Clubine-Nevada Project – Reconnaissance and Sampling

Claim ID Numbers: 600777 and 604405

Nelson Mining Division
NTS 082F06
Claim Location: UTM NAD 83: Zone 11, 480500 East
5453750 North

Registered Owner: Doug Warkentin
Operator: Crucible Resources Ltd.

Key Creek Area - Exploration and Rock Sampling Report

April 19, 2010

Prepared By: Doug Warkentin, P.Eng.
TABLE OF CONTENTS

Introduction .. 3
 Location and Access .. 3
 Tenure Information ... 3
 Regional Geology ... 5
 Local Geology .. 6
 Property History ... 8
 Summary of Work ... 9

Work Program .. 9
 Sampling and Data Collection 9
 Interpretation of Results 11

References .. 12

Author's Qualifications 13

Statement of Costs ... 14

FIGURES
 1 Clubine Nevada Project Location Map 4
 2 Project Tenure Outline 5
 3 Regional Geology .. 7

TABLES
 1 Clubine Nevada Project Mineral Titles 3
 2 Recorded Mineral Occurrences at the Boundaries of the Clubine Nevada Project 9
 3 Rock and Chip Sample Analytical Results 10

Appendix 1 – Sample Location Map

Appendix 2 – Assay Reports
Introduction

Location and Access

The Clubine Nevada project covers mountain slopes on either side of the Salmo River between 1 and 6 kilometres north of Salmo BC. The property consists of two blocks, the western or 'Clubine' portion and the northeastern or 'Nevada' portion, which are connected by a strip of claims that crosses the Salmo River valley. From the valley bottom, at approximately 700 meters elevation, the properties rise to more than 1600 meters at the east side of the Nevada block and 1500 meters on the western edge of the Clubine block. Along the Salmo River, Highway 6, a paved, all-weather provincial highway crosses the property along the east side of the Clubine block. This highway connects Salmo with Ymir and Nelson to the north, and provides ready access to other commercial centres in the West Kootenays, including the smelter complex at Trail, BC. Every point on the property is within 4 kilometres of the highway. Transmission lines with 63 kV capacity run along Highway 6. The general project location is shown in Figure 1.

Much of the Clubine block, on the west side of the Salmo River valley is accessible via a network of old logging and mine roads, many of which remain passable by 4WD vehicle. The principle access points are the Clubine Mine road, which directly connects to the area of old mine workings, and areas to the southwest, and the Boulder Creek road, which crosses the north part of the Clubine block. The Nevada block, to the east of the Salmo River, has more limited access. Bridges cross the Salmo River at the north and south ends of the block, at Porcupine Creek and Hidden Creek, respectively, and well used forestry roads follow each of these creeks. With the exception of short sections of each of these roads immediately adjacent to the Salmo River, however, there is no direct road access onto this part of the property. From either road, access is on foot up the steep ridge the rises between the two creeks.

Tenure Information

The Clubine Nevada Project consists of ten Mineral Titles Online claims with a total area of 1477 hectares. The claims are all owned by the author, and Crucible Resources Ltd. has an option to acquire 100% ownership of these claims. Claim details are shown in Table 1. Expiry dates shown in this table reflect the application the work described in this report.

Figure 2 outlines the tenures of the Clubine Nevada Project.

<table>
<thead>
<tr>
<th>Tenure Number</th>
<th>Claim Name</th>
<th>Owner</th>
<th>Issue Date</th>
<th>Good To Date</th>
<th>Area (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>597523</td>
<td>PORCUPINE</td>
<td>145582 (100%)</td>
<td>2009/jan/14</td>
<td>2010/aug/15</td>
<td>316.36</td>
</tr>
<tr>
<td>597822</td>
<td>PORCUPINE S</td>
<td>145582 (100%)</td>
<td>2009/jan/20</td>
<td>2010/aug/15</td>
<td>126.57</td>
</tr>
<tr>
<td>600777</td>
<td>COMSTOCK</td>
<td>145582 (100%)</td>
<td>2009/mar/10</td>
<td>2010/aug/15</td>
<td>337.47</td>
</tr>
<tr>
<td>604405</td>
<td>KEYSTONE</td>
<td>145582 (100%)</td>
<td>2009/may/13</td>
<td>2010/aug/15</td>
<td>126.58</td>
</tr>
<tr>
<td>604409</td>
<td>KEY WEST</td>
<td>145582 (100%)</td>
<td>2009/may/13</td>
<td>2010/aug/15</td>
<td>42.20</td>
</tr>
<tr>
<td>604905</td>
<td>SALMO E</td>
<td>145582 (100%)</td>
<td>2009/may/24</td>
<td>2010/aug/15</td>
<td>84.36</td>
</tr>
<tr>
<td>604908</td>
<td>SALMO W</td>
<td>145582 (100%)</td>
<td>2009/may/24</td>
<td>2010/aug/15</td>
<td>210.94</td>
</tr>
<tr>
<td>625845</td>
<td>MISTY</td>
<td>145582 (100%)</td>
<td>2009/aug/30</td>
<td>2010/aug/30</td>
<td>42.16</td>
</tr>
<tr>
<td>697268</td>
<td>KEY SE</td>
<td>145582 (100%)</td>
<td>2010/jan/10</td>
<td>2011/jan/10</td>
<td>147.71</td>
</tr>
<tr>
<td>699983</td>
<td>PORC</td>
<td>145582 (100%)</td>
<td>2010/jan/15</td>
<td>2011/jan/15</td>
<td>42.17</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1476.53</td>
</tr>
</tbody>
</table>
Figure 1 - Clubine-Nevada Project Location Map
Regional Geology

The general area of the Clubine Nevada property is underlain by Jurassic Rossland formation rocks intruded by granitic, granodioritic and monzonitic plutons, and the southern end of the diorite/granodiorite Nelson Batholith. Immediately to the east are north northeast trending bands of Kootenay Arc sediments and limestone. The general geology is shown in Figure 3.

In this area the Rossland formation includes three separate major units. From west to east these are: 1) The Hall formation, consisting of mudstone, siltstone, shale and other fine sedimentary rock; 2) The Elise formation, consisting of basaltic volcanic rocks; and 3) The Ymir group, consisting of limestone, argillite, siltstone and slates. Major structures trend generally north to northeast. In addition to the Nelson Batholith to the northeast, important intrusive rocks in the area include the Eocene Coryell series (syenite, monzonite), which includes two small
bodies just to the north of the property. The large granitic Hidden Creek stock covers the eastern and southern parts of the property as well as an extensive area to the southeast, and the contact zones with other rock units likely have an important influence on the property geology. A small granitic intrusive body occurs on the south side of Keystone Mountain, within the Hall formation that covers the southeastern part of the Clubine block.

No major regional faults cross the property, but the northwest trending Stewart Creek fault lies just to the north and the similarly northwest trending Erie Creek fault lies a short distance to the southwest. Dikes and sills of Rhyolite, Aplite and Lamprophyre are found throughout the area, especially in the Elise volcanics and the Hall formation sediments. The Hall Creek Syncline, a major south-plunging fold in the Hall formation sediments, passes a short distance to the east of the property. The general geology of the area is shown in Figure 3.

Mineralization is common in many of the rock formations in this area, with numerous past producing mines and other occurrences documented in the surrounding area. This is especially true of the Ymir sediments and the Elise volcanic, in many cases being found in or near contact zones or in areas altered by intrusive. The most common economic mineralization has tended to veins containing sulphide minerals and often quartz. These veins can contain significant gold values as well as silver lead and zinc, and occasionally copper. A few larger bodies of disseminated mineralization have also been identified, mainly containing gold and copper, and in at least one case, molybdenum. To the east the Kootenay Arc rocks contain numerous past-producing mines and developed prospects. Lead-zinc deposits are most common, but tungsten, molybdenum silver and gold are also found.

Local Geology

The Clubine Nevada project includes rocks of the Hall formation sediments, Elise volcanics and Ymir group sediments near their southern or southeastern contact with the granodiorite Hidden Creek stock. The eastern Nevada area is mainly covered by granodiorite in contact with Ymir Group sediments. Typical of other areas of the Ymir Camp, the sediment-intrusive contact is irregular, with tongues and dykes of granodiorite intruding and altering the sediments over a wide area. Mineralization consists mainly of narrow stringer veins of quartz and sulphide that strike east-northeast, and wider shears that strike north-northeast which also carry some sulphides and quartz. Mineralization is mainly galena and sphalerite with pyrite.

The Clubine area mainly underlain by Hall formation and Elise volcanic rocks, with the contact of both formations with the Hidden Creek stock skirting the south boundary of the property. The contact zone between the Hall formation and Elise volcanics passes through the Clubine Mine area with a north northwest strike. To the east of the contact the Elise rocks are primarily mafic flows, breccias and volcaniclastics, with a few small areas of crystal tuff and at least one small section of argillite just below the mine area along Key Creek.

To the west the Hall formation is mainly north northwest trending argillites and siltstones, with more carbonaceous siltstones to the southwest, surrounding a small unnamed granitic intrusive on the south slope of Keystone Mountain. At the southern end of the Clubine block the Hall formation rocks are in possible fault contact with another body of the Elise rocks, and with the Hidden Creek stock to the southeast.
CmDLI – Cambrian to Devonian Lardeau Group – Index Formation: mudstone, siltstone, shale and fine clastic sedimentary rocks
ECsy – Eocene Coryell Plutonic Suite: syenitic to monzonitic intrusive rocks
IJRE – Lower Jurassic Rossland Group – Elise Formation: basaltic volcanic rocks
IJRH – Lower Jurassic Rossland Group – Hall Formation: mudstone, siltstone, shale and fine clastic sedimentary rocks
KAP – Cretaceous Anstey Pluton: granodioritic intrusive rocks
MJgr – Middle Jurassic: granite, alkali-feldspar granite intrusive rocks
TrJY – Triassic to Jurassic Ymir Group: limestone, slate, siltstone and argillite

Figure 3 – Regional Geology

Throughout the Clubine area there are numerous intrusive dikes of varying width and orientation, including lamprophyre, andesite and diorite dikes. Some of these can be traced for considerable distance. One lamprophyre dike appears to be associated with the mineralized vein at the Clubine mine.

Mineralization in the area consists mainly of north to northwest trending quartz or quartz-carbonate veins with variable amounts of sulphide mineralization, including galena, pyrite, chalcopyrite and minor sphalerite, tetrahedrite and pyrrhotite. The property does not include the main workings of the Clubine mine, but includes the south-eastern vein exposure. In this area the vein consists of lenses and pods of quartz and sulphide in a highly sheared and brecciated zone that follows a shallow east dipping lamprophyre dike trending in a north north-westerly direction. In the lower part of the vein, where it enters the property, sulphide mineralization is mainly pyrite and chalcopyrite with visible gold in higher grade sections.
Property History

Exploration in this region has a history that dates back to the 1890's. The first record found of work on the property is in the Nevada area, which was originally staked in 1898. In the 1910's and 20's prospecting work continued on the Nevada and surrounding claims, with the development of a number of short adits and open cuts on several different narrow quartz sulphide veins, some of which were reported to carry substantial silver with variable amounts of gold and base metals. Small amounts of ore were shipped in the 1920's and 30's, of which 9 tonnes have been recorded. In the 1930's the area was investigated by Wesko Exploration and in 1937 several claims in the vicinity were optioned by Maple Leaf Gold Mining Co., which operated there until at least 1949 carrying out underground development work and making small ore shipments. Since that time work has been limited to surface prospecting and geochemical soil sampling. The most significant geochemical work was carried out by New Jersey Zinc Exploration Ltd. In 1981/82, which succeeded in identifying several zinc and gold anomalies in the area surrounding the Nevada group of claims.

In the Keystone-Second Chance area, near the southwest corner of the property, exploration and development work, with some production, has occurred intermittently since 1900. The Keystone, an apparent extension of the nearby Arlington mine, produced a total of 2700 ounces of gold and 6000 ounces of silver from 2200 tons of ore over a period that extended from 1901 to 1981, mainly in the 1930's. The Second Chance was likely a further extension of the same narrow, shallow-dipping vein structure mine at the Keystone. It was developed by short adits, and a small amount of ore was shipped in the 1930's. The exact location is uncertain, but it was likely on the Del Crown Grant, which overlaps the Clubine Nevada property and remains an active tenure.

The only significant work known to have been done in the Second Chance area and the southern end of the property in recent years are two limited programs of geochemical soil sampling that partly overlapped the project area. This includes work by Delaware Resources in 1983 that showed a significant gold-in-soil anomaly on the south-east side of Hooch Creek, and work by Highland Queen Mines in 1988 that showed a multi-element soil anomaly along the steep east-facing hillside at the south end of the property.

The Clubine Comstock mine lies along Key Creek and straddles the property boundary. Work began at this mine prior to 1925, and produced 4000 ounces of gold and 7700 ounces of silver from 4000 tons of ore between 1926 and 1942, with the most significant production occurring from 1936 to 1939. All of the past production, and most of the exploration and development has occurred to the north of Key Creek, where the vein outcrops along the ridge above the creek. Mention is made in past reports of at least one outcrop of mineralized quartz on the south side of the creek, across from the Level 5 portal. A short adit was started to explore this outcrop, but appears to have been abandoned after progressing only a short distance. This outcrop and working likely lie within the current project boundaries.

Since the mine closed in the 1940's, the only significant work recorded was by Yellowjack Resources between 1989 and 1991, including surface sampling, geochemistry, geophysics and diamond drilling. The work was mainly to the north of the current project boundary, but geochemical soil sampling identified anomalous areas to the south of the creek, including a significant copper-in-soil anomaly directly south of the main (No. 5) adit of the Clubine Mine.
Table 2. Recorded Mineral Occurrences at the Boundaries of the Clubine Nevada Project

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Status</th>
<th>Commodities</th>
<th>Production (tonnes)</th>
<th>Historical Grades (Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clubine</td>
<td>Past Producer</td>
<td>Au, Ag, Pb, Zn, Cu</td>
<td>3616</td>
<td>34.1 g/t Au, 66.2 g/t Ag (1926-1942)</td>
</tr>
<tr>
<td>Nevada</td>
<td>Developed Prospect</td>
<td>Au, Ag, Pb, Zn</td>
<td>9</td>
<td>6.9 g/t Au, 197 g/t Ag, 6.1% Pb, 4.2% Zn (1937)</td>
</tr>
<tr>
<td>Second Chance</td>
<td>Past Producer</td>
<td>Au, Ag</td>
<td>9</td>
<td>31.1g/t Au, 17.2g/t Ag (1932-1934)</td>
</tr>
</tbody>
</table>

Table 2 summarizes the recorded past production from the mining operations that overlapped the current project boundaries. While little, if any, of this production came directly from this property, past work at all three indicate known or inferred extension of mineralization into the current project area.

Summary of Work

Three days were spent on the Clubine Nevada Project claims in July and October of 2009 for sample collection and investigation of historical workings. All work was carried out in the Keystone mountain area, near the Clubine mine. On July 22nd the old roadways above the mine and to the southwest were explored and a single stream silt sample was collected from Key Creek, along with two mineralized rock chip samples and one sample of quartz float. On October 17th and 18th the ravine and hillside immediately south of the main Clubine mine adit (No. 5 adit) was explored, along with a lower logging road to the south. A total of 12 rock samples were collected on these two days.

Work Program

Sampling and Data Collection

Relevant sample locations are identified on the map in Appendix 1. Assay results for rock samples are summarized in Table 3, while results for the silt sample are shown on the accompanying map. Complete assay reports are included in Appendix 2. All rock and chip samples were dried, crushed, split and pulverized before being analysed for gold by fire assay and for a 34 element scan by ICP-AES. The silt sample was dried and screened at 80 mesh before also being analysed for gold by fire assay and for 34 element scan using ICP-AES.

The locations visited and samples collected are described below.
Table 3 - Rock and Chip Sample Description and Analytical Results

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Date</th>
<th>Description</th>
<th>Width m</th>
<th>Au oz/t</th>
<th>Ag oz/t</th>
<th>Cu %</th>
<th>Pb %</th>
<th>Zn %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR90722-1</td>
<td>22/07/2009</td>
<td>Shear near creek</td>
<td>0.3</td>
<td>0.0003</td>
<td><0.01</td>
<td>0.006</td>
<td>0.002</td>
<td>0.057</td>
</tr>
<tr>
<td>CR90722-2</td>
<td>22/07/2009</td>
<td>Float across Creek</td>
<td></td>
<td><0.0003</td>
<td><0.01</td>
<td>0.005</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>CR90722-3</td>
<td>22/07/2009</td>
<td>Sheared seds, Keystone Mt.</td>
<td>1.0</td>
<td>0.000</td>
<td><0.01</td>
<td>0.006</td>
<td>0.003</td>
<td>0.222</td>
</tr>
<tr>
<td>CR91017-1</td>
<td>17/10/2009</td>
<td>Pyritic Volcanics - Clubine Rd.</td>
<td>3.0</td>
<td><0.0003</td>
<td><0.01</td>
<td>0.006</td>
<td>0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>CR91017-2A</td>
<td>17/10/2009</td>
<td>Fe Shear w qtz, E side</td>
<td>2.5</td>
<td>0.001</td>
<td><0.01</td>
<td>0.005</td>
<td>0.001</td>
<td>0.009</td>
</tr>
<tr>
<td>CR91017-2B</td>
<td>17/10/2009</td>
<td>Fe Shear w qtz, W side</td>
<td>1.0</td>
<td>0.001</td>
<td><0.01</td>
<td>0.004</td>
<td>0.002</td>
<td>0.007</td>
</tr>
<tr>
<td>CR91017-3</td>
<td>17/10/2009</td>
<td>Qtz vein outcrop</td>
<td></td>
<td>0.109</td>
<td>0.18</td>
<td>0.114</td>
<td>0.004</td>
<td>0.016</td>
</tr>
<tr>
<td>CR91017-4</td>
<td>17/10/2009</td>
<td>Collapsed adit back material</td>
<td></td>
<td>0.000</td>
<td><0.01</td>
<td>0.008</td>
<td>0.001</td>
<td>0.009</td>
</tr>
<tr>
<td>CR91017-4A</td>
<td>17/10/2009</td>
<td>Collapsed adit back material u/s</td>
<td></td>
<td>0.004</td>
<td><0.01</td>
<td>0.017</td>
<td>0.004</td>
<td>0.021</td>
</tr>
<tr>
<td>CR91017-5</td>
<td>17/10/2009</td>
<td>Pyritic Volcanics - Rd. S. of Creek</td>
<td>5.0</td>
<td>0.000</td>
<td><0.01</td>
<td>0.008</td>
<td>0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>CR91017-5A</td>
<td>17/10/2009</td>
<td>Qtz float - Rd. S. Of Creek</td>
<td></td>
<td><0.0003</td>
<td><0.01</td>
<td>0.007</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>CR91018-1</td>
<td>18/10/2009</td>
<td>Adit 6 dump material</td>
<td></td>
<td>0.000</td>
<td><0.01</td>
<td>0.006</td>
<td>0.001</td>
<td>0.008</td>
</tr>
<tr>
<td>CR91018-2</td>
<td>18/10/2009</td>
<td>Alt zone S side of creek</td>
<td>2.0</td>
<td><0.0003</td>
<td><0.01</td>
<td>0.003</td>
<td>0.000</td>
<td>0.004</td>
</tr>
<tr>
<td>CR91018-3</td>
<td>18/10/2009</td>
<td>Qtz flt from road cut</td>
<td></td>
<td><0.0003</td>
<td><0.01</td>
<td>0.004</td>
<td>0.000</td>
<td>0.010</td>
</tr>
<tr>
<td>CR91018-4</td>
<td>18/10/2009</td>
<td>Narrow qtz vein material</td>
<td>0.1</td>
<td>0.000</td>
<td><0.01</td>
<td>0.005</td>
<td>0.001</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Clubine Mine Area

The Clubine mine area is accessed directly by the Clubine Mine Road, which connects with Highway 6. The lower part of this road crosses the central part of the property before rising onto neighbouring claims where it switch-backs up the hillside on the north side of Key Creek. Within the Clubine Nevada claims there are a few short sections of rock exposure in the road cut. One of these exposes a mineralized alteration zone in volcanics. Sample CR91017-1 was a chip sample across a 3 meter wide exposure of these pyritized rocks.

From the main Clubine mine road, short spurs lead south to the old workings. One of these gives access to the No. 5 adit portal along Key Creek. The portal is very close to the property boundary. In this area the Creek bed is filled with mine rock, and a significant waste dump has been built up along the south side of the creek. Bedrock is poorly exposed along the south side of the creek in this area, but a few outcrops were evident. Just upstream from the portal was a substantial exposure of a highly sheared limonitic zone that carries small amounts of quartz. Samples CR91017-2A and 2B were chip samples taken across this zone. A few meters east a poorly exposed outcrop of quartz vein material was uncovered. This appeared to lie adjacent to a lamprophyre dike, as described for the developed portions of the Clubine mine. Due to overburden and talus, only a few centimetres of quartz were exposed and chip sampled (CR91017-3), but the actual width of the vein at this location could not be determined. About 5 meters up slope, to the south, the apparent collapsed portal of an adit was found. A sample of the collapsed back material was collected and later screened at 10 mesh to produce coarse and fine fractions (CR91017-4 and 4A). Minor quartz, but no obvious vein material was seen here.

Approximately 100 meters up the slope to the south, the road cut for an old logging road exposes another zone of altered volcanic, with substantial amounts of oxidized float boulders on the slope below the road. Chip samples along the rock outcrop as well as a small piece of quartz bearing float material were collected here (CR91017-5 and 5A).

Downstream along Key Creek the ravine deepens and there are extensive rock exposures, but little mineralization. Roughly half way between the No. 5 adit and the lowest adit of the Clubine...
mine (No. 6), alteration in a small cut was sampled (CR91018-2). In addition, a sample was collected from the No. 6 dump (CR91018-1). The sample was selected to include altered and quartz bearing material, as in general the dump rock appeared to be quite barren.

Keystone Mountain South of Key Creek

Above the No. 5 level, the Clubine vein outcrop and historic workings follow a small southeast flowing tributary of Key Creek. While the mine road continues to switchback upslope, above this tributary, several spur roads follow Key Creek itself and connect to a network of old logging/exploration roads to the southwest. Where the lower of these spurs reaches the creek, it become overgrown, but there are numerous rock exposures on the north side of the creek. Chip samples were collected across one limonitic shear zone in this area (CR90722-1). Where this spur reaches the creek a stream silt sample (CR90722-s1) was collected to test for possible upstream mineralization. Just to the south of the creek in this area, along a heavily overgrown stretch of roadway, a sample of mineralized quartz float was collected (sample CR90722-2). Still further south, and along an upper logging road, there are extensive rock exposures, which include several sheared and altered sections. One relatively sheared and oxidized section was chip sampled (CR90722-3).

A second lower logging road that also extends southward from the mine area was investigated. This road has extensive exposures of volcanics and schistose rocks, including pyritic shear zones. Only one small quartz vein was found, in an area of highly schistose sediments. Substantial quartz float was found in the talus near this narrow veinlet, indicating that another vein or wider section of the exposed one was also present in this area. Both the talus quartz float and the exposed veinlet were sampled (CR91018-3 and -4 respectively).

Interpretation of Results

This initial property reconnaissance work covered only a small part of the project area, and had limited success in identifying extensions of known mineralization or new prospects. Several pyritized zones, shear zones and quartz veins were identified and a number of these were sampled. As the results shown in Table 3 indicate, most of these samples contained little of economic value, aside from a few that showed slightly anomalous copper or zinc levels.

The only exceptions were in sampling aimed at identifying a southern extension of the Clubine vein. Sample CR91017-3 in particular included mineralized quartz vein material, which carried some values in gold, silver and copper. This was right at creek level, and positioned very approximately where the projection of the known vein would appear if it extends southward across the creek. Samples CR91017-4 and 4A showed low values, but this was not entirely unexpected, as historical descriptions appear to indicate that this adit was not developed on the vein, but was a cross-cut toward an outcrop of vein material found higher up the hillside. The anomalous gold and copper seen in the fine fraction (CR91017-4A) were therefore a positive indication for further exploration, as this material could be regarded as a soil sample for that location. These samples provide support for further work in this area, especially to follow up on the small exposure of mineralized vein that was sampled at the creek level, and to seek further evidence of the outcrops that the collapsed adit was meant to develop.

The single silt sample was not, by itself, a definitive indicator of potential for finding additional mineralized zones near Key Creek above the mine, but was sufficiently high in base metal values.
to justify additional silt sampling further upstream. The relatively high levels of zinc and especially lead are consistent with the occurrence of silver-lead-zinc veins, which are known to occur to the west of the Clubine mine and may be sufficiently widespread to be the source for the values in Key Creek silts.

References

BOND, W.D., 1982, Geological and Geochemical Survey of the Jackpot (West) Property (Sharon 1,8 claims), Southeastern British Columbia, Nelson Mining Division, for New Jersey Zinc Exploration Company (Canada) Ltd.

BC DEPT. of ENERGY MINES and PETROLEUM RESOURCES, Minfile Mineral Occurrence Database.

Author's Qualifications

I, Douglas Warkentin, P.Eng., a professional engineer with a business address at 745 East 30th Ave., Vancouver, B.C., certify that:

I have been a Registered Member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia since 1992.

I am a graduate of the University of British Columbia, Vancouver, B.C. and hold a degree of Bachelor of Applied Science in Mining and Mineral Process Engineering.

I have practiced my profession as a Metallurgist and Mineral Process Engineer for 22 years.

I am currently employed as a Metallurgical Engineer by Kemetco Research Inc., Vancouver B.C., and have previously been employed as a Mineral Process Engineer by Vista Mines Inc., Coastech Research Inc., NTBC Research Corp., Biomet Mining Ltd., Blue Sky Mines Ltd., and Vizon Scitec Inc. I also serve as a Director of Duncastle Gold Corp., a TSX-Venture listed company.

Since 2001 I have acted as an independent engineering consultant for a number of mining clients.

I am a qualified person for the purposes of National Instrument 43-101 in relation to metallurgical testing and evaluation programs.

I directly conducted or supervised all sampling, sample handling and preparation related to the Clubine-Nevada Project that is described in this report.

I am the sole author of this report.

I am not aware of any material fact or material change with respect to the subject matter of this technical report that is not reflected in this report, the omission to disclose which would make this report misleading.

Dated at Vancouver, B.C., this 9th day of April 2010.

Doug Warkentin, P.Eng.
Metallurgical Engineer
Statement of Costs

Site Reconnaissance and Sampling

Site Labour (26 hours @ $45/hr) $1,170.00
Accommodation (3 days @ ave. $85.50/night) $256.51
Transportation (4 days rental, plus fuel) $238.29
Meals (3 days) $58.17

Sample Analysis

Sample Preparation (1 silt sample @ $6.10/sample) $65.16
(15 rock samples @ $3.94/sample)
Sample Assaying (16 samples @ $20.82/sample) $333.14

Report Preparation $540.00

Total Cost $2,661.28
Appendix 1 – Sample Location Map
Appendix 2 – Assay Reports
Assay Certificate

Company: Crucible Resources Ltd.
Project:
Attn: Doug Warkentin

We hereby certify the following assay of 15 rock samples submitted Nov-04-09

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Au g/tonne</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR90722-1</td>
<td>0.03</td>
</tr>
<tr>
<td>CR90722-2</td>
<td><0.01</td>
</tr>
<tr>
<td>CR90722-3</td>
<td>0.05</td>
</tr>
<tr>
<td>CR91017-1</td>
<td><0.01</td>
</tr>
<tr>
<td>CR91017-2A</td>
<td>0.02</td>
</tr>
<tr>
<td>CR91017-2B</td>
<td>0.02</td>
</tr>
<tr>
<td>CR91017-3</td>
<td>3.73</td>
</tr>
<tr>
<td>CR91017-4</td>
<td>0.01</td>
</tr>
<tr>
<td>CR91017-4A</td>
<td>0.14</td>
</tr>
<tr>
<td>CR91017-5</td>
<td>0.01</td>
</tr>
<tr>
<td>CR91017-5A</td>
<td><0.01</td>
</tr>
<tr>
<td>CR91018-1</td>
<td>0.01</td>
</tr>
<tr>
<td>CR91018-2</td>
<td><0.01</td>
</tr>
<tr>
<td>CR91018-3</td>
<td><0.01</td>
</tr>
<tr>
<td>CR91018-4</td>
<td>0.01</td>
</tr>
<tr>
<td>*DUP CR90722-1</td>
<td>0.04</td>
</tr>
<tr>
<td>*DUP CR91017-5</td>
<td>0.01</td>
</tr>
<tr>
<td>*0211</td>
<td>2.15</td>
</tr>
</tbody>
</table>

Au F.A. AA finish

Certified by [Signature]
Crucible Resources Ltd.

Attention: Doug Warkentin

Sample type: Rock

A 0.5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95°C for 2 hours and diluted to 25ml.
Geological Analysis Certificate

Company: Crucible Resources Ltd.

Project: 9V-1523-SG1

Attn: Doug Warkentin

Nov-17-09

We hereby certify the following geochemical analysis of 1 stream sediment sample submitted Nov-04-09

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Au ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR90722-s1</td>
<td>3</td>
</tr>
<tr>
<td>*0211</td>
<td>2231</td>
</tr>
<tr>
<td>*BLANK</td>
<td><1</td>
</tr>
</tbody>
</table>

Au F.A. AA finish

Certified by ____________________________
Crucible Resources Ltd.
Attention: Doug Warkentin

Sample type: Stream Sediment

Assayers Canada
8282 Sherbrooke St., Vancouver, B.C., V5X 4R6
Tel: (604) 327-3436 Fax: (604) 327-3423

Report No: 9V1523SJ
Date: Nov-17-09

Multi-Element ICP-AES Analysis
Aqua Regia Digestion

| Sample Number | Ag ppm | Al % | As ppm | Ba ppm | Be ppm | Bi ppm | Ca ppm | Cd ppm | Co ppm | Cr ppm | Cu ppm | Fe ppm | Hg ppm | K ppm | La ppm | Mg ppm | Mn ppm | Mo ppm | Na ppm | Ni ppm | P ppm | Pb ppm | S ppm | Sb ppm | Sc ppm | Sr ppm | Th ppm | Ti ppm | Tl ppm | U ppm | V ppm | W ppm | Zn ppm | Zr ppm |
|---------------|--------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| CR90722-S1 | <0.2 | 1.13 | 38 | 140 | <0.5 | 19 | 0.50 | 7 | 25 | 35 | 66 | 4.32 | 1 | 0.11 | 15 | 0.68 | 1288 | 9 | 0.01 | 56 | 1667 | 186 | <0.01 | 8 | 3 | 55 | <5 | 0.06 | <10 | <10 | 67 | <10 | 597 | 3 |
| Duplicates: CR90722-S1 | <0.2 | 1.16 | 37 | 148 | <0.5 | 19 | 0.50 | 3 | 26 | 35 | 64 | 4.32 | <1 | 0.11 | 16 | 0.71 | 1303 | 10 | 0.01 | 57 | 1681 | 188 | <0.01 | 8 | 3 | 57 | <5 | 0.07 | <10 | <10 | 69 | <10 | 593 | 3 |
| Standards: Blank | <0.2 <0.01 | <5 | <10 | <0.5 | <5 | <0.01 | <1 | <1 | <1 | <0.01 | <10 | <0.01 | <5 | <2 | <0.01 | <1 <2 <0.01 | <1 <2 <0.01 | <5 | <1 | <1 <5 <0.01 | <10 | <10 | <10 | <10 | <10 <10 | <5 | <10 <10 | <10 | <10 | <10 | <10 | <10 | <10 |
| CH-4 | 1.6 | 1.67 | 12 | 259 | <0.5 | 20 | 0.59 | 3 | 29 | 98 | 1971 | 4.66 | 1 | 1.23 | 12 | 1.20 | 323 | 2 | 0.04 | 47 | 644 | 19 | 0.52 | 9 | 6 | 7 | <5 | <10 | <10 | 75 <10 | 201 | 10 |