ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Preliminary Report on the Quartzite Silica Occurrences Alroy/Crescent Spur Property

TOTAL COST: $88,537.15

AUTHOR(S): Mack S. Duncan, PhD; John F. Childs, PhD
SIGNATURE(S): “Signed and Sealed”
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-11-151; Approval 07-1100836-1218; May 10-31, 2008
STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 4274744; April 13, 2008

YEAR OF WORK: 2008
PROPERTY NAME: ALROY
CLAIM NAME(S) (on which work was done): TENURE 514255

COMMODITIES SOUGHT: SiO2

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 093H 030
MINING DIVISION: PRINCE GEORGE-OMINECA
NTS / BCGS: 093H.093
LATITUDE 53.535278
LONGITUDE -120.681667 (at centre of work)
UTM Zone 10N EASTING 653645 NORTHING 5934327

OWNER(S): CARD JM RESOURCES INC.
MAILING ADDRESS: BOX 582, McBRIEDE, BC, V0J 2E0

OPERATOR(S) [who paid for the work]: BOARDWALK GROUP INC.
MAILING ADDRESS: B103, 912 WEST 1600, ST GEORGE, UTAH, USA, 84770

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude do not use abbreviations or codes)
Quartz, Quartzite, Quartz Silica

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS
14815
Preliminary Report on the Quartzite Silica Occurrences
Alroy/Crescent Spur Property,
British Columbia, Canada
Prince George-Omineca Mining Division
Mine Permit number MX-11-151
Approval Number 07-1100836-1218
Report filed Pursuant to Event No. 4274744
Latitude 53.535278 Longitude -120.681667
NAD83 Zone 10N UTM: 653645E, 5934327N

Prepared for:
Property Owner: Card JM Resources Inc.

By
Mack S. Duncan, Ph.D, PG
and
John F. Childs, Ph.D., Registered Geologist and Qualified Person

CHILDS GEOSCIENCE, INC. (FORMERLY CHILDS AND ASSOCIATES, LLC)
ECONOMIC GEOLOGISTS
109 Sourdough Ridge Road
Bozeman, MT 59715 U.S.A.

Telephone/fax- (406) 585-3727 Cellular phone- (406) 223-1139

E-mail: jfchildsgeo@msn.com

October 27, 2009
Table of Contents

Table of Contents...1
Table of Figures..1
Index of Tables..1
INTRODUCTION..2
SUMMARY..2
CORE..2
GENERAL GEOLOGY...3
PROPERTY HISTORY..3
ALROY/CRESCENT SPUR CLAIMS..4
RECOMMENDATIONS..9
STATEMENT OF QUALIFICATIONS – DUNCAN...19
CERTIFICATE OF AUTHOR...20

Table of Figures

Figure 1: Property Location..7
Figure 2: Property Detail...8
Figure 3: Drill Locations..11
Figure 4: Alroy #1 Section:..13
Figure 5: Alroy #2 Section..15
Figure 6: Quartzite Outcrops on Mary Claims...16
Figure 7: Quartzite Outcrops on Alroy Claims...17
Figure 8: Quartzite Outcrops on SDF Claims...18

Index of Tables

Table 1: Alroy/Crescent Spur Properties ...6
Table 2: Alroy #1 Log..12
Table 3: Alroy #2 Log..14

Appendices

Appendix A: Cost Statement
Appendix B: Assay Results
Appendix C: References
Appendix D: Minfile Detail Report 093H 030
INTRODUCTION

Childs and Associates were engaged to evaluate core being obtained from the Alroy quartzite (silica) deposits being drilled between Prince George and McBride, British Columbia. The project was expanded to include geological mapping on the Crescent Spur claims and surrounding area. Evaluation of the geology and the core confirms the occurrence of potentially substantial, presumably high-quality, quartzite. Resource estimates cannot be made without economic models, material test results, and additional drilling.

The property is covered by the following topographic maps: 093H.092, 093H.093, 093H.094, 093I.002, and 093I.003. The property is within the Prince George-Omineca mining division. The project operator is Card JM Resources Inc. and the owner of the property is Mr. Milton Braaten. The work reported here was conducted on Mine Permit Number 07-1100836-1218. This report is submitted with reference to Event 4274744.

SUMMARY

Potential for significant quartzite resource is estimated for the Alroy and Mary claims. Potential for additional tonnage exists if other quartzite layers can be defined by trenching or drilling. Additional drilling and testing will be required to produce a resource estimate. Additional quartzite occurs to the northwest of the claims.

Based on the limited drilling that was conducted and other previous information there appears to be good potential to develop a resource on the property.

CORE

The NQ core drilling effort was quite successful in that much excellent appearing quartzite was encountered. Core recovery was excellent. Bit wear was an issue, with a bit typically lasting only 7.6m (25 feet). Drilling was very slow, taking 2-3 hours to core 3m (10’) when no other problems were encountered. Other problems resulted in much slower drilling rates overall. The crews found that a bit with a softer matrix worked better. They were using a Boart-Longyear Alpha 6.

Cores from the Alroy prospect were logged and core descriptions are attached to this report. (Alroy Hole #2 was drilled deeper than 33.5m (110’) after Mack Duncan departed, and the deeper portion of the core was not logged.) Ultimately, quartzite quality will need to be determined by the end user after the quartzite is processed. Depending on specific end use, processes such as attrition milling, acid washing, magnetic separation and flotation can be anticipated. These processes will remove impurities from the surface of the quartz.
Common impurities noted in the Alroy/Crescent Spur core are pyrite, phyllite (shale) layers, and iron stains. It is believed that these impurities are of the type easily removed by standard processing techniques.

The NQ core was split lengthwise using a diamond saw.

GENERAL GEOLOGY

The Alroy/Crescent Spur occurrence is situated within the Rocky Mountain Trench. We could find no detailed geological map of the area on the BC Geology website. A geological map of the McBride area exists, and geological patterns and layers from this map were projected northwestward to the Alroy/Crescent Spur area. Quartzite on the Alroy/Crescent Spur claims is likely Proterozoic or Cambrian.

PROPERTY HISTORY

Quartzite outcrops were first noted on the properties in 1996 when samples were taken by GSB geologist Dan Hora and submitted for whole rock analysis (see Appendix D).

Card JM Resources Inc. staked the Alroy 1 property in April of 1991 and added the Alroy 2 to 4 properties in September of 2000. The SDF properties were staked in May of 2001 and the Mary property was added in August of 2001. All the properties were converted to cells in the Mineral Titles Online system in June 2005 and retain this status as seen in Table 1.

Card JM initially attempted small extraction pits for the production of dimensional stone. Pits were blasted and rock extracted but subsequent to geochemical analysis, it was determined the quartzite structure might be more suitable for SiO$_2$ (silica) production.

In 2007, surface reclamation of the pit areas was completed and Card JM determined that future exploration of the silica potential would be best undertaken with exploration in the form of diamond drilling.
ALROY/CRESCENT SPUR CLAIMS

Rocks on the Alroy/Crescent Spur claims are poorly exposed. However, evaluation of the core and mapping of the limited outcrops does allow for a reasonable geological model from which we can predict the occurrence of quartzite layers.

Rocks in the Alroy/Crescent Spur area comprise a sequence of metamorphosed clastic sedimentary layers. The original layers were shale, silt, sand and coarser material. Metamorphism produced slate, phyllite, quartzite and metaconglomerate. Most of the layers, including some quartzite layers, are "dirty" in that they contain many discoloring impurities. By contrast, the targeted quartzites are very "clean" and white, lacking the discoloring impurities.

Because quartzite is more resistant than the surrounding phyllites, it frequently forms ridges and terraces. Not all ridges and terraces are quartzite, however, and each must be checked. Some do not have rock exposures, and trenching and/or drilling will be required to determine if quartzite is present.

Outcrops of quartzite are typically quite white and show little of the staining and "shaly" partings observed in a quarry and in core. It is likely that these impurities have been removed by natural processes such as acid water, freezing and thawing, etc. The quartzite and surrounding lithologies are crosscut by numerous, white quartz veins. In places the veins may make up 50% of an outcrop. There is also evidence of elastic flow and recrystallization indicating that the quartzite reached temperatures above the brittle/ductile regime boundary.

Many small outcrops of quartzite were discovered by Milton Braaten as a consequence of his logging operations. As he skidded logs over small terraces, white quartzite layers were exposed. Because Milton was able to remember where many of these outcrops were, we were able to put together a geological model which suggests continuity and consistency of the quartzite layers. In areas that have not been logged, exposures appear to be extremely rare.

Many of the planar features measured within the quartzite are almost certainly not bedding but are instead fracture cleavage or axial planar cleavage. Therefore, these planar features are not accurate predictors of strike and dip of the quartzite lithologic units. To establish strike and dip, outcrop patterns and dips as measured on lithologic partings within the non-quartzite portions of the core must be used. Strike and dip seem to be relatively consistent and are estimated to be N50°W, 50°SW in the Alroy and Mary areas. An understanding of bedding orientation is essential in order to minimize the amount of coring required.

Faulting likely has caused repetition and local truncation of quartzite layers. The faulting is presumed to be high-angle reverse, with the fault planes sub-parallel to bedding.

Movement of glacial ice was parallel to the valley, therefore some "ridges" are not underlain by resistant bedrock, but are underlain by glacial deposits. It is also probable that glacial
processes may have covered much of the underlying quartzite. Therefore, the lack of continuous quartzite outcrops should not be of great concern.

It is not possible to accurately predict quartzite layer thickness from outcrops. For example, the outcrop near Alroy #1 is not very large, but we cored 20 meters (65 feet) of quartzite beneath this area; much more than the 6m (20 feet) exposed in outcrop. Drilling and/or trenching will be necessary to determine true thicknesses of the quartzite layers during any future evaluation of the property.

Geological mapping has indicated that there are at least two and as many as four quartzite layers on the Mary and Alroy claims. Due to the discontinuous nature of outcrops, it is speculative to infer continuous quartzite layers. However, it is reasonable to assume that the quartzite beds continue along strike and simply are not exposed in many areas of the claims. The quartzite exposed in the road cut northwest of Alroy is a good example. Without the road cut, we would only have been able to extrapolate the continuation of quartzite by projecting from other, limited, outcrops along strike.

Figures 6-8 show the location of white quartzite outcrops encountered during this study. Insufficient outcrops of other lithologies were found to enable the production of a preliminary geologic map. The phyllites encountered by drilling are less resistant to erosion, and therefore outcrop infrequently. Much of the area is covered by presumed glacial deposits.

Vertical Drill Hole Alroy #1 drilled 19.8m of quartzite. Assuming a 52 degree dip, this represents an approximate true thickness of 12.2 meters (40 feet) and a horizontal width of 15.5 meters (50.8 feet). The quartzite is not well exposed in the area of Drill Hole Alroy #1.

Angle Drill Hole Alroy # 2 encountered 3.3m of glacial debris at the start of the hole and 3.6m of phyllitic material between 7.6 and 11.2m down hole. Quartzite was logged to at least 33.5m down hole for a net intercept of 26.5m. Drill Hole Alroy #2 was drilled N60E at an angle of 45 degrees. This hole was collared with the objective of drilling perpendicular to the dip of the quartzite layers. The average angle between the layering in the quartzite and the core axis was approximately 67 degrees. This indicates that the quartzite is probably dipping approximately 68 degrees and that the true thickness of this conservatively estimated quartzite interval is approximately 24 meters (80 feet). This figure applies only to that portion of the quartzite section drilled in Drill Hole Alroy #2 and logged by Mack Duncan.
Table 1: Alroy/Crescent Spur Properties

The Alroy/Crescent Spur Properties are 100% owned by Card JM Resources Inc.

<table>
<thead>
<tr>
<th>Tenure No</th>
<th>Claim Name</th>
<th>Map No</th>
<th>Issue Date</th>
<th>Good To Date</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>514255</td>
<td></td>
<td>093H</td>
<td>2005/jun/10</td>
<td>2011/apr/10</td>
<td>1921.905</td>
</tr>
<tr>
<td>514257</td>
<td></td>
<td>093H</td>
<td>2005/jun/10</td>
<td>2011/apr/10</td>
<td>923.217</td>
</tr>
<tr>
<td>514258</td>
<td></td>
<td>093H</td>
<td>2005/jun/10</td>
<td>2011/apr/10</td>
<td>1364.429</td>
</tr>
<tr>
<td>514259</td>
<td></td>
<td>093H</td>
<td>2005/jun/10</td>
<td>2011/apr/10</td>
<td>1017.933</td>
</tr>
</tbody>
</table>

Total Hectares 5227.484

Total Acres 12917.39
Figure 1 Property Location

Scale 1:250000

Mapsheet 093H.057
Estimates of the true thickness and horizontal width for the quartzite in outcrop in the immediate area of Drill Hole Alroy #2 are 56.7 meters (186 feet) and 60 meters (200 feet), respectively.

Assuming that both of these layers could be mined, a very conservative estimate for the true thickness of the combined quartzite layers based on drill intercepts only, would be approximately 37 meters (120 feet). Based on outcrop exposures as well as drill intercepts it is likely that the combined true thickness of the two quartzite layers is approximately 68.8 meters (226 feet) and the combined horizontal widths total approximately 76.2 meters (250 feet).

There is a reasonable probability that the two quartzite layers extend the length of the Mary and Alroy claims. If this is confirmed by additional work, the strike length would be approximately 7,000 meters. These dimensions indicate the potential for significant geological quartzite resources. However, work to date is so limited that no resource can be determined at this time. It is likely that the tonnage of quartzite will not be the limiting factor in developing any potential resource. Quartzite quality, logistics, permitting, and taxation factors will likely be the limiting factors that should be addressed along with the extent of the quartzite in future evaluation efforts.

RECOMMENDATIONS

The core should be tested for end use.

As much of the core as possible should be archived for future testing. All unused core material should be returned from any testing facility.

Trenching and/or additional drilling will be needed to more accurately determine the extent of the potentially mineable quartzite on the Alroy/Crescent Spur claims.

Preliminary testing of the core was recommended as follows:

Alroy #1

Three samples from this core should be sufficient for initial testing; with the intervals being: 6-9.75m, 9.75-15.25m, and 15.25-25.9m. If one sample is to be sent in, assembling a composite sample with representative material from a 15.24cm section, every 1.5m is recommended.

Alroy #2

Four samples from this core should be sufficient for initial testing, with the intervals being: 3.3-7.6m, 7.6-17.9m, 17.9-24.3m, and 24.3-33.5m. No recommendation can be made for any quartzite encountered below 33.5m since Mack Duncan will not be able to log the core. If
one sample is to be sent in, assembling a composite sample with representative material from a 15.24cm section, every 1.5m is recommended.

It is recommended that samples be processed (beneficiated) prior to assaying.

The authors are unaware of how the sampling was actually done. It is assumed that Brian Jeck, project manager, sampled the core and sent the samples in for assaying. Results are below:

<table>
<thead>
<tr>
<th>SAMPLE DESCRIPTION</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>CaO</th>
<th>MgO</th>
<th>Na2O</th>
<th>K2O</th>
<th>O2O3</th>
<th>TiO2</th>
<th>MnO</th>
<th>P2O5</th>
<th>SrO</th>
<th>BaO</th>
<th>LOI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alroy#1 20ft-50ft</td>
<td>94.53</td>
<td>0.77</td>
<td>1.06</td>
<td>0.44</td>
<td>0.19</td>
<td>0.04</td>
<td>0.22</td>
<td>0.02</td>
<td>0.13</td>
<td>0.02</td>
<td>0.026</td>
<td>0.01</td>
<td>0.01</td>
<td>0.79</td>
<td>98.25</td>
</tr>
<tr>
<td>Alroy#1 51ft-85ft</td>
<td>95</td>
<td>1.48</td>
<td>0.44</td>
<td>0.16</td>
<td>0.11</td>
<td>0.06</td>
<td>0.4</td>
<td>0.02</td>
<td>0.17</td>
<td>0.01</td>
<td>0.032</td>
<td>0.01</td>
<td>0.02</td>
<td>0.5</td>
<td>98.42</td>
</tr>
<tr>
<td>Alroy#2 11ft-59ft</td>
<td>97.79</td>
<td>0.36</td>
<td>0.04</td>
<td><0.01</td>
<td>0.06</td>
<td>0.03</td>
<td>0.12</td>
<td>0.02</td>
<td>0.06</td>
<td><0.01</td>
<td>0.013</td>
<td>0.01</td>
<td>0.02</td>
<td>0.12</td>
<td>98.65</td>
</tr>
<tr>
<td>Alroy#2 60ft-100ft</td>
<td>97.6</td>
<td>0.57</td>
<td>0.28</td>
<td><0.01</td>
<td>0.06</td>
<td>0.03</td>
<td>0.16</td>
<td>0.02</td>
<td>0.1</td>
<td><0.01</td>
<td>0.017</td>
<td>0.01</td>
<td>0.03</td>
<td>0.24</td>
<td>99.12</td>
</tr>
<tr>
<td>Alroy#2 111ft-155ft</td>
<td>96.28</td>
<td>0.73</td>
<td>0.27</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
<td>0.21</td>
<td>0.02</td>
<td>0.14</td>
<td><0.01</td>
<td>0.017</td>
<td>0.01</td>
<td>0.04</td>
<td>0.33</td>
<td>98.15</td>
</tr>
<tr>
<td>Alroy#2 156ft-212ft</td>
<td>96.86</td>
<td>0.61</td>
<td>0.24</td>
<td>0.01</td>
<td>0.06</td>
<td>0.03</td>
<td>0.18</td>
<td>0.02</td>
<td>0.13</td>
<td><0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.41</td>
<td>0.29</td>
<td>98.87</td>
</tr>
</tbody>
</table>
Figure 3 2008 Drill Locations

Legend
- Drill Site
- HWY 16
- Access Road
- Creek/River

Scale 1:20000
Table 2: Alroy #1 Log

ALROY HOLE #1

<table>
<thead>
<tr>
<th>DRILLING DEPTH (m)</th>
<th>QUARTZITE COLOR</th>
<th>PYRITE NO</th>
<th>PYRITE TR</th>
<th>PHYLITE NO</th>
<th>PHYLITE TR</th>
<th>DIP</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.00</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.10-6.40</td>
<td>White, brown iron stains</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>30</td>
<td>Probable unconsolidated glacial material</td>
<td></td>
</tr>
<tr>
<td>6.40-7.92</td>
<td>White, brown iron stains</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.92–8.84</td>
<td>White, gray phyllite</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>45</td>
<td>Minor staining on fractures.</td>
<td></td>
</tr>
<tr>
<td>8.84-9.75</td>
<td>White, red-brown stain</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>45</td>
<td>Somewhat layered near top, becoming mottled at approx. 10.67m.</td>
<td></td>
</tr>
<tr>
<td>9.75-11.38</td>
<td>White, gray and brown stains</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.28-12.80</td>
<td>White, gray tint</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>55</td>
<td>Massive, mottled; minor phyllite wisps, some with pyrite.</td>
<td></td>
</tr>
<tr>
<td>15.24-17.53</td>
<td>Pinkish with brown bands</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>55</td>
<td>Layering (bedding?) distinct but with almost no non-quartzite material.</td>
<td></td>
</tr>
<tr>
<td>17.53-24.08</td>
<td>White, faint gray layers</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>55</td>
<td>Excellent white quartzite.</td>
<td></td>
</tr>
<tr>
<td>24.08–25.91</td>
<td>White, gray discoloration</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>55</td>
<td>Excellent white quartzite.</td>
<td></td>
</tr>
<tr>
<td>25.91–80.16</td>
<td>Drilled out of quartzite. Encountered gray-green phyllite and phyllite with quartz pebbles, sometimes >50% quartz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
ND - None observed or very rare
TR - Trace - Scattered occurrence, but noteworthy
AB - Abundant - Obvious occurrence

Coordinates of Alroy Hole #1: 653338E 5934527N
Description

0-6.10m: Probable unconsolidated glacial material.

6.10-6.40m: Quartzite, white, brown iron stains.
6.40-7.92m: Quartzite, white, brown iron stains.

7.92-8.84m: Quartzite, white, gray phyllite. Pyrite occurs in fracture fill and phyllite partings.
8.84-9.75m: Quartzite, white, red brown stain. Minor staining on fractures.

9.75-11.28m: Quartzite, white and gray brown stains. Somewhat layered near top, becoming mottled at approx. 35'.
11.28-12.8m: Quartzite, white, gray tint. Massive, mottled; minor phyllite wisps, some with pyrite.

15.24-17.53m: Quartzite, pinkish with brown bands. Layering (bedding?) distinct but with almost no non-quartzite material.

17.53-24.08m: Quartzite, white, faint gray layers. Excellent white quartzite.

24.08-25.91m: Quartzite, white, gray discoloration. Excellent white quartzite.

25.91-80.16m: NOTE, that this portion of log is Not To Scale.
Drilled out of quartzite. Encountered gray-green phyllite and phyllite with quartz pebbles, sometimes >50% quartz. Pyrite and Phyllite abundance not noted.
Core is stored on private property belonging to a Director of Card JM Resources Inc at Crescent Spur. Core will be stored in perpetuity.

KEY:

- **Probable Glacial Fill**
- **50/50 Phyllite/Quartzite**
- **Quartzite**

![Pyrite Density]
- **Abundant, Obvious occurrence.**
- **Trace, Scattered occurrence, but noteworthy.**
- **None observed or very rare.**

![Phyllite Density]
- **Abundant, Obvious occurrence.**
- **Trace, Scattered occurrence, but noteworthy.**
- **None observed or very rare.**
Table 3: Alroy #2 Log

<table>
<thead>
<tr>
<th>DRILLING DEPTH [m]</th>
<th>COLOR</th>
<th>PYRITE</th>
<th>PHYLLITE</th>
<th>ANGLE TO CORE AXIS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.35-3.96</td>
<td>White, brown stain</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Good, massive quartzite with oxidized iron stain</td>
</tr>
<tr>
<td>3.96-7.61</td>
<td>White, gray tint, some brown</td>
<td>X</td>
<td>X</td>
<td>45</td>
<td>Good quartzite, recrystallized in places, less weathered than 3.35-3.96m</td>
</tr>
<tr>
<td>***</td>
<td>stain at 5.18-5.40m</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>7.62-11.18</td>
<td>White, gray tint</td>
<td>X</td>
<td>X</td>
<td>30, 31</td>
<td>Much phyllite and pyrite, probably not ore</td>
</tr>
<tr>
<td>11.28-15.24</td>
<td>Very white, minor gray</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Excellent, massive quartzite</td>
</tr>
<tr>
<td>15.29-17.99</td>
<td>White with gray tint</td>
<td>X</td>
<td>X</td>
<td>27</td>
<td>Excellent white quartzite with layers of pyrite. Pyrite mostly disseminated along layers, but sometimes forms most of layer 3-4 mm thick.</td>
</tr>
<tr>
<td>17.99-20.57</td>
<td>White, gray and green tint</td>
<td>X</td>
<td>X</td>
<td>18</td>
<td>Excellent, white quartzite with minor amounts of pyrite and phyllite</td>
</tr>
<tr>
<td>20.57-21.49</td>
<td>Very white, minor gray</td>
<td>X</td>
<td>X</td>
<td>13</td>
<td>Excellent, massive quartzite</td>
</tr>
<tr>
<td>21.49-22.56</td>
<td>White, gray and green-brown tint</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>Excellent, massive quartzite with very minor phyllite</td>
</tr>
<tr>
<td>22.58-24.08</td>
<td>White, gray tint</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>Excellent, massive quartzite with pyrite increasing downward</td>
</tr>
<tr>
<td>24.08-24.26</td>
<td>White</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Quartz vein</td>
</tr>
<tr>
<td>24.36-27.13</td>
<td>White, gray-brown tint in places</td>
<td>X</td>
<td>X</td>
<td>25</td>
<td>Excellent quartzite, varying amounts of pyrite, minor green-brown phyllite</td>
</tr>
<tr>
<td>27.12-28.04</td>
<td>White, gray and brown tint</td>
<td>X</td>
<td>X</td>
<td>15</td>
<td>Excellent quartzite</td>
</tr>
<tr>
<td>28.04-33.53</td>
<td>White, gray and brown tint</td>
<td>X</td>
<td>X</td>
<td>20</td>
<td>Poor-excellent quartzite, many pyrite-bearing layers and minor phyllite</td>
</tr>
</tbody>
</table>

*** There is some sort of numbering error here. Approximately 1.5m missing from this interval, or the lengths are misstated. |

Note: NO = None observed or very rare
TR = Trace - Scattered occurrence, but noteworthy
AB = Abundant - Obvious occurrence

Coordinates of Alroy Hole #2: 653967E 5934171N

The programs used in the preparation of this report are as follow: Garmin MapSource GIS software, Adobe Illustrator, Google Maps, and Microsoft Word.
Drilled N060E

0-3.35m: Minor Recovery; probable glacial fill.
3.35-3.96: Good, white massive quartzite with brown oxidized iron stain.
3.96-7.62m: Good, white quartzite with gray tint, recrystallized in places; less weathered than 11-13'. Some brown stain at 17-18'.
7.62-11.28m: Quartzite, white with gray tint. Much phyllite and pyrite; probably not ore.
11.28-15.24m: Excellent, massive, very white (minor gray) quartzite.
15.24-17.98m: Excellent white quartzite (gray tint) with layers of pyrite. Pyrite mostly disseminated along layers, but sometimes forms most of layer 3-4mm thick.
17.98-20.57m: Excellent, white quartzite with gray and green tint, minor amounts of pyrite and phyllite.
20.57-21.49m: Excellent, massive, very white (minor gray) quartzite.
21.49-22.56m: Excellent, massive, white (gray and green-brown tint) quartzite with very minor phyllite.
22.56-24.08m: Excellent, massive, white (gray tint) quartzite with pyrite increasing downward.
24.08-24.38m: Quartz vein, white.
24.38-27.13m: Excellent quartzite, varying amounts of pyrite, minor green-brown phyllite. White with gray-brown tint in places.
27.13-33.53m: Excellent quartzite. White with gray and brown tint.
33.53-66.45m: NOTE that this portion of log is Not To Scale. This portion of hole has not been logged by Mack Duncan.

Scale = 10 Meters

The hole has not been logged by Mack Duncan from 33.53m to 66.45m. Core is stored on private property belonging to a Director of Card JM Resources Inc at Crescent Spur. Core will be stored in perpetuity.

Total Depth of this hole is unknown.

NOT TO SCALE
Figure 6: Quartzite Outcrops on Mary Claims
Figure 7: Quartzite Outcrops on Alroy Claims
Figure 8: Quartzite Outcrops on SDF Claims
I, Mack S. Duncan, do hereby certify that:

1. I am a consulting geologist.
 Mack S. Duncan
 2600 Lexington Rd.
 Athens, Georgia, USA 30605

2. I graduated with a PhD in Geology from Indiana University, Bloomington (1976). I have a BS in Geology from the University of Georgia (1968).

3. I am a member of the Geological Society of America and the Society for Mining, Metallurgy and Exploration, Inc.. I am a Registered Professional Geologist in the State of Georgia, USA.

4. I have practiced my profession in excess of 30 years.

5. My relevant experience for the purpose of this report is:

 19 years of exploration and mining experience with J. M. Huber Corporation including Exploration Geologist and Manager, Exploration and Mining.

6. I have not had prior involvement with the properties that are the subject of this Technical Report.

7. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated April 14, 2009

Signed: “Mack S. Duncan”
CERTIFICATE OF AUTHOR

I, John F. Childs, do hereby certify that:

1. I am the Owner of: Childs Geoscience, Inc. (Formerly Childs and Associates, LLC)
 109 Sourdough Ridge Road, Bozeman, Montana 59715

2. I graduated with a PhD in Geology from the University of California, Santa Cruz (1982).
 I have an MSc from the University of British Columbia (1969) and a BSc from Syracuse
 University (1966).

3. I am a member of the Geological Society of America, the Geological Association of
 Canada, the Society of Economic Geologists, and the Association of Applied
 Geochemists. I am a Registered Geologist in the States of Arizona, California, and
 Idaho and I am a Founding Registered Member of the Society for Mining, Metallurgy and
 Exploration, Inc.

4. I have practiced my profession in excess of 35 years

5. I have read the definition of “qualified person” set out in National Instrument 43-101 (“NI
 43-101”) and certify that by reason of my education and past relevant work experience, I
 fulfill the requirements to be a “qualified person” for the purposes of NI 43-101. This
 report is based on my personal review of information generated by Dr. Mack S. Duncan
 who conducted the work reported here under my direction. My relevant experience for
 the purpose of this report is:

 Mine Geologist, Stillwater Mining Company, Big Timber, MT; General Manager,
 Exploration, Pegasus Gold Corporation, Spokane, WA; Vice President, Lupine Minerals
 Corporation, Denver, CO; Senior Geologist, Cyprus Georesearch Company, Los
 Angeles, CA; and Consulting Geologist to a variety of large and small precious metals
 and industrial minerals mining and exploration companies.

6. I am responsible for the preparation of this report titled “Preliminary Report, Quartzite
 Silica Occurrences, Alroy/Crescent Spur Property, British Columbia” dated April 14,
 2009.

7. I have not had prior involvement with the properties that are the subject of this Technical
 Report.

8. As of the date of this certificate, to the best of my knowledge, information and belief, the
 Technical Report contains all scientific and technical information that is required to be
 disclosed to make the Technical Report not misleading.

9. I am independent of the issuer applying all the tests in Section 1.4 of National Instrument
 43-101.

Dated April 14, 2009

Signed: “John F. Childs”
Appendix A
STATEMENT OF COSTS
2008 Alroy/Crescent Spur Project

<table>
<thead>
<tr>
<th>Item</th>
<th>Payable</th>
<th>Invoice</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling</td>
<td>Geotech Drilling Services Ltd.</td>
<td>3797</td>
<td>$75,027.79*</td>
</tr>
<tr>
<td></td>
<td>May 10-20, 2008; 59.5 meters (195 feet) NQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 two-person shifts @ $6850.00/shift</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crew Meals @ $418.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 drill bits @ $554.07/each</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geological</td>
<td>Childs and Associates LLP 08-2</td>
<td></td>
<td>$6,102.06</td>
</tr>
<tr>
<td></td>
<td>Mack Duncan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 person days @ $610.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mob/Demob</td>
<td>Return flight Vancouver/Prince George</td>
<td></td>
<td>$650.00</td>
</tr>
<tr>
<td>Geo Helper</td>
<td>M. Braaten</td>
<td></td>
<td>$1,375.00</td>
</tr>
<tr>
<td></td>
<td>May 10 – 12, 15-16, 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 days @ $275/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle Rental</td>
<td>(10 days @ $125/day)</td>
<td></td>
<td>$1,250.00</td>
</tr>
<tr>
<td></td>
<td>May 10-20, 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Childs and Associates</td>
<td>LLP 09-1</td>
<td></td>
<td>$3,000.00</td>
</tr>
<tr>
<td>Assays</td>
<td>ALS Chemex</td>
<td>VA08076307</td>
<td>$180.00</td>
</tr>
<tr>
<td></td>
<td>6 samples @ $30/each</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td>Greyhound – Samples to ALS Chemex</td>
<td></td>
<td>$19.90</td>
</tr>
<tr>
<td>Drafting/Compilation</td>
<td>Accurate Mining Services 09-10-13</td>
<td></td>
<td>$932.40</td>
</tr>
</tbody>
</table>

Total 2008 Costs: $88,537.15

Total Person Days: 35

NOTE: Drilling was contracted to Geotech Drilling Services Ltd by project manager Brian Jeck who, due to his lack of project management experience, agreed to a shift rate that is disproportionately high, compared to the common industry meter-footage rate.
Appendix B
ANALYTICAL METHOD

Whole Rock Geochemistry – ME-XRF06

Sample Decomposition: 50% Li$_2$B$_4$O$_7$ – 50% LiBO$_2$ (WEI-GRA06)
Analytical Method: X-Ray Fluorescence Spectroscopy (XRF)

A calcined or ignited sample (0.9 g) is added to 9.0 g of Lithium Borate Flux (50% - 50% Li$_2$B$_4$O$_7$ – LiBO$_2$), mixed well and fused in an auto fluxer between 1050 - 1100°C. A flat molten glass disc is prepared from the resulting melt. This disc is then analysed by X-ray fluorescence spectrometry.

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol</th>
<th>Units</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Oxide</td>
<td>Al$_2$O$_3$</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Barium Oxide</td>
<td>BaO</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Calcium Oxide</td>
<td>CaO</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Chromium Oxide</td>
<td>Cr$_2$O$_3$</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Ferric Oxide</td>
<td>Fe$_2$O$_3$</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Potassium Oxide</td>
<td>K$_2$O</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Magnesium Oxide</td>
<td>MgO</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Manganese Oxide</td>
<td>MnO</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Sodium Oxide</td>
<td>Na$_2$O</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Phosphorus Oxide</td>
<td>P$_2$O$_5$</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Silicon Oxide</td>
<td>SiO$_2$</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Strontium Oxide</td>
<td>SrO</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Titanium Oxide</td>
<td>TiO$_2$</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Loss On Ignition</td>
<td>LOI</td>
<td>%</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>%</td>
<td>0.01</td>
<td>101</td>
</tr>
</tbody>
</table>

Note: Since samples that are high in sulphides or base metals can damage Platinum crucibles, a ME-ICP06 finish method can be selected as an alternative method.
Sample Preparation Package – PREP-31
Standard Sample Preparation: Dry, Crush, Split and Pulverize

Sample preparation is the most critical step in the entire laboratory operation. The purpose of preparation is to produce a homogeneous analytical sub-sample that is fully representative of the material submitted to the laboratory.

The sample is logged in the tracking system, weighed, dried and finely crushed to better than 70% passing a 2 mm (Tyler 9 mesh, US Std. No.10) screen. A split of up to 250 g is taken and pulverized to better than 85% passing a 75 micron (Tyler 200 mesh, US Std. No. 200) screen. This method is appropriate for rock chip or drill samples.

<table>
<thead>
<tr>
<th>Method Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG-22</td>
<td>Sample is logged in tracking system and a bar code label is attached.</td>
</tr>
<tr>
<td>CRU-31</td>
<td>Fine crushing of rock chip and drill samples to better than 70% of the sample passing 2 mm.</td>
</tr>
<tr>
<td>SPL-21</td>
<td>Split sample using riffle splitter.</td>
</tr>
<tr>
<td>PUL-31</td>
<td>A sample split of up to 250 g is pulverized to better than 85% of the sample passing 75 microns.</td>
</tr>
</tbody>
</table>
Flow Chart - Sample Preparation Package – PREP-31
Standard Sample Preparation: Dry, Crush, Split and Pulverize

Receive Sample

LOG-22
Affix Bar Code and Log Sample in LIMS

WEI-21
Record received sample weight

Is sample dry?

NO

Dry Sample

YES

CRU-31
Fine crushing of rock chip and drill samples to better than 70% < 2 mm

Keep Reject

Reject

SPL-21
Split sample using riffle splitter

PUL-21
Up to 250 g sample split is pulverized to better than 85% < 75 microns

Retain pulp for analysis

If samples air-dry overnight, no charge to client. If samples are excessively wet, the sample should be dried to a maximum of 120°C. (DRY-21)

QC testing of crushing efficiency is conducted on random samples (CRU-QC).

The sample reject is saved or dumped pending client instructions. Prolonged storage (> 45 days) of rejects will be charged to the client.

QC testing of pulverizing efficiency is conducted on random samples (PUL-QC).

Lab splits are required when analyses must be performed at a location different than where samples received.
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DESCRIPTION</th>
<th>ME-XRF06</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SiO2</td>
<td>Al2O3</td>
<td>Fe2O3</td>
<td>CaO</td>
<td>MgO</td>
<td>Na2O</td>
<td>K2O</td>
<td>Cr2O3</td>
<td>TiO2</td>
<td>MnO</td>
<td>P2O5</td>
<td>SrO</td>
<td>BaO</td>
<td>LOI</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>A1roy#1 20ft-50ft</td>
<td>94.53</td>
<td>0.77</td>
<td>1.06</td>
<td>0.44</td>
<td>0.19</td>
<td>0.04</td>
<td>0.22</td>
<td>0.02</td>
<td>0.13</td>
<td>0.02</td>
<td>0.026</td>
<td>0.01</td>
<td>0.01</td>
<td>0.79</td>
<td>98.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1roy#1 51ft-85ft</td>
<td>95</td>
<td>1.48</td>
<td>0.44</td>
<td>0.16</td>
<td>0.11</td>
<td>0.06</td>
<td>0.4</td>
<td>0.02</td>
<td>0.17</td>
<td>0.01</td>
<td>0.032</td>
<td>0.01</td>
<td>0.02</td>
<td>0.5</td>
<td>98.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1roy#2 11ft-59ft</td>
<td>97.79</td>
<td>0.36</td>
<td>0.04</td>
<td><0.01</td>
<td>0.06</td>
<td>0.03</td>
<td>0.12</td>
<td>0.02</td>
<td>0.06</td>
<td><0.01</td>
<td>0.013</td>
<td>0.01</td>
<td>0.02</td>
<td>0.12</td>
<td>98.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1roy#2 60ft-100ft</td>
<td>97.6</td>
<td>0.57</td>
<td>0.28</td>
<td><0.01</td>
<td>0.06</td>
<td>0.03</td>
<td>0.16</td>
<td>0.02</td>
<td>0.1</td>
<td><0.01</td>
<td>0.017</td>
<td>0.01</td>
<td>0.03</td>
<td>0.24</td>
<td>99.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1roy#2 111ft-155ft</td>
<td>96.28</td>
<td>0.73</td>
<td>0.27</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
<td>0.21</td>
<td>0.02</td>
<td>0.14</td>
<td><0.01</td>
<td>0.017</td>
<td>0.01</td>
<td>0.04</td>
<td>0.33</td>
<td>98.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1roy#2 156ft-212ft</td>
<td>96.86</td>
<td>0.61</td>
<td>0.24</td>
<td>0.01</td>
<td>0.06</td>
<td>0.03</td>
<td>0.18</td>
<td>0.02</td>
<td>0.13</td>
<td><0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.41</td>
<td>0.29</td>
<td>98.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crow 30ft-130ft</td>
<td>97.9</td>
<td>0.23</td>
<td>0.03</td>
<td><0.01</td>
<td>0.07</td>
<td>0.03</td>
<td>0.09</td>
<td>0.02</td>
<td>0.04</td>
<td><0.01</td>
<td>0.012</td>
<td>0.01</td>
<td><0.01</td>
<td>0.11</td>
<td>98.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crow 140ft-230ft</td>
<td>98.11</td>
<td>0.17</td>
<td>0.04</td>
<td><0.01</td>
<td>0.07</td>
<td>0.03</td>
<td>0.07</td>
<td>0.02</td>
<td>0.03</td>
<td><0.01</td>
<td>0.012</td>
<td>0.01</td>
<td><0.01</td>
<td>0.1</td>
<td>98.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crow 240ft-330ft</td>
<td>98.83</td>
<td>0.27</td>
<td>0.04</td>
<td><0.01</td>
<td>0.07</td>
<td>0.03</td>
<td>0.1</td>
<td>0.02</td>
<td>0.03</td>
<td><0.01</td>
<td>0.012</td>
<td>0.01</td>
<td><0.01</td>
<td>0.11</td>
<td>99.52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C
References

Appendix D
MINFILE Detail Report
BC Geological Survey
Ministry of Energy, Mines & Petroleum Resources

Location/Identification

MINFILE Number: 093H 030
Name(s): ALROY

Status: Showing
Mining Division: Cariboo
Regions: British Columbia
Electoral District: Prince George-Mount Robson
NTS Map: 093H10E
Forest District: Headwaters Forest District
BCGS Map: 093H057
Latitude: 53 31 58 N
UTM Zone: 10 (NAD 83)
Longitude: 120 40 24 W
Northing: 5934050
Elevation: 883 metres
Easting: 654195
Location Accuracy: Within 500M
Comments: Approximately 160 kilometres east of Prince George. Location is for centre of quartzite exposure (Lane, personal communication, 2001).

Mineral Occurrence

Commodities: Silica

Minerals
Significant: Silica
Associated: Quartz

Deposit
Character: Stratiform, Massive
Classification: Metamorphic, Sedimentary, Industrial Min.
Type: R07: Silica sandstone

Host Rock

Dominant Host Rock: Metamorphic

Stratigraphic Age
Proterozoic-Cambrian

Igneous/Metamorphic/Other

Isotopic Age

Dating Method

Material Dated

Lithology: Quartzite

Geological Setting

Tectonic Belt: Omineca
Terrane: Cariboo
Physiographic Area: Southern Rocky Mountain Trench

Inventory
Capsule Geology

Most of the upper Fraser River drainage, which follows the northwest trend of the underlying country rock, is covered by Quaternary alluvium and glacial deposits. Scattered outcrops are of Cambrian and/or Hadrynian (Proterozoic) Cariboo Group sedimentary rocks and/or their metamorphic equivalents.

The Alroy property is underlain by pale quartzite, probably part of the Cambrian (?) Yanks Peak Formation, which forms several prominent exposures at lower elevations in the upper Fraser River valley. Exposures of quartzite form several small to medium-size 'humpbacks' whose long axes follow a northwesterly trend.

The main exposure of quartzite is approximately 450 metres in length (oriented along an azimuth of 132 degrees) and is about 52 metres wide at its widest point. Thin to medium beds of quartzite are defined by either vague pale orange bands of Fe-oxide or, less commonly, micaceous partings. Bedding ranges from 112 to 126 degrees and dips moderately to steeply to the southwest (47 to 88 degrees). A prominent subvertical jointing, oriented at 030 degrees, cuts the quartzite. Veins of milky white to semi-translucent 'bull quartz' intrude the quartzite mainly along joints and bedding planes.

In 1996, three hand samples were collected from the property by GSB geologist Dan Hora and submitted for whole rock analysis. The results are listed below: sample 96-01 was quartzite with micaceous partings; sample 96-02 was the clean, centre part of a quartzite bed; sample 96-03 was the clean, centre part of a quartzite bed with secondary quartz veining.

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>MgO</th>
<th>Na2O</th>
<th>MnO</th>
<th>Fe2O3</th>
<th>TiO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-01</td>
<td>97.39</td>
<td>0.98</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.06</td>
<td>0.14</td>
</tr>
<tr>
<td>96-02</td>
<td>98.41</td>
<td>0.65</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>96-03</td>
<td>98.7</td>
<td>0.45</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.13</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>P2O5</th>
<th>CaO</th>
<th>K2O</th>
<th>Cr2O3</th>
<th>Ba</th>
<th>LOI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-01</td>
<td>0.01</td>
<td>0.08</td>
<td>0.23</td>
<td>0.01</td>
<td>500</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>96-02</td>
<td>0.01</td>
<td>0.08</td>
<td>0.16</td>
<td>0.01</td>
<td>291</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>96-03</td>
<td>0.01</td>
<td>0.08</td>
<td>0.12</td>
<td>0.01</td>
<td>218</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

More recently, four small pits were blasted to provide fresh rock for geochemical analysis. Samples from three of the four pits have been submitted for whole rock analysis and will be reported when received.

Work since has included some tree clearing, stripping, trenching, geochemical characterization of the silica and related work. The last recorded operator, as of 2006, was Card JM Resources Inc. (J. Lewis; pers. comm.).

Bibliography

GSC P 72-35
GSC MAP 1424A