration

A 15 m wide carbonate-altered feldspar porphyry dyke was observed just north of the creek crossing the centre of the claim group. This zone contains numerous discontinuous, milky white quartz veinlets up to 7 mm wide. Pyrite cubes and blebs, up to 5%, were observed.

Approximately 650 m to the west, a very fine-grained, medium to light grey, siliceous and pyritic tuff was observed. This appears to be a shear-related zone with 1 to 5% pyrite fracture fillings and lesser disseminations, moderate amounts of carbonate fracture filling and minor jarosite staining.

Weakly magnetic, fine-grained, disseminated pyrrhotite was observed in most of the volcanics comprising up to 5%. Minor disseminated pyrite was also noted. Trace amounts of chalcopyrite were observed locally in the flows and flow breccias.
5. DIAMOND DRILLING

A. Introduction

From February 8th to 14th, 1991, Coates Drilling Ltd. of Delta, B.C., completed 204.83 m of NQ diamond drilling in two holes at a total cost of $24,245.00. Both drill holes were collared at the same location on the RAIN 1 claim (Fig. 4) in a program designed to test an area for a possible tailings emoundment.

Drill core was split, logged and stored at the Mt. Milligan camp. Split core was sampled intermittently over 2 m intervals. Twelve samples (C476 to C487) were analyzed from drill hole 91-850 at the Placer Dome Inc. Research Centre. Drill logs are included in Appendix III. Geochemical analyses for copper and gold, conducted by the Placer Dome Inc. Research Centre, in Vancouver, B.C., are given in Appendix IV.

B. Drill Holes

Drill Hole 91-855: was oriented -60° at azimuth 135° and drilled to a depth of 52.34 m where the hole was abandoned in overburden (Fig. 5).

Drill Hole 91-850: was collared at the same location as 91-855, but was oriented -75° at azimuth 135° and drilled to a depth of 152.40 m (Fig. 5) with 55.47 m of casing required through the overburden. From 55.47 m to 75.0 m the drill hole cut a sequence of pyritic, poorly-indurated, pebbly mudstone. This unit
PEBBLY MUDSTONE
Black, graphite
3 to 5% pyrite

Rubbly & brecciated
with calcite stringers &
veins

PLACE MUDSTONE
3 to 5% pyrite

More competent than
above

BLACK MUDSTONE with
minor PEBBLY INTERVALS
graphitic
3 to 5% pyrite

Less competent than
above

DDH 91-850
EOH 152.40 m
contains >10% pyrite overall with local sections containing up to 50%. Pyrite occurs as partings, blebs and as locally massive sections. Moderate to strong pervasive carbonate and carbonate veining, ranging from <1 mm to >5 mm in width were also noted.

From 75.0 m to 123.44 m similar to above pyritic, pebbly mudstone was intersected, with the rock unit being more competent.

From 123.44 m to 152.34 m a blocky mudstone with minor pebbly intervals was intersected. Carbonate veining similar to the interval 55.47 to 75.0 m, was noted.

Analysis for copper and gold from the twelve, 2 m samples of split core from drill hole 91-850 yielded copper values from 48-168 ppm and gold values from 2.5 to 75 ppb. While copper results are considered to be at background levels, gold results which average 41 ppb for the twelve samples may be weakly anomalous. No correlation is evident between gold and copper.
6. CONCLUSIONS AND RECOMMENDATIONS

Diamond drilling shows the area on the RAIN 1 claim to be underlain by predominantly pyritic, pebbly mudstone, perhaps correlative with the Upper Triassic Rainbow Creek Formation of Nelson et al (1991). Pyrite, occurring in amounts up to 10%, appears to be largely formational in origin. No copper minerals were noted and analytical results for copper were not anomalous. Gold values appear to be weakly anomalous, averaging 41 ppb Au.

As little evidence was seen in drill core to suggest proximity to a porphyry-related hydrothermal system, no further work is recommended in this portion of the claim area.
BIBLIOGRAPHY

APPENDIX I

STATEMENT OF QUALIFICATIONS
STATEMENT OF QUALIFICATIONS

I, D. Russell Barnes of #9 - 2425 West 2nd Avenue, in Vancouver, in the Province of British Columbia, do hereby state:

1. That I am a graduate of the University of British Columbia, Vancouver, B.C., where I obtained a B.Sc., in Geology in 1988.

2. That I have been active in mineral exploration since 1986.

3. That I am an Associate of the Geological Association of Canada.

D. Russell Barnes
Geologist

May, 1991
Vancouver, B.C.
STATEMENT OF QUALIFICATIONS

Richard K. Moses has provided information stating that:

1. He has a B.S. degree in Geology (1973) from the Eastern Illinois University;

2. He has worked in the geological profession since 1973;

3. He is employed by the Placer Dome Inc. group of companies;

4. He was involved in a drilling program on the Mt. Milligan property during January and February 1991; and

5. He conducted the drilling program on the Rain 1 Claim during February, 1991.
APPENDIX II

STATEMENT OF COSTS
STATEMENT OF EXPENDITURES
DDH'S 91-850 AND 91-855 - RAIN 1 CLAIM
(February 8 -14, 1991)

Personnel

<table>
<thead>
<tr>
<th>Name</th>
<th>Days</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Moses</td>
<td>6</td>
<td>365.00</td>
<td>2,190.00</td>
</tr>
<tr>
<td>S. Wallace</td>
<td>5</td>
<td>225.00</td>
<td>1,125.00</td>
</tr>
<tr>
<td>R. Krauss</td>
<td>1</td>
<td>260.00</td>
<td>260.00</td>
</tr>
<tr>
<td>E. McKenzie</td>
<td>1</td>
<td>185.00</td>
<td>185.00</td>
</tr>
<tr>
<td>S. Tilley</td>
<td>1</td>
<td>185.00</td>
<td>185.00</td>
</tr>
<tr>
<td>J. Dandenault</td>
<td>1</td>
<td>185.00</td>
<td>185.00</td>
</tr>
</tbody>
</table>

Transportation

<table>
<thead>
<tr>
<th>Description</th>
<th>Days</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Expense</td>
<td>6</td>
<td>70.00</td>
<td>420.00</td>
</tr>
<tr>
<td>Helicopter</td>
<td>12</td>
<td>815.00</td>
<td>9,780.00</td>
</tr>
<tr>
<td>Room and Board</td>
<td>39</td>
<td>70.00</td>
<td>2,730.00</td>
</tr>
<tr>
<td>Drilling</td>
<td></td>
<td></td>
<td>25,245.42</td>
</tr>
<tr>
<td>Analytical Costs</td>
<td></td>
<td></td>
<td>133.25</td>
</tr>
<tr>
<td>Freight</td>
<td></td>
<td></td>
<td>500.00</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>$42,938.67</td>
</tr>
</tbody>
</table>

APPENDIX III

DRILL HOLE LOGS
<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE</td>
<td>Site Name</td>
<td>1</td>
<td>Site Location</td>
<td>1</td>
</tr>
<tr>
<td>HOLE</td>
<td>Hole Number</td>
<td>2</td>
<td>Hole Type</td>
<td>2</td>
</tr>
<tr>
<td>DEPTH</td>
<td>Depth</td>
<td>3</td>
<td>DEPTH</td>
<td>3</td>
</tr>
<tr>
<td>HT</td>
<td>Head Tangent</td>
<td>4</td>
<td>H T</td>
<td>4</td>
</tr>
<tr>
<td>N1</td>
<td>North 1</td>
<td>5</td>
<td>N 1</td>
<td>5</td>
</tr>
<tr>
<td>N2</td>
<td>North 2</td>
<td>6</td>
<td>N 2</td>
<td>6</td>
</tr>
<tr>
<td>L1</td>
<td>Length 1</td>
<td>7</td>
<td>L 1</td>
<td>7</td>
</tr>
<tr>
<td>L2</td>
<td>Length 2</td>
<td>8</td>
<td>L 2</td>
<td>8</td>
</tr>
<tr>
<td>H1</td>
<td>Height 1</td>
<td>9</td>
<td>H 1</td>
<td>9</td>
</tr>
<tr>
<td>H2</td>
<td>Height 2</td>
<td>10</td>
<td>H 2</td>
<td>10</td>
</tr>
<tr>
<td>DATE</td>
<td>Date</td>
<td>11</td>
<td>DATE</td>
<td>11</td>
</tr>
</tbody>
</table>

NOTES:
- Site Name should be clear and identifiable.
- Site Location should include geographic coordinates.
- Hole Type should be specified as 'Drill' or 'Core'.
- Depth should be measured in meters.
- North 1 and North 2 should be measured in degrees.
- Length 1 and Length 2 should be measured in meters.
- Height 1 and Height 2 should be measured in meters.
- Date should include year, month, and day.

EXAMPLE:
- Site Name: Site 1
- Site Location: 45.1234, -123.4567
- Hole Type: Drill
- Depth: 100.00 m
- North 1: 120.00°
- North 2: 30.00°
- Length 1: 200.00 m
- Length 2: 150.00 m
- Height 1: 10.00 m
- Height 2: 5.00 m
- Date: 2023-01-01

ASSAY FIELD NAMES:
- Gold (Au)
- Silver (Ag)
- Copper (Cu)
- Zinc (Zn)
- Lead (Pb)
- Uranium (U)

ASSAY FIELD DESCRIPTIONS:
- Au: Gold Concentration
- Ag: Silver Concentration
- Cu: Copper Concentration
- Zn: Zinc Concentration
- Pb: Lead Concentration
- U: Uranium Concentration

ASSAY FIELD NOTES:
- All assays should be performed in triplicate.
- Results should be reported to the nearest decimal point.
- All assays should be conducted in a certified laboratory.

ASSAY FIELD SPECIFICATIONS:
- Gold Concentration: 0.00 - 100.00 g/t
- Silver Concentration: 0.00 - 1000.00 g/t
- Copper Concentration: 0.00 - 100.00 g/t
- Zinc Concentration: 0.00 - 1000.00 g/t
- Lead Concentration: 0.00 - 1000.00 g/t
- Uranium Concentration: 0.00 - 1000.00 g/t

ASSAY FIELD QUALITY Assurance:
- All assays should be performed in triplicate.
- Results should be reported to the nearest decimal point.
- All assays should be conducted in a certified laboratory.

ASSAY FIELD QUALITY Control:
- All assays should be performed in triplicate.
- Results should be reported to the nearest decimal point.
- All assays should be conducted in a certified laboratory.

ASSAY FIELD CONFIRMATION:
- All assays should be performed in triplicate.
- Results should be reported to the nearest decimal point.
- All assays should be conducted in a certified laboratory.

ASSAY FIELD INTERPRETATION:
- Gold Concentration: 0.00 - 100.00 g/t
- Silver Concentration: 0.00 - 1000.00 g/t
- Copper Concentration: 0.00 - 100.00 g/t
- Zinc Concentration: 0.00 - 1000.00 g/t
- Lead Concentration: 0.00 - 1000.00 g/t
- Uranium Concentration: 0.00 - 1000.00 g/t

ASSAY FIELD DATA ANALYSIS:
- Gold Concentration: 0.00 - 100.00 g/t
- Silver Concentration: 0.00 - 1000.00 g/t
- Copper Concentration: 0.00 - 100.00 g/t
- Zinc Concentration: 0.00 - 1000.00 g/t
- Lead Concentration: 0.00 - 1000.00 g/t
- Uranium Concentration: 0.00 - 1000.00 g/t

ASSAY FIELD RESULTS:
- Gold Concentration: 0.00 - 100.00 g/t
- Silver Concentration: 0.00 - 1000.00 g/t
- Copper Concentration: 0.00 - 100.00 g/t
- Zinc Concentration: 0.00 - 1000.00 g/t
- Lead Concentration: 0.00 - 1000.00 g/t
- Uranium Concentration: 0.00 - 1000.00 g/t

ASSAY FIELD SUMMARY:
- Gold Concentration: 0.00 - 100.00 g/t
- Silver Concentration: 0.00 - 1000.00 g/t
- Copper Concentration: 0.00 - 100.00 g/t
- Zinc Concentration: 0.00 - 1000.00 g/t
- Lead Concentration: 0.00 - 1000.00 g/t
- Uranium Concentration: 0.00 - 1000.00 g/t

ASSAY FIELD CONCLUSIONS:
- Gold Concentration: 0.00 - 100.00 g/t
- Silver Concentration: 0.00 - 1000.00 g/t
- Copper Concentration: 0.00 - 100.00 g/t
- Zinc Concentration: 0.00 - 1000.00 g/t
- Lead Concentration: 0.00 - 1000.00 g/t
- Uranium Concentration: 0.00 - 1000.00 g/t

ASSAY FIELD RECOMMENDATIONS:
- Gold Concentration: 0.00 - 100.00 g/t
- Silver Concentration: 0.00 - 1000.00 g/t
- Copper Concentration: 0.00 - 100.00 g/t
- Zinc Concentration: 0.00 - 1000.00 g/t
- Lead Concentration: 0.00 - 1000.00 g/t
- Uranium Concentration: 0.00 - 1000.00 g/t

ASSAY FIELD FUTURE WORK:
- Gold Concentration: 0.00 - 100.00 g/t
- Silver Concentration: 0.00 - 1000.00 g/t
- Copper Concentration: 0.00 - 100.00 g/t
- Zinc Concentration: 0.00 - 1000.00 g/t
- Lead Concentration: 0.00 - 1000.00 g/t
- Uranium Concentration: 0.00 - 1000.00 g/t

ASSAY FIELD ACKNOWLEDGEMENTS:
- Gold Concentration: 0.00 - 100.00 g/t
- Silver Concentration: 0.00 - 1000.00 g/t
- Copper Concentration: 0.00 - 100.00 g/t
- Zinc Concentration: 0.00 - 1000.00 g/t
- Lead Concentration: 0.00 - 1000.00 g/t
- Uranium Concentration: 0.00 - 1000.00 g/t

ASSAY FIELD REFERENCES:
- Gold Concentration: 0.00 - 100.00 g/t
- Silver Concentration: 0.00 - 1000.00 g/t
- Copper Concentration: 0.00 - 100.00 g/t
- Zinc Concentration: 0.00 - 1000.00 g/t
- Lead Concentration: 0.00 - 1000.00 g/t
- Uranium Concentration: 0.00 - 1000.00 g/t
PLACER DOME INC.
DRILL LOG FORM 4

MBA - JULY 90

DESCRPTIVE REMARKS

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 0.00</td>
<td>S547</td>
</tr>
<tr>
<td>P 5547</td>
<td>15240</td>
</tr>
<tr>
<td>P 5547*</td>
<td>12650</td>
</tr>
<tr>
<td>A004</td>
<td>S5547</td>
</tr>
</tbody>
</table>

- Pebble Mudstone - blk, bubbly texture, mixed in grey, indurated.
- Constrained to siltstone matrix.
- Pebble size ranges from 2cm to 10cm, most are 2-5cm in diameter.
- Mud-straits, Gt & CB - carbonate and quartz. 1m-3m lenses of Gt, CB, and CB are often offset by younger fumarolic deposits 20mm+ in a bed due to compaction and consolidation.

Overburden no record of type on file

RECOV SAMPLE No.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 405</td>
<td>S0D2</td>
</tr>
<tr>
<td>413</td>
<td>F2</td>
</tr>
</tbody>
</table>

- Unit contains 10% py over all with some areas containing up to 50% band by average or patches and blebs and partial.
Placer Dome Inc.
Drill Log Form 4

Descriptive Remarks

- **Similar to above.**
- **Rock more competent.**

Recovery Sample No.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
Placer Dome Inc.

Drill Log Form 4

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-14</td>
<td>KF2</td>
<td>Similar to 75 to 95</td>
</tr>
<tr>
<td>15-17</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>18-20</td>
<td>CB5</td>
<td></td>
</tr>
<tr>
<td>21-23</td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>24-26</td>
<td>CCC</td>
<td></td>
</tr>
</tbody>
</table>

Defined Mineral Fields

- **ROCK**: Various types
- **MINING**:
 - 15-17: C2
 - 18-20: CB5
 - 21-23: A3
 - 24-26: CCC

Descriptive Remarks

100 ft - **500** ft

1000 ft - **1500** ft

2000 ft - **2500** ft

3000 ft - **3500** ft

4000 ft - **4500** ft

5000 ft - **5500** ft
PLACER DOME INC.
DRILL LOG FORM 4

DESCRIPTIVE REMARKS

B1K Madisonite w/minor pumicdbintime
Carbonate veining similar to above - paragenetic Fe/Mn front?
Postdating Carbonate
Predominant from 15° to 30° from CA

RECOV SAMPLE No. 14-1572 01-252 01-1022 01-1032 01-1042

DEFINING MINERALFIELDS

MgAl C S MgA I B O MgC G L I X T Y

RECALLING FORM 4

SPECIES

MINERALIZATION

ALTERATION

GRAPHIC LOG

DRILL CODED SYSTEM UNITS

TOTAL DEPTH/LENGTH

V & ALPHA

DEPTHTIME

ESTIMATING

ELEVATION

91-850

MGB - JULY 90
MT. MILLIGAN - GEOTECHNICAL DATA FORM

DDH #9 - 936

<table>
<thead>
<tr>
<th>Sample Interval</th>
<th>Sample No.</th>
<th>Sample Length (m)</th>
<th>Core Recovery %</th>
<th>HOH Length (m)</th>
<th>CS HARD</th>
<th>Degree of Breakage</th>
<th>Degree of Weathering</th>
<th>Fracture No./m</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.67 - 56.47</td>
<td>C</td>
<td>1.05</td>
<td>0.72</td>
<td>R2</td>
<td>8</td>
<td>3</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>56.19 - 56.37</td>
<td>C</td>
<td>1.32</td>
<td>0.34</td>
<td>R2</td>
<td>8</td>
<td>5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>58.36 - 59.24</td>
<td>C</td>
<td>2.47</td>
<td>0.34</td>
<td>R2</td>
<td>4</td>
<td>5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>61.76 - 61.91</td>
<td>C</td>
<td>1.05</td>
<td>0.72</td>
<td>R2</td>
<td>4</td>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>64.11 - 66.26</td>
<td>C</td>
<td>2.01</td>
<td>1.12</td>
<td>R2</td>
<td>9</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>67.44 - 68.06</td>
<td>C</td>
<td>1.52</td>
<td>0.72</td>
<td>R2</td>
<td>8</td>
<td>5</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>68.08 - 69.15</td>
<td>C</td>
<td>3.05</td>
<td>1.17</td>
<td>R2</td>
<td>10</td>
<td>5</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>71.93 - 77.00</td>
<td>C</td>
<td>3.05</td>
<td>0.65</td>
<td>R2</td>
<td>6</td>
<td>5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>74.40 - 78.01</td>
<td>C</td>
<td>3.05</td>
<td>1.68</td>
<td>R2</td>
<td>14</td>
<td>5</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>75.00 - 78.01</td>
<td>C</td>
<td>3.05</td>
<td>0.67</td>
<td>R2</td>
<td>12</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>76.05 - 78.01</td>
<td>C</td>
<td>3.05</td>
<td>0.67</td>
<td>R2</td>
<td>8</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>78.07 - 81.58</td>
<td>C</td>
<td>3.05</td>
<td>1.92</td>
<td>R2</td>
<td>15</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>81.52 - 85.02</td>
<td>C</td>
<td>3.05</td>
<td>0.63</td>
<td>R2</td>
<td>7</td>
<td>5</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>84.67 - 89.92</td>
<td>C</td>
<td>3.05</td>
<td>1.64</td>
<td>R2</td>
<td>8</td>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>89.95 - 94.96</td>
<td>C</td>
<td>3.05</td>
<td>1.52</td>
<td>R2</td>
<td>10</td>
<td>5</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>92.99 - 95.40</td>
<td>C</td>
<td>3.05</td>
<td>0.31</td>
<td>R2</td>
<td>9</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>95.40 - 98.47</td>
<td>C</td>
<td>3.05</td>
<td>1.16</td>
<td>R2</td>
<td>10</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>98.45 - 102.60</td>
<td>C</td>
<td>3.10</td>
<td>1.15</td>
<td>R2</td>
<td>11</td>
<td>5</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>102.60 - 105.0</td>
<td>C</td>
<td>3.10</td>
<td>0.81</td>
<td>R2</td>
<td>12</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>105.0 - 109.15</td>
<td>C</td>
<td>3.10</td>
<td>1.81</td>
<td>R2</td>
<td>12</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>109.15 - 111.70</td>
<td>C</td>
<td>3.10</td>
<td>2.20</td>
<td>R2</td>
<td>12</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>111.70 - 116.95</td>
<td>C</td>
<td>3.10</td>
<td>2.20</td>
<td>R2</td>
<td>12</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>116.95 - 121.20</td>
<td>C</td>
<td>3.10</td>
<td>2.20</td>
<td>R2</td>
<td>12</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>121.20 - 125.5</td>
<td>C</td>
<td>3.10</td>
<td>2.20</td>
<td>R2</td>
<td>12</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>125.50 - 130.9</td>
<td>C</td>
<td>3.10</td>
<td>2.20</td>
<td>R2</td>
<td>12</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>130.90 - 136.23</td>
<td>C</td>
<td>3.10</td>
<td>2.20</td>
<td>R2</td>
<td>12</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Footer: 99999 DENOTES NO MEASUREMENT TAKEN

NOTE 1: 40 = > 40 HIGHLY FRACTURED

NOTE 2: 20 = > 20 FRI/m HIGHLY FRACTURED
MT. MILLIGAN - GEOTECHNICAL DATA FORM

DDH #: 91-850
Logger: W.J.

Date: 9/2/16

<table>
<thead>
<tr>
<th>Sample Interval From(m)</th>
<th>Sample No.</th>
<th>Sample Length(m)</th>
<th>Core Recovery</th>
<th>RQD Length(m)</th>
<th>%</th>
<th>CRSF</th>
<th>Degree of Breakage</th>
<th>Degree of Weathering</th>
<th>Fracture No.</th>
<th>Fracture Recovery</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>133.63 - 134.63</td>
<td>C</td>
<td>3.05</td>
<td>1.77</td>
<td>R2</td>
<td>9</td>
<td>5</td>
<td>30</td>
<td>SOME RUBBLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.58 - 135.14</td>
<td>C</td>
<td>3.44</td>
<td>0.78</td>
<td>R2</td>
<td>7</td>
<td>5</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141.17 - 141.47</td>
<td>C</td>
<td>3.85</td>
<td>0.94</td>
<td>R2</td>
<td>5</td>
<td>5</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144.17 - 144.22</td>
<td>C</td>
<td>3.05</td>
<td>1.11</td>
<td>R2</td>
<td>8</td>
<td>5</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142.22 - 142.35</td>
<td>C</td>
<td>3.10</td>
<td>1.11</td>
<td>R2</td>
<td>9</td>
<td>5</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142.17 - 142.40</td>
<td>C</td>
<td>3.05</td>
<td>1.55</td>
<td>R2</td>
<td>10</td>
<td>5</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.09</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Footnote: 99999 DENOTES NO MEASUREMENT TAKEN

NOTE 1: 40 = > 40 HIGHLY FRACTURED
NOTE 2: 20 = > 20 FR/m HIGHLY FRACTURED
PLACER DOME INC.
DRILL LOG FORM 4

SAMPLE NO.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Chip Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>487</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTIVE REMARKS

- [Details of rock types and mineralization]
Placer Dome Inc. Geolog Drillhole Header Form

Header Cards
- **Loc**: Location
- **Drill**: Drillhole
- **Surveys**: Survey cards
- **Cross**: Cross section
- **Out If Not Req'd**: Include or exclude cards

Example of Assay File Definition

Example:

File Name: Geo Assay File

- **AOG**: AOG (GT)
- **AUX**: AUX (GT)
- **ATF**: ATP (GT)
- **AMTH**: AMT (GT)

Notes:

1. Do not change file name (IAG, ATG, etc.)
2. Do not change file name (AOG, ATP, etc.)
3. Use core as required for assay file definition
4. File name is based on assay results.
PLACER DOME INC.
DRILL LOG FORM 4

RECOVERY

MINERALIZATION

L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

/ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DIRECTIVE REMARKS

Hole abandoned in overburden

CASE
APPENDIX IV

DRILL HOLE ANALYTICAL RESULTS
SAMPLE PREPARATION PROCEDURES

(Placer Dome Inc. Research Centre)

Core samples were collected in plastic bags. They were dried, then crushed by a jaw crusher followed by a cone crusher. A 250 gram subsample of crushed material was separated using a riffle splitter. This subsample was pulverized by rolling to -100 mesh for analysis.

Soil samples were collected in kraft envelopes. They were dried at approximately 60°C, then screened to obtain the minus 80 mesh fraction for analysis.
<table>
<thead>
<tr>
<th>Element</th>
<th>Unit</th>
<th>Weight (g)</th>
<th>Digestion</th>
<th>Range</th>
<th>Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>ppb</td>
<td>10.0</td>
<td>Aqua Regia</td>
<td>5-4000</td>
<td>A.A. Solvent Ext.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>ppm</td>
<td>0.5</td>
<td>HCL04/HN03</td>
<td>0.2-20</td>
<td>A.A. Backgd.Cor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>ppm</td>
<td>0.5</td>
<td>Aqua Regia</td>
<td>2-2000</td>
<td>D.C. Plasma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>ppm</td>
<td>0.5</td>
<td>HCL/HN03</td>
<td>2-2000</td>
<td>D.C. Plasma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>ppm</td>
<td>0.5</td>
<td>HCL04/HN03</td>
<td>2-4000</td>
<td>Atomic Absorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>ppm</td>
<td>0.5</td>
<td>HCL04/HN03</td>
<td>2-3000</td>
<td>A.A. Backgd.Cor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>ppm</td>
<td>0.5</td>
<td>HCL04/HN03</td>
<td>2-3000</td>
<td>Atomic Absorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>ppm</td>
<td>0.5</td>
<td>HCL04/HN03</td>
<td>1-1000</td>
<td>Atomic Absorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RAIN-1 CLAIM CORE SAMPLE ANALYSES

<table>
<thead>
<tr>
<th>NTS</th>
<th>DDH#</th>
<th>SAMPLE#</th>
<th>LAB PROJ.#</th>
<th>AU1 (PPB)</th>
<th>CU (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>93N01</td>
<td>850-1</td>
<td>C476</td>
<td>1363D</td>
<td>75</td>
<td>96</td>
</tr>
<tr>
<td>93N01</td>
<td>850-1</td>
<td>C477</td>
<td>1363D</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>93N01</td>
<td>850-1</td>
<td>C478</td>
<td>1363D</td>
<td>45</td>
<td>48</td>
</tr>
<tr>
<td>93N01</td>
<td>850-1</td>
<td>C479</td>
<td>1363D</td>
<td>25</td>
<td>53</td>
</tr>
<tr>
<td>93N01</td>
<td>850-1</td>
<td>C480</td>
<td>1363D</td>
<td>65</td>
<td>69</td>
</tr>
<tr>
<td>93N01</td>
<td>850-1</td>
<td>C481</td>
<td>1363D</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>93N01</td>
<td>850-2</td>
<td>C482</td>
<td>1363D</td>
<td>65</td>
<td>67</td>
</tr>
<tr>
<td>93N01</td>
<td>850-2</td>
<td>C483</td>
<td>1363D</td>
<td>35</td>
<td>103</td>
</tr>
<tr>
<td>93N01</td>
<td>850-2</td>
<td>C484</td>
<td>1363D</td>
<td>35</td>
<td>87</td>
</tr>
<tr>
<td>93N01</td>
<td>850-2</td>
<td>C485</td>
<td>1363D</td>
<td>2.5</td>
<td>168</td>
</tr>
<tr>
<td>93N01</td>
<td>850-2</td>
<td>C486</td>
<td>1363D</td>
<td>2.5</td>
<td>122</td>
</tr>
<tr>
<td>93N01</td>
<td>850-2</td>
<td>C487</td>
<td>1363D</td>
<td>35</td>
<td>115</td>
</tr>
</tbody>
</table>