Report on

Gechemical and Preparatory Physical Work
Golden Loon Property, Little Fort, B.C.

Golden Loon Mineral Claims

NTS Map 92P/8
Lat: 51° 26' N
Long: 120° 17' W

Report prepared by:

Willy Kovacevic
Owner and Operator

September 25, 2007
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Property and Ownership</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Location and Access</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>History and Development</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Regional Geology</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Local Geology</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>2007 Exploration Program Completed</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>- Physical Preparation Work</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>- Geochemical Soil Sampling</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Recommendation</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Subsequent Events</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>References</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>Statement of Expenditures</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>Statement of Qualification</td>
<td>14</td>
</tr>
</tbody>
</table>

LIST OF APPENDICES
(At Rear of Report)

Appendix 1 Soil Samples Geochemical Certificate
Eco Teck Lab Kamloops, B.C.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Property Location Map</td>
<td>1</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Claim Map</td>
<td>3</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Regional Geology</td>
<td>5</td>
</tr>
</tbody>
</table>

LARGE FIGURES

(In Back Pocket)

Figure 4	2006-2007 Grid #1 Map with Topography	
Figure 4-A	B.C. Orthophoto Map (Grid #1 area)	
Figure 5	2007 Grid #2 With Topography	
Figure 6	2007 Grid #2 Soil sampling Map	
SUMMARY

The Golden Loon property consists of 20 Tenures covering the area of 5,551.44 hectares located in Kamloops Mining Division of South-Central British Columbia. These tenures are designated as Golden Loon Property and are a 100% owned by Tilava Mining Corporation of Clinton, B.C. The Property is situated within NTS map sheet 92P/8 approximately 7 kilometers to the west of settlement of Little Fort, B.C. The claims are accessible by way of HWY #5, Thuya road and local logging roads.

The property is hilly to rugged, with local higher elevations in the order of 1550 meters above sea level. A high tension power line passes trough the most eastern part of the property. Apart from the power line and logging roads there are no facilities on the property. During the recent two years, due to Pine Beetle infestation, the area was heavily logged and numerous new logging roads were constructed.

The earliest record of prospecting in the area dates from the 1920 when placer gold was discovered from the Eakin Creek. The earlier explorers include Noranda, Rio Tinto and Teck concentrating on copper and nickel. The recent explorers include Mineta Resources Ltd, Corona Corporation, Placer Dome, Cusac Gold Mines and Tilava Mining Corporation concentrating on gold and PGM.

During the 2007 exploration season Tilava Mining Corporation conducted a preparatory physical work by extending 2006 Grid #1 established over a large copper anomaly defined by Noranda (1967) and a preliminary geochem survey in the south-eastern part of the Golden Loon Property. The exploration work is subject of this report.

INTRODUCTION

The area covering 5,551.44 hectares known as Golden Loon is located approximately 7 km to the west of community of Little Fort, B.C. (about 80 kilometers from Kamloops, B.C.) and is accessible by government maintained secondary roads leading from Highway #5. The southern part of the property has received the most exploration attention (approximately $1,000,000 expenditures) during the span of 1987-2002 mainly exploring for gold and PGM. A prominent ultramafic intrusion measuring approximately 10 km x 2.5 km, now named by BCGS as "Dum Lake Intrusion ", traversing entire length of the property. The early explorers included Noranda, Rio Tinto, and Teck concentrating on copper and nickel. The recent explorers include Mineta Resources Ltd, Corona Corporation, Placer Dome, Meteor Minerals Inc., Cusac Gold Mines and Tilava Corporation all concentrating on gold and PGM. During the recent exploration period 1987-2002 a dozen or so different geologist supervised the exploration. Either these professionals have had a “tunnel vision” or, somebody searching for gold and platinum, will find it unimportant that certain B.O. Brynelsen in 1967, working for Noranda, blanketed the area with soil sampling exploring for copper. And, that Mr. Brynelsen produced a copper anomaly
measuring in excess of 2 km x 500 m with a large grid of 800 feet spacing and a 200 feet s/s station intervals and, that he recommended further work consisting of 400 feet line spacing and s/s at 100 feet intervals (detailed grid). The Noranda’s copper anomaly is situated east and northeast of Dum Lake, an area previously not explored. Furthermore, Noranda’s samples have been assayed only for copper and nickel. A well constructed logging road # 2320 is traversing entire Cu anomalous ground. Since 1955 onward, an extensive logging and logging road construction took place, some as recent as last winter, providing good access to all parts of the property. The loggers work and road construction and blasting as well as nearby infrastructure, are rendering the exploration very cost effective.

PROPERTY AND OWNERSHIP

Golden Loon Property consists of 20 Tenures and covering an area of 5,551.44 hectares is a 100% owned (subject to 3% NSR on certain Tenures) by Tilava Mining Corporation, a private British Columbia corporation controlled by Willy Kovacevic of Clinton, B.C. All Tenures are situated within NTS map 92P/8 and the legal description is as follows:

<table>
<thead>
<tr>
<th>Tenure</th>
<th>Hectares</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>528280</td>
<td>80.546</td>
<td>February 15, 2009</td>
</tr>
<tr>
<td>528411</td>
<td>20.139</td>
<td>February 16, 2010</td>
</tr>
<tr>
<td>510616</td>
<td>302.088</td>
<td>August 14, 2009</td>
</tr>
<tr>
<td>507865</td>
<td>221.547</td>
<td>August 14, 2009</td>
</tr>
<tr>
<td>219543</td>
<td>25.00</td>
<td>August 14, 2009</td>
</tr>
<tr>
<td>219544</td>
<td>25.00</td>
<td>August 14, 2009</td>
</tr>
<tr>
<td>530059</td>
<td>40.287</td>
<td>March 15, 2009</td>
</tr>
<tr>
<td>531588</td>
<td>241.72</td>
<td>April 9, 2009</td>
</tr>
<tr>
<td>531891</td>
<td>100.719</td>
<td>August 14, 2008</td>
</tr>
<tr>
<td>507864</td>
<td>201.46</td>
<td>August 14, 2008</td>
</tr>
<tr>
<td>521473</td>
<td>40.294</td>
<td>October 24, 2008</td>
</tr>
<tr>
<td>521475</td>
<td>60.442</td>
<td>October 24, 2008</td>
</tr>
<tr>
<td>526270</td>
<td>60.449</td>
<td>January 25, 2009</td>
</tr>
<tr>
<td>510613</td>
<td>423.08</td>
<td>October 29, 2009</td>
</tr>
<tr>
<td>507887</td>
<td>1,088.049</td>
<td>October 29, 2007</td>
</tr>
<tr>
<td>510614</td>
<td>403.08</td>
<td>October 29, 2007</td>
</tr>
<tr>
<td>510607</td>
<td>503.85</td>
<td>October 29, 2007</td>
</tr>
<tr>
<td>507892</td>
<td>604.738</td>
<td>October 29, 2007</td>
</tr>
<tr>
<td>510615</td>
<td>504.069</td>
<td>October 29, 2007</td>
</tr>
<tr>
<td>510609</td>
<td>604.888</td>
<td>October 29, 2007</td>
</tr>
</tbody>
</table>

* Tenures subject to 3% NSR
Total Tenures : 20 - Total hectares : 5,551.44
Golden Loon East Group consist of 4 Tenures and covering an area of 241.98 hectares is a 100% owned by Tilava Mining Corporation, a private British Columbia corporation controlled by Willy Kovacevic of Clinton, B.C. All Tenures are situated within NTS map 92P/8 and the legal description is as follows:

<table>
<thead>
<tr>
<th>Tenure</th>
<th>Hectares</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>538405</td>
<td>20.16</td>
<td>August 1, 2008</td>
</tr>
<tr>
<td>538435</td>
<td>20.16</td>
<td>August 1, 2008</td>
</tr>
<tr>
<td>538399</td>
<td>60.49</td>
<td>August 1, 2008</td>
</tr>
<tr>
<td>538399</td>
<td>141.17</td>
<td>August 1, 2008</td>
</tr>
</tbody>
</table>

Total Tenures 4
Total hectares 241.98
FIG. 2

Golden Loon Property - Mineral Titles

Legend

- Indian Reserves
- National Parks
- Parks
- Mineral Tenures (Mineral - LRDW)
 - Mineral Claim
 - Mineral Lease
 - Reserves (Mineral - LRDW Sites)
 - Place Claim Designation
 - Place Lease Designation
 - No Staking Reserve
 - Conditional Reserve
 - Release Required Reserve
 - Surface Restriction
 - Recreation Area
 - Others
- BCS Grid
- Contours (1:250K)
 - Contour - Index
 - Contour - Intermediate
 - Area of Exclusion
 - Area of Indefinite Contours
- Transportation - Points (TRIM)
- Airfield
- Airport
- Airstrip
- Airport Abandoned
- Ferry Route
- Road (Gravel Undivided) - 1 Lane
- Road (Gravel Undivided) - 2 Lanes
- Road (Gravel Undivided) - U/C - 1 Lane
- Road (Gravel Undivided) - U/C - 2 Lanes

This map is a user-generated static output from an Internet mapping site and is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. THIS MAP IS NOT TO BE USED FOR NAVIGATION.

Map center: 51° 26' 6" N, 120° 17' 30" W
Scale: 1:61,639
LOCATION AND ACCESS

The property is situated within NTS map sheet 92P/8, approximately 7 kilometers due west from the settlement of Little Fort, 5 km west of North Thompson River and approximately 80 kilometers from the City of Kamloops, B.C. The claims are accessible from Highway #5 via government maintained Thuya road and appending logging roads of which Logging road #2320 and Mineta road are the most important. Many unnamed and well constructed roads are recently added crisscrossing the property.

The property is at elevation 1100m – 1400m from the sea level on an undulated plateau south of Eaking Creek gorge. Vegetation is thick, with mature stands of spruce, pine, poplar and birch. Due to Pine Beetle infestation many areas of infected pine are now logged-off leaving large open spaces when once forest stood.

The area experiences typical south-central B.C hot dry summers and cold winters. Precipitation is light the year around, with long dry spells in summer and light snow accumulations during the winter months (December through March).

HISTORY AND DEVELOPMENT

1920: Placer gold was discovered on Eakin and Lemieaux Creeks north of Golden Loon claims. Coarse gold was found in higher bench gravels, and a number of placer mining claims were staked on a 2.4 kilometers length of Eakin Creek, directly north of Golden Loon claims. Total production from 1925 to 1945 was 176 ounces of gold. The source of the placer gold has never been determined, but conceivably the source area could be the northern part of Golden Loon claims.

1967: Noranda explored Kira claims in the area of copper and nickel associated with a large ultramafic intrusion crossing the claims (AR # 1055)

1973: Rio Tinto explored the area and outlined Cu, Zn and Pb anomalies west of Dum Lake. There is no indication that they followed up these anomalies with further work (AR # 4689)

1980-81: Teck explored the Minerva claims in the area and outlined Cu and Ag soil anomalies west of Dum Lake over the Thuya Batholithic intrusive in the western part of the present claims (AR # 9061). Pyrite, chalcopyrite and galena were found in trace amounts in quartz selvages near the contact of hornblende diorite with the ultramafic body. A total of 1,349 samples were analyzed for Mo, Cu and Ag.

None of the previous explorers have run assays for gold.
1987 - 1989 Mineta Resources Ltd. acquired claims in the eastern part of the area and completed geochemical and geological surveys, outlining Au, Ag and Pb targets on the Golden Loon VIII claim (AR # 1734, 18802, 21109 and 20029).

1990: Corona Corporation Ltd. optioned Golden Loon Property in 1990 and conducted an integrated geological, geochemical, geophysical, trenching and drilling program largely in the Dum Lake area (Golden Loon VIII). This program tested Mineta's gold targets. Six diamond drill holes tested strong northerly trending zone of silicification cutting monzonitic to monzodioritic intrusive rocks southwest of Dum Lake. The best gold intersections were 2.46 g/t over 10.4 meters in hole GL-04 and 1.64 g/t over 14.3 meters in hole GL-02 (AR # 21014).

1992: Placer Dome Limited optioned the western part of the Golden Loon claims, focusing on the porphyry copper-gold potential and completed 20 km of grid preparation, geological mapping and soil geochemical survey (AR # 22818).

1996: Meteor Minerals Inc. completed a program of geochemical soil sampling to test the potential of enzyme leach technique and completed three-hole drilling program (393 meters) in the area of "High Grade" zone (AR#24883)

1999: Tilava Mining Corporation and Belmont Resources Inc. completed a program of lithogeochemical sampling (150 samples) on ultramafic rocks on the property and detected significant platinum value 13.8 g/t (about 0.4 oz/t) (AR# 26100).

2000-2001: The property was optioned to Cusac Gold Mines Limited, focusing on platinum over the southeast end of the ultramafic rocks. Cusac completed geochmical and geophysical VLF-EM and IP surveys and drilled 7 holes (933 meters) outlining a large low-grade nickel/cobalt mineralization (AR # 26,564)

During the 2005-2006 Tilava Mining Corporation established a grid over the large copper anomaly outlined by Noranda (1967) and conducted basic prospecting over large logged area and new logging roads (AR#28554).
LEGEND

QUATERNARY
- **Qal**: Unconsolidated glacial, fluval and alluvial deposits

LATE TRIASSIC (?) and EARLY JURASSIC
- **TJs**: Donita, microdonita, spenita, intrusion breccia; pyrite-silica-arsenic rock, latex and chloritic actinolite derived from these intrusive rocks and/or associated country rocks
- **TJC**: Donita, microdonita, gabbror; rarely includes clinopyroxenite and intrusion breccia
- **TJur**: Donita, melilitite, clinopyroxenite, apatite

MIDDLE AND LATE TRIASSIC
Nicola Group
- **UTn**: Volcanic sandstone, siltstone, conglomerate, volcanic breccia, tuff, basalt, chert, limestone
- **uTn**: Anhydrite, sandstone (containing pyrite), breccia, andesite, gabbro, sillstone and conglomerate

Meridian Lake succession
- **uTkm**: Siltstone, argillite, slate, sandstone, conglomerate, limestone

Lemieux Creek succession
- **muTns**: Siltstone, slate, phyllite, sandstone, quartzite, chert, limestone

Lemieux Creek succession
- **muTnl**: Limestone, lesser amounts of silt and tuffstone

CARBONIFEROUS - PERMIAN
Harper Ranch Group
- **CPfr**: Siltstone, argillite, chert, limestone

Fennell Formation
- **CPfn**: Upper structural division: pillow and massive basalt; minor amounts of clinopyroxene, gabbror

CPfr: chert

SYMBOLS
- **Geological contact (defined, approximate, inferred)**
- **Fault (defined, approximate, inferred)**
- **Thrust fault: teeth on upthrust block (inferred)**
- **Bedding, tops known (inclined, overturned)**
- **Bedding, tops unknown (inclined, vertical)**
- **Slaty cleavage or schistosity (inclined, vertical)**
- **Axis of mesoscopic fold**
- **Fossil locality (macrofossil, conodont)**
- **Location of isotopically dated sample (U-Pb zircon)**
- **Mineral occurrence with MINFILE number (prefix #2P, Table 1)**
- **Past producer**
- **Prospect**
- **Showing**
- **Assay sample with sample number (Table 2)**
- **Field station (shown only where not indicated by another symbol)**
- **Limit of extensive Cal cover**
- **Limit of mapping**
- **Contours (100 metre intervals)**
- **Roads (paved, gravel, rough)**

Figure and Legend after BCGS O.F. 2002-4
REGIONAL GEOLOGY

Mapping

Regional mapping of the Little Fort area was up-dated by Geological Survey of Canada in 1965 and published as Memoir # 363 with accompanying map, Map # 1278A. More recently mapping was by BCGS Open File 2002 – 4 - GEOLOGY OF NEHALLISTON PLATEAU (P. Shiarizza, S. Israel, S. Hefferman and J. Zuber)

Bedrock Geology

Principal feature of the area is the Bonaparte Plateau, which occupies most of NTS Map 92P. This regional high peneplane comprises three tectonic settings. To the east lies a belt of highly deformed and metamorphosed Precambrian to Late-Paleozoic rocks of Omenica geanticline. Flanking the area to the west, is a series of folded and faulted Late-Paleozoic rocks of the Pinchi geanticline. And, in the center (i.e within the Quesnel Trough) the Golden Loon claims area is underlain by a thick sequence of Triassic and Jurassic (Mesozoic age) volcanics and intrusives.

Structure & Lithology

The Thompson River valley lies along a north-striking fault zone which separates the Quesnel/Shuswap highland plateau to the east from the Thompson/Bonaparte plateau on the west. The Thompson/Bonaparte Plateau is primary underlain by moderately folded and block faulted late Paleozoic to early Mesozoic volcanics and sediments, intruded by the Triassic to Jurassic Thuya batholith and the tectonically controlled (layered) “Golden Loon” ultramafic. In the Bonaparte and Cache Creek area – on the west side of the plateau – late Paleozoic rocks of the Cache Creek and Pavillion Groups are separated from the Quesnel Through rocks by the south extension of the Pinchi Fault. Much of the plateau has been eroded and covered by volcanics, volcanoclastic sediments and thick layer of basaltic flows.

Glaciation

In Pleistocene time entire area was blanketed by a continental glacier. Most recent ice movement appears to have been south to southeastward, originated in the Cariboo Mountains. Moraine is widespread and glacial features are pronounced. Glacial deposits tend to be thin over the Plateau area and thick within Thompson River valley.
LOCAL GEOLOGY

General Setting

Local geological mapping, in the Golden Loon claims area, is based on a report by D.B. Price which summarized the work done by geologist for the various mining organizations that worked the Thuya and Montigny Creek sectors.

Much of Price's treatise was derived from reports by Well, Evans&Bellamy (1990) and based on work done by Corona Corporation on the Golden Loon property. Reconnaissance mapping by Wells covered a large part of the property (Scale 1:10,000) using the extensive logging road system and a picket-line grid. Detailed geological mapping followed by I. Michell, over the Dum Lake sector (Scale 1:2300) adjacent and immediately to the north of the property.

Thuya Batholith

The Property area appears to be entirely underlain by a complex of gabbros to quartz monzonites. These rocks are part of the batholith which flanks the prominent northwest-southeast trending ultramafic "intrusive" ridge. To the southwest, lie quartz monzonites and granodiorite and to the northeast volcanics and sediments, all of the Nicola Group. These granitoids are considered to be part of the "underlining" Thuya batholith. From a current economics standpoint the ultramafics represent the most favorable target formations.

This complex of the rocks structure is now referred by BCGS as "Dum Lake Intrusion".

Nicola Group Rocks

North of the Thuya batholith lies a complex of volcanics and sediments with steeply dipping beds and fault planes parallel to general northwest-southeast regional trend. These layered volcanic rocks include a variety of fine grained, schistose flows and fragmentals - chloritic and dark green in color. Less well exposed are the sediments which are predominately dark colored shale, mudstones, siltstones, arenaceous limestones and phyllites. The phyllites tend to be light colored, quartz sericite schist. Locally, these rocks are sheared, folded and quartz veined.
Ultramafic Rocks

The local ultramafics form a prominent northwest-southeast ridge – sandwiched between the Thuya granitoids, on the southwest, and Nicola sediments and volcanics to the northeast. The exact age and relationship of the ultramafic rocks is not known; however, they appear to be intrusive an emplaced along a major fault contact, between the adjacent lithologies.

In general, the ultramafics are considered to be Triassic/Jurassic intrusives, that invaded the tectonic break which lies between Thuya granites and Nicola vulcanoclastics. The southwestern boundary of the ultramafics forms a sharp contact with granitic batholithic rocks. To the north, along the northeastern flank of the ultramafics, there tends to be a graduation and, at times, interlayered relationship with Thuya gabros. Southerly, along the northeast flank of the ultramafics, the contact with the volcanics and sediments is less pronounced.

From a local lithological standpoint, the ultramafics are distinct group of fine to medium grained, brown weathered, basic to ultrabasic rocks. Compositionally, they tend to range from olivine-rich dunite to periodites, pyroxenites and gabros. Serpentinization is pervasive and talc-brucite-magnesite-chromite veins and veinlets are common to most of the units. Alteration is widely distributed and appears to be controlled by shearing and faulting within the ultramafics.

The ultramafic rocks have been substantially affected by regional faulting which, by and large, strikes northwest-southeast (parallel to the axis of this intrusive feature). Cross-faulting is less pronounced but evident in the form of east to northeast trending serpantinized slips, shears and veins – almost at right angles to the intrusive trend.

Mineralization

From the economic standpoint, the ultramafic rocks have been found to contain copper, nickel, cobalt and platinum group elements (PGE’s) and are, at this time, the most interesting in the Property area.

Detailed mapping of the ultramafics has indentified widespread alteration and micro-fine disseminated mineralization. The alteration, exemplified by the presence of epidote, chlorite, serpentine and carbonate minerals and tends to occur along shearing planes, paralleling the general northwest-southeast structure trend of the intrusive. Mineralization is mainly in the form of fine-grained pyrite, pyrrhotite, chalcopyrite and pentlandite. Localized concentrations of magnetite and/or chrome occur as irregular veinlets, within the altered ultramafics. Platinum and gold have shown up in analyses of the ultramafics, however, there has been no discovery of economic-grade concentration of PGE’s thus far.
Within the zone between the ultramafics and the gabros – to the northwest -- chalcopyrite, pyrrhotite and pentlandite occur inter-granularly in gabro. Also, east and south of Dum Lake – in monzonitic and dioritic rocks – gold bearing milky quartz veins were discovered by Corona geologists – mineralized with pyrite, chalcopyrite and galena.

2007 EXPLORATION PROGRAM COMPLETED

Physical Preparation Work

2006-2007 Grid # 1 Ground Survey – During the 2006 exploration period a detailed grid was established over wide spaced (259-300 meters line spacing and 60 meters soil samples spacing) geochem survey conducted by Noranda Exploration 1967 (B.O. Brynelsen – Assessment report #1051). Noranda outlined moderate to strong copper anomaly measuring 2,500 x 500 meters. The Tilava’s 2006 grid is follow-up detailed survey over the Noranda’s Cu anomaly. As of October 3, 2006 the total established grid lines, on the Golden Loon Claims, consisted of 1.100 meters of base line and 10.750 meters of 100 spaced grid lines, cut, chained and picketed to IP standard. The pickets are posted at 100 meters intervals and 25 meters stations are flagged in two colors. All pickets are sprayed with red fluorescent paint and have aluminum tags firmly attached. The commencement of the grid is baseline station 00 N with UTM coordinates of 689285 Easting and 5702200 Northing and the commencement of the Tie Baseline is 688750 Easting and 5703000 Northing.

During the 2007 stage of exploration, period from July 15, 2007 to September 10, 2007, Tie Baseline was extended from 300 N to 800 N and 2,950 meters of grid lines were established. As previous, all grid lines are cut, chained and picketed to IP standard. The pickets are posted at 100 meters intervals and 25 meters station are flagged in two colors. All pickets are sprayed with red fluorescent paint and have aluminum tags firmly attached. As of September 10, 2007 the total established grid lines (Grid #1), on the Golden Loon claims, consist of 1,600 meters of baseline and 13,800 kilometers or grid lines. The grid, when completed, will consist of up to 20 kilometers of grid lines. 2006-2007 Grid is shown in Fig. 4.

2007 Grid # 2 – Ground Survey

During the period July 10, 2007 to July 11, 2007 a small grid was established on Golden Loon East Group consisting of 200 meters of baseline and 700 meters of grid line with 100 meters spacing. The pickets are posted at 100 meters intervals and 25 meters stations are flagged in two colors. The commencement of the baseline is station 00 S with UTM coordinates of 693125 Easting and 5698880 Northing.
The purpose of the grid is preparation for soil geochem survey designed to establish contact with Golden Loon ultramafic intrusion and to obtain basic soil information on the ground east of the postulated fault. The 2007 Grid#2 is established over Tenure 538399 of Golden Loon East and is shown in Fig. 5.

2007 Geochemical Soil Sampling

On July 18, 2007 the Grid #2 was soil sampled by the author end 29 soil samples were taken from "C" horizon when possible. The samples were collected into standard kraft paper soil sampling bags and were air dried in the bags before shipping to Eco-Tech Lab in Kamloops, B.C. The samples were analyzed for Au + 28 element ICP (Certificate of Analysis appended, Appendix 1). Only two samples were slightly anomalous indicating presence of ultramafics elements (Cr-Co-Ni - station 00S + 00E and 00E +25E) as presented in Fig. 6. From the limited sampling, it appears that the intended ultramafic contact is further to the west or north-west. Anomalous Au samples on stations 100S + 150E and 100S + 175E indicated that the ground east of projected fault may be prospective for precious metals.

Recommendations

Detailed prospecting is recommended to cover all new roads and logged area and the logged area which have not been prospected in the last five years. It is estimated that two to three weeks be budgeted for this work. The grid commenced in 2006 and further advanced in 2007 should be extended at least to 20 km of grid lines to the northeast of Dum Lake and all grid lines to be soil sampled at 25 meters intervals from "C" horizon when possible. Upon completion of geochem survey a geophysical (Mag and EM-VLF) to be conducted over the established grid to be followed by IP survey on selected areas. The Grid #2 (Golden Loon East Group) should be enlarged in all direction, to the north-west for Nickel-Cobalt potential and to the north-east for precious metals potential.

Subsequent Events

Due to diversified assemblage of minerals contained in this relatively large property was divided two parts: Golden Loon Group 3,706 hectares (nickel, cobalt and PGM) - Tenures 507887, 510614, 510607, 547979, 510615,510609 and 507892 and Dum Lake Group 1,843 hectares (gold, silver and copper) – Tenures 528280, 510616,528411,507865, 219544, 219543, 530059, 531588, 531891, 507864, 521473, 5211475, 510613 and 526270) to better reflect the present condition (targeting the specific minerals).
The Golden Loon Group was optioned to Sheffield Resources Ltd. from Vancouver, B.C. During the 2007 exploration season, Sheffield have initiated a large exploration program, including aerial, ground survey and diamond drilling which program will be filed for assessment as separate technical report.
References

James J. McDougal, November 29, 1990: Geochemical Report (bedrock sampling) on Golden Loon Group of Mineral Claims (AS # 26,100)

R.C. Wells and R.J. Bellamy; December 24, 1990: GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT on the Golden Loon Claims Group, Kamloops Mining Division, B.C. (AS#21014) for Corona Corporation and Mineta Resources Ltd.

Golden Loon 2007 Exploration Program
Statement of Expenses

1. Labor

Willy Kovacevic
Prospector/Project Manager
July 10/07 to July 11/07, July 13/07 to July 18/07
July 30/07 - September 6/07 to September 10/07
12 days @ $300/day
$3,600.00

Moses Richter
Field Assistant – Line cutter
July 11/07 to July 14/07
4 days @ $100/day
400.00

Ralph Philip
Field Assistant – Line cutter
July 15/07 to July 17/07,
September 6/07 to September 8/007
September 10/07
6 days @ $100/day
600.00

Total Labor
$4,600.00

2. Transportation

4x4 pick-up truck
14 days @ $75/day
Gas
$1,050.00
649.00
Total Transportation
$1,699.00

5. Motels – Restaurants - Groceries

- Motel
$872.10
- Restaurants
251.96
- Groceries
302.23

Total Motel and Food
$1,426.29

6. Field Supplies

- Pickets, flags, sample bags @ misc
$705.25
- Chain saw rentals 10 days @ $15.00/day
150.00

Total Field Supplies
$855.25
7. Contractors

Eco-Tech Laboratory, Kamloops, B.C.
Rock/Soil analyses $938.85

8. Reports

Report preparation $1,250.00
Drafting, printing, photocopy @ misc. 450.00
Total Report Preparation $1,700.00

2007 Exploration Expenses $11,219.39
30% Pac Withdrawal * $3,341.22
Total 2007 Exploration Expenses $14,560.61

* From Tilava Mining Corporation PAC

Value of Work Filed July 21/07 Event No 4160286 $968.00
Value of Work Filed Aug. 8/07 Event No 4163365 7,573.53
Value of Work Filed Sept. 21/07 Event No 4170877 6,019.08 $14,560.61
Statement of Qualification

I, Willy Kovacevic, of the Village of Clinton, British Columbia, DO HEREBY CERTIFY THAT I have the following prospecting and related experience:

1971 Completed The Canadian Securities Course (The Investment Dealers Association of Canada)

1972 Attended a prospecting course (hard rock) organized by the B.C. & Yukon Chamber of Mines.

1975-1976 Developed and shipped polymetallic ore from Adams Plateau, B.C. to Cominco (Borex Mining Ltd. Spar 1 and Spar 2 claims).

1976 Attended a prospecting course (placer gold recovery) organized by B.C. & Yukon Chamber of Mines.

1977-1978 As the President of Lorcan Resources Ltd. (VSE public company) supervised and participated in geophysical survey and diamond drilling (Lost Cabin Mine, California) – worked as diamond driller helper.

1977-1979 Prospected and geochemically surveyed group of claims owned by Mineta Resources Ltd. (VSE public company) in Monashee Range, B.C. Prospected and geochemically surveyed in south-central B.C. for Tilava Mining Corporation (as owner).

1980-1983 Explored for oil and gas in USA, produced and marketed oil in Clinton County, Kentucky for Robico Investment Ltd (as owner) and for group of VSE public companies, Mineta Resources Ltd., Westam Oil Ltd and Boram Oil Ltd (as principal).

1983-1990 Supervised and participated in various phases of exploration on the properties owned by Star of Mineta Ltd (VSE public company) as principal (Kirkland Lake, Ontario, Adams Plateau, B.C. and Golden Loon claims, Little Fort, B.C.)

Willy Kovacevic
Prospector
Values in ppm unless otherwise reported

<table>
<thead>
<tr>
<th>Et #</th>
<th>Tag #</th>
<th>Au(ppb)</th>
<th>Ag %</th>
<th>Al %</th>
<th>As</th>
<th>Ba</th>
<th>Bi</th>
<th>Ca %</th>
<th>Cd</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe %</th>
<th>La</th>
<th>Mg %</th>
<th>Mn</th>
<th>Mo</th>
<th>Na %</th>
<th>Ni</th>
<th>P</th>
<th>Pb</th>
<th>Sb</th>
<th>Sn</th>
<th>Sr</th>
<th>Ti %</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>Y</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>003+30E</td>
<td><0.2 1.96 <5 165 20 0.82 <1</td>
<td>24 47 66 5.88 <10</td>
<td>2.80 1135 <1</td>
<td>0.01</td>
<td>99 650 64 <5</td>
<td><20</td>
<td>45 0.13 <10</td>
<td>213 <10</td>
<td>12 105</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>003+50E</td>
<td><0.2 1.96 <5 140 15 0.58 <1</td>
<td>35 141 45 5.05 <10</td>
<td>2.39 739 <1</td>
<td>0.02</td>
<td>77 390 34 <5</td>
<td><20</td>
<td>43 0.14 <10</td>
<td>186 <10</td>
<td>5 93</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>003+50E</td>
<td><0.2 1.96 <5 140 15 0.56 <1</td>
<td>29 67 44 4.11 <10</td>
<td>1.46 773 <1</td>
<td>0.02</td>
<td>47 400 74 <5</td>
<td><20</td>
<td>51 0.13 <10</td>
<td>128 <10</td>
<td>3 128</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>003+75E</td>
<td><0.2 1.96 <5 85 15 0.46 <1</td>
<td>21 52 54 3.37 <10</td>
<td>1.47 648 <1</td>
<td>0.02</td>
<td>46 600 28 <5</td>
<td><20</td>
<td>127 0.10 <10</td>
<td>120 <10</td>
<td>10 60</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>005+100E</td>
<td><0.2 2.00 <5 265 10 0.38 <1</td>
<td>14 39 21 2.42 <10</td>
<td>0.90 592 <1</td>
<td>0.02</td>
<td>56 510 25 <5</td>
<td><20</td>
<td>158 0.08 <5</td>
<td>15 <10</td>
<td>5 141</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>100S+25E</td>
<td><0.2 1.96 <5 165 10 0.36 <1</td>
<td>24 47 66 5.88 <10</td>
<td>2.80 1135 <1</td>
<td>0.01</td>
<td>99 650 64 <5</td>
<td><20</td>
<td>45 0.12 <10</td>
<td>66 <10</td>
<td>5 108</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>100S+50E</td>
<td><0.2 1.96 <5 135 10 0.36 <1</td>
<td>24 47 66 5.88 <10</td>
<td>2.80 1135 <1</td>
<td>0.01</td>
<td>99 650 64 <5</td>
<td><20</td>
<td>45 0.12 <10</td>
<td>66 <10</td>
<td>5 108</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>100S+75E</td>
<td><0.2 1.96 <5 135 10 0.36 <1</td>
<td>24 47 66 5.88 <10</td>
<td>2.80 1135 <1</td>
<td>0.01</td>
<td>99 650 64 <5</td>
<td><20</td>
<td>45 0.12 <10</td>
<td>66 <10</td>
<td>5 108</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>100S+100E</td>
<td><0.2 1.96 <5 135 10 0.36 <1</td>
<td>24 47 66 5.88 <10</td>
<td>2.80 1135 <1</td>
<td>0.01</td>
<td>99 650 64 <5</td>
<td><20</td>
<td>45 0.12 <10</td>
<td>66 <10</td>
<td>5 108</td>
<td></td>
</tr>
</tbody>
</table>

No. of samples received: 29
Sample Type: Soil
Submitted by: Willy Kovacevic
Project: GL 2007

ECO TECH LABORATORY LTD.
Kamloops, B.C.
V2C 6T4

Phone: 250-573-5700
Fax : 250-573-4557

ECO TECH LABORATORY LTD.
1041 Dallas Drive
Kamloops, B.C.
V2C 6T4

Fax: 250-573-4557
| Et # | Tag # | Au(ppb) | Ag | Al | As | Bi | Ca | Cd | Co | Cr | Cu | Fe | La | Mg | Mn | Mo | Na | Ni | P | Pb | Sb | Sn | Sr | Ti | U | V | W | Y | Zn |
|-------|---------|---------|
| 1 | 00S+00E | <0.2 | 3.48 | <1 | 25 | 0.84 | 44 | 179 | 88 | 5.85 | <10 | 2.82 | 1147 | <1 | 0.01 | 0.01 | 88 | 670 | 64 | <5 | <20 | 49 | 0.13 | <10 | 211 | <10 | 13 | 104 |
| 10 | 100S+125E | <5 | <0.2 | 2.27 | <1 | 16 | 45 | 22 | 2.81 | <10 | 0.86 | 594 | <1 | 0.02 | 0.02 | 42 | 500 | 30 | <5 | <20 | 43 | 0.11 | <10 | 65 | <10 | 5 | 107 |
| 19 | 200S+50E | <5 | <0.2 | 1.78 | <1 | 14 | 36 | 16 | 2.54 | <10 | 0.81 | 530 | <1 | 0.02 | 0.02 | 24 | 290 | 26 | <5 | <20 | 33 | 0.11 | <10 | 74 | <10 | 3 | 84 |

Standard:

Till-3

SE29

| 1 | 1.3 | 1.10 | 80 | 55 | <5 | 0.53 | <1 | 13 | 61 | 22 | 1.88 | 10 | 0.64 | 315 | <1 | 0.03 | 29 | 430 | 24 | <5 | <20 | 13 | 0.06 | <10 | 40 | <10 | 8 | 38 |