Technical Report on
Diamond Drilling
at the
Meziadin Lake Claims

Statement of Work Event Number:
5434804 (Drilling)

Mines Act Permit
MX-1-876

Location:
Meziadin Lake

Skeena Mining Division

NTS 104 A/03 and 103 P/14
Latitude: 56° 06' 17.6” N, Longitude: 129° 27' 58” W
UTM Zone 9, 471013 E, 6217538 N
NAD 83

Project Period:
May 1 to October 1, 2012

Owner and Operator:
Canada Rockies International Investments Group Ltd.
7575 Carnarvon Street, Vancouver, BC, V6N 1K6

Author:
Hardolph Wasteneys, Ph.D. P.Geo.
Campbell River, BC

Submitted:
April 30, 2013
Table of Contents

Introduction..1
 Property Description and Location ..1
 Access, Climate, Local Resources, and Physiography ...1
 Property History.. 1
 2012 Work Program... 3
Regional Geology.. 3
 Economic Geology ... 3
Geology of the Drill Hole. ... 4
Geochemistry... 4
 Geochemical Analysis Methods and Results..4
Conclusions and Recommendations:... 4
References..6
Appendix 1: Cost Statement.. 7
Appendix 2: Maps..10
Appendix 3: Drill Hole Logs and Geochemistry... 14
Appendix 4: Statement of Qualifications...19
Introduction

PROPERTY DESCRIPTION AND LOCATION

The Meziadin Lake Claims are located in the vicinity of Meziadin Lake and extend along much of its southern and western shores. The claims are centred 140 km NW of Hazelton, British Columbia, at Latitude: 56° 06' 17.6” N, Longitude: 129° 27' 58” W UTM Zone 9, 471013 E, 6217538 N NAD 83 in the NTS map sheets 93 L/012 and 103 I/09 in the Skeena Mining Division (Figure 1). The claim block consists of 45 cell claims with a total area of 18535.7 hectares. They are registered to Canada Rockies International Investments Group Ltd and currently set to expire on September 30, 2013.

ACCESS, CLIMATE, LOCAL RESOURCES, AND PHYSIOGRAPHY

The Meziadin Lake area lies on the eastern flanks of the Coast Mountains bordering on an intermontane region of central BC. The area is traversed by the Nass River and Highway 37 that runs north from Cranberry Junction towards Dease Lake and Highway 37a from Meziadin Junction west to Stewart (Figure 1). The Nass River flows SE from Bowser Lake which is about 40 km to the north of Meziadin Lake and bisects a low relief intermontane area of average 30 km width and elevation below 300 meters that is bordered on the west by the Coast Ranges and the vast Cambria Icefield and on the east by the Skeena Mountains. The Nass flows into the Pacific on a track parallel to the Skeena River, tributaries of which also drain the intermontane valley occupied by the Nass. Strong NE-SW trending physiographic features separate the main Nass River from tributaries of the Skeena, which both flow through gaps in the Coast Ranges near Prince Rupert.

The Nass Basin is characterized by subalpine and montane forests transitional between the interior leeward and coastal portions of the Coast Mountains and with a correspondingly transitional climate between maritime climate influenced by coastal air masses that flow up the Nass Valley and interact with stronger winter continental air masses. This results in relatively moist warm summers with temperatures up to 30°C and cold winters to -30°C and annual precipitation from 1.5 to 2.5 meters at low and high elevations respectively. Forests are composed of western red cedar and and hemlock in the montane regions and lodgepole pine, Engleman spruce and alpine firs in subalpine areas. Wildlife is prolific and includes moose, black-tailed deer, woodland caribou, grizzly and black bear, beaver, wolf, red fox, marten, snowshoe hare, and grouse. Land use in the immediate Meziadin Lake area is dominated by logging and much of the Nass Valley is a patchwork of clear cuts.

PROPERTY HISTORY

The current claims were staked for Canada Rockies International on August 3 and 15th of 2011 and are good to September 30th 2013 by application of assessment credit reported herein. The claims are shown on Figure 1 and 2 and tenure data are tabulated in Table 1.
<table>
<thead>
<tr>
<th>Owner</th>
<th>TenureNum</th>
<th>IssueDate</th>
<th>GoodToDate</th>
<th>Status</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>252653 (100%)</td>
<td>889519</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>451.1902</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889520</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>397.1099</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889521</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>451.4182</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889522</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>415.5002</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889523</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>361.4892</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889524</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>451.4883</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889525</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>415.5705</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889526</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>415.3353</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889527</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>433.8080</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889528</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>361.133</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889530</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>434.0876</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889531</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>393.3983</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889532</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>379.3711</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889533</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>397.4326</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889534</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>379.5164</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889535</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>379.4922</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889536</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>451.6909</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889537</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>451.9605</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889538</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>393.0755</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889539</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>415.7518</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889540</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>361.6607</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889541</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>451.6030</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889542</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>415.7643</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889543</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>379.7843</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889544</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>434.1499</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889545</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>452.0137</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889546</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>379.7146</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889547</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>217.0811</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889548</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>452.4375</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889549</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>452.4493</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889550</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>452.4863</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889551</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>452.6177</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889552</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>452.6215</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889553</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>452.6556</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889554</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>452.6756</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889555</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>432.0495</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889556</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>432.3385</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889557</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>432.5412</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889558</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>306.5667</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889559</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>432.7065</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889560</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>432.7962</td>
</tr>
<tr>
<td>252653 (100%)</td>
<td>889561</td>
<td>2011/aug/15</td>
<td>Sept/30/2013</td>
<td>GOOD</td>
<td>450.9345</td>
</tr>
</tbody>
</table>
2012 WORK PROGRAM

The first phase of exploration by Canada Rockies on the Meziadin Lake property consisted of a stratigraphic drill hole to examine the stratigraphic potential of the area for coal deposits and to generally explore for other types of mineralization. The drill hole was located in an overburden covered area in the western part of the claim block and sited in a roadside gravel pit shown in Google Earth image in Figure 3.

The work was completed between July 2 and July 28, 2012 and the core was logged by geologist Benjamin Hou in September, 2012. A track-mounted diamond drill owned by Canada Rockies International was used for the job and total costs of $96,521.45 were recorded including wages of $65,158.76 and food, fuel, camp supplies, equipment maintenance and geochemistry totalling $31,362.69. The details of the expenses are tabulated in Appendix 1. Of the total amount $54,062.68 is being applied to maintain the claim group until September 30 2013 and the remainder of $42,458.77 is being credited to the PAC of Canada Rockies.

Coincident with, but independently of the diamond drilling, an airborne geophysical survey was conducted over the entirety of the Meziadin claim blocks as well as a larger claims block in the Nass River Valley and several others in the Dease Lake area. The field survey work involved has been recorded for assessment purposes by Campbell (2012). Subsequent interpretation work on the geophysical survey will be reported separately.

Regional Geology

The Bowser Basin geological province in which the claims lie, is composed of the Bowser Lake and Skeena Groups of Middle Jurassic to mid-Cretaceous age (Figure 1 and 2, Evenchick et al, 2009). The Bowser Lake Group comprises several interfingering lithofacies divisible into marine and non-marine depositional assemblages. The Skeena Group is largely non-marine with intertonguing marine strata and is similar in age and stratigraphic relationships to some assemblages within the Bowser Lake Group. The Bowser Lake Group lies upon a stratigraphic basement of Triassic Stuhini Group and early Late Jurassic Hazelton volcanic and clastic rocks and related intrusions which outcrop in the Stikine Arch to the west. The age of the contact between the Bowser Lake Group and the Hazelton Group is diachronous, younging to the south (Evenchick et al. 2010) towards the centre of the basin. The contact is characterized by an upward gradation from fine grained commonly tuffaceous sediments to coarser and more heterogeneous lithofacies assemblages that include abundant chert derived from Cache Creek Terrane and a general absence of tuff beds. Within the area of the claims the Bowser Lake group is represented by the Ritchie-Alger Assemblage a stratigraphic facies of the Bowser Lake Group characterized by marine sediments deposits as turbiditic flows.

The local area is underlain by thick glacial clastic sediments displaying SE trending depositional trends exemplified by drumlins and outwash deposits which have probably been directed by a strong structural trend in short wavelength to chevron fold structures and minor thrust faults. The Kispiox Range divides the Nass River from tributaries of the Skeena.

ECONOMIC GEOLOGY

There are no recorded mineral showings within the claim area. The prolific Iskut district of the Skeena Arch which lies to the west hosts numerous mineral deposits including many in the magmatic-hydrothermal and volcanogenic clans. To the east in the Sustut Basin and south east near Smithers...
strata of the Bowser Lake Group in non-marine assemblages host coal deposits.

Only two reports of previous work in the claim area were found in the Assessment Report Informations System (ARIS) and both were of minor geochemical surveys that recommended no further work. No Minfile occurrences are located within the property.

Geology of the Drill Hole.

The drill hole (ZK2 in the logs Appendix 3) reached bedrock at 15 meters depth and coring was completed to a depth of 394.5 meters on a vertical inclination at coordinates NAD 83; 471013 E, 6217538 N. From 15 meters to 103.8 meters the core consists of mudstones and sandstones cut by a thin granitic dyke at 34 meters (Figure 4 in Appendix 3). The core is described as well layered with intercalated mudstone and sandstone displaying widespread pyrite and calcite and quartz veins and pervasive silicification. Below 103.8 meters the lithologies were classified as volcanic tuff and breccias intercalated with mudstones and generally silicified and pyritized. An interpretation consistent with the local geology would be of a sequence of coarse to fine turbidites with coarse basal divisions and fine laminated upper divisions which might appear tuffaceous.

Geochemistry

Several spot samples were analysed from the drill core, but no intervals of any type of mineralization apart from concentrations of disseminated pyrite were observed by the logging geologist Benjamin Hou. The samples analysed included examples of more pyritic black siltstone or mudstone and revealed no anomalous element concentrations. Selected analytical results in ppm or percent (indicated) are tabulated below and produced in Appendix 3.

Geochemical Analysis Methods and Results

Three (3) rock samples collected as short sections of core and analysed by ALS method ME ICP41 which involves an Aqua Regia digestion followed by ICP AES analysis on a spectrum of 35 elements, plus gold by Au-AA23; fire assay on a 30 gram sample with atomic absorption analysis finish. No anomalous results were observed to indicate any hidden mineralization. Natural variations in Fe, S and other elements were consistent with observed concentrations of pyrite in more graphitic or carbonaceous mudstone lithologies presumably representing the fine grained upper division of turbiditic flows. Au and Ag were near or below detection limits.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>As</th>
<th>Ca</th>
<th>Cu</th>
<th>Fe %</th>
<th>Mn</th>
<th>S %</th>
<th>Sr</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZK2 GP2</td>
<td>105.5</td>
<td>5</td>
<td>16.7</td>
<td>22</td>
<td>2.89</td>
<td>3320</td>
<td>1.56</td>
<td>2580</td>
<td>68</td>
</tr>
<tr>
<td>ZK2 GP15</td>
<td>298.8</td>
<td>35</td>
<td>7.7</td>
<td>8</td>
<td>2.76</td>
<td>2790</td>
<td>1.1</td>
<td>738</td>
<td>98</td>
</tr>
<tr>
<td>ZK2 GP19</td>
<td>389.2</td>
<td>12</td>
<td>3.4</td>
<td>9</td>
<td>2.67</td>
<td>972</td>
<td>0.17</td>
<td>202</td>
<td>31</td>
</tr>
</tbody>
</table>

Conclusions and Recommendations:

A single drill hole was completed to depths of 389 m in an overburden covered area of the claim group. The drill hole confirmed that the area is underlain by turbiditic sediments of the Bowser Lake Richler-Alger assemblage and contain no non-marine assemblages that might be of interest for
coal exploration. The lower parts of the drill hole below 100 meters may have penetrated Hazelton group rocks on the basis of the drill geologists interpretation of several intervals as volcanic tuffs and volcanic breccias, but alternatively these may have been texturally modified coarser turbidites involved in short wavelength folding.

The western fringes of the claim group overlaps elements of the Skeena Arch including Hazelton and Stuhini Group rocks that might be prospective. For this reason some assessment credit should be applied to maintain the claims long enough to evaluate the potential further during the 2013 field season. No further drilling is recommended on the bulk of the claims around Meziadin Lake. Claims on the western margin of the group may merit some further geological evaluation.
References

Appendix 1: Cost Statement

Table 1: Costs

Copy of SOW
Table 1
Appendix 1: Cost Statement, Meziadin 1

<table>
<thead>
<tr>
<th>Exploration Work type</th>
<th>Comment</th>
<th>Days</th>
<th>Rate Subtotal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel (Name) / Position*</td>
<td>Field Days (list)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li Changjie / driller</td>
<td>July 2 to July 28</td>
<td>27</td>
<td>$11,205.00</td>
</tr>
<tr>
<td>Ou Yongxin / driller</td>
<td></td>
<td>27</td>
<td>$11,205.00</td>
</tr>
<tr>
<td>Fu Haiyu / helper</td>
<td></td>
<td>27</td>
<td>$4,902.19</td>
</tr>
<tr>
<td>Liu Shaodong / helper</td>
<td></td>
<td>27</td>
<td>$4,902.19</td>
</tr>
<tr>
<td>Cao Lingnian / helper</td>
<td></td>
<td>27</td>
<td>$4,902.19</td>
</tr>
<tr>
<td>Wang Cheng / helper</td>
<td></td>
<td>27</td>
<td>$4,902.19</td>
</tr>
<tr>
<td>Guo Shaobo / support</td>
<td></td>
<td>27</td>
<td>$8,403.75</td>
</tr>
<tr>
<td>Zhang Hongkai / support</td>
<td></td>
<td>27</td>
<td>$8,403.75</td>
</tr>
<tr>
<td>Min Hou / Geologist</td>
<td></td>
<td>15</td>
<td>$6,332.52</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>$65,158.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office Studies</th>
<th>List Personnel (note - Office only, do not include field days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature search</td>
<td>$0.00 / $0.00</td>
</tr>
<tr>
<td>General research</td>
<td>$0.00 / $0.00</td>
</tr>
<tr>
<td>Report preparation</td>
<td>Wasteneys 2.0 / $800.00 / $1,600.00</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geochemical Surveying</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>note: This is for assays or laboratory costs</td>
</tr>
<tr>
<td>Rock</td>
<td>5.0 / $0.00 / $227.99</td>
</tr>
<tr>
<td>Water</td>
<td>$0.00 / $0.00</td>
</tr>
<tr>
<td>Other (specify)</td>
<td>$0.00 / $0.00</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$227.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drilling</th>
<th>No. of Holes, Size of Core and Metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond (fuel only)</td>
<td>1 hole NQ, 394.5 meters / $0.00 / $13,817.60</td>
</tr>
<tr>
<td>Diamond (maintenance only)</td>
<td>1 hole NQ, 394.5 meters / $0.00 / 9,662.42</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$23,480.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reclamation</th>
<th>Clarify</th>
</tr>
</thead>
<tbody>
<tr>
<td>After drilling</td>
<td>$0.00 / $0.00</td>
</tr>
<tr>
<td>Monitoring</td>
<td>$0.00 / $0.00</td>
</tr>
<tr>
<td>Other (specify)</td>
<td>$0.00 / $0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accommodation & Food Rates per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotel</td>
</tr>
<tr>
<td>Camp</td>
</tr>
<tr>
<td>Meals</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
</tbody>
</table>

TOTAL Expenditures | $98,121.47
Appendix 2: Maps

Figure 1: Claims and Local Geology and Physiography at 1:50:000
Figure 2: Regional Geology
Figure 3: Location of Drill Hole (Google Earth Image)
Appendix 3: Drill Hole Logs and Geochemistry

Drill Log for hole ZK2
Figure 4: Drill section
Table of Geochemical Analyses
Table of Samples

Core is stored at RV Park, Dease River Crossing, Hwy 37.
<table>
<thead>
<tr>
<th>Interval (m)</th>
<th>Major Lithological Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZK2 0.00</td>
<td>Quarterary slope deposit</td>
<td>complicated structure</td>
</tr>
<tr>
<td>ZK2 15.00</td>
<td>metaconite</td>
<td>light grey to black, silicified accompanied by disseminated pyrite, many calcite veins seen.</td>
</tr>
<tr>
<td>ZK2 33.70</td>
<td>granite porphyry</td>
<td>porphyritic granitic texture, light grey to green</td>
</tr>
<tr>
<td>ZK2 34.20</td>
<td>sandstone</td>
<td>light grey to black, mixed with some silified tuff, coarser grains than ZK3. Widespread disseminated pyrite, perfect cubic crystalization. Vein and stockwork types of quartz see in many places, with disseminated pyrite, partly oxidized. Tuff intercalations have disseminated pyrite in the fractures, calcite with quartz veins in some places and pyrite turned into marcasite in others. Many intercalations of sandstone and tuff (0.2-0.5m thick).</td>
</tr>
<tr>
<td>ZK2 61.77</td>
<td>silicified sandstone</td>
<td>light grey to black, intercalated with mudstone, generally silicified, widespread disseminated pyrite. Developed quartz veins, strong pyritization seen in paragenesis with quartz veins.</td>
</tr>
<tr>
<td>ZK2 103.77</td>
<td>volcanic breccias</td>
<td>strong silicification</td>
</tr>
<tr>
<td>ZK2 106.77</td>
<td>tuffaceous conglomerate</td>
<td>strong silicification</td>
</tr>
<tr>
<td>ZK2 112.5</td>
<td>mudstone</td>
<td>dark grey to black, generally silicified, has pyrite.</td>
</tr>
<tr>
<td>ZK2 115</td>
<td>volcanic tuffs</td>
<td>fine grains, developed calcite, intercalated with several mudstone layers (0.02-1m). Generally silicified, with widespread pyrite veins in the fractures.</td>
</tr>
<tr>
<td>ZK2 142.5</td>
<td>mudstone</td>
<td>strong silicification with several quartz veins.</td>
</tr>
<tr>
<td>ZK2 148</td>
<td>volcanic tuffs</td>
<td>intercalated with mudstone (0.01-1m). Broken at 181-187m, strong silicification with disseminated pyrite and developed quartz and calcite veins. Broken at intercalations, stronger silicification. Strong pyritization in veinlets and disseminations. Many shear planes and shear zone breccias zones contain carbon.</td>
</tr>
<tr>
<td>ZK2 388.3</td>
<td>mudstone</td>
<td>broken, strong silicification seen in two phases, structural movement after second phase, broken twice. Widespread pyrite with vein types in paragenesis with quartz.</td>
</tr>
<tr>
<td>ZK2 394.5</td>
<td>tuffaceous sandstone</td>
<td>intercalated with thin mudstone layers. Generally developed quartz and calcite veins, especially in mudstones (stockwork and veinlets). Compresso-crushed zones often seen in mudstone.</td>
</tr>
<tr>
<td>ZK2 394.50</td>
<td>hole end</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>ZK1 GP6 DX 227.0</td>
<td>ZK1GP6</td>
<td><0.005</td>
</tr>
<tr>
<td>ZK1 GP9 DX 329.0</td>
<td>ZK1GP9</td>
<td><0.005</td>
</tr>
<tr>
<td>ZK1 GP15 DX 176.5</td>
<td>ZK1GP15</td>
<td><0.005</td>
</tr>
<tr>
<td>ZK2 GP2 Mz1 105.5</td>
<td>ZK2GP2</td>
<td><0.005</td>
</tr>
<tr>
<td>ZK2 GP15 Mz1 298.8</td>
<td>ZK2GP15</td>
<td><0.005</td>
</tr>
<tr>
<td>ZK2 GP19 Mz1 389.2</td>
<td>ZK2GP19</td>
<td><0.005</td>
</tr>
<tr>
<td>ZK3 B1 MZ2 2.3</td>
<td>ZK3B1</td>
<td><0.005</td>
</tr>
<tr>
<td>ZK3 B2 MZ2 5.4</td>
<td>ZK3B2</td>
<td><0.005</td>
</tr>
<tr>
<td>ZK3 B3 MZ2 5.5</td>
<td>ZK3B3</td>
<td>0.008</td>
</tr>
<tr>
<td>ZK3 B4 MZ2 310.0</td>
<td>ZK3B4</td>
<td>0.008</td>
</tr>
</tbody>
</table>
CERTIFICATE VA12275953

Project:
P.O. No.:
This report is for 9 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 21-NOV-2012.
The following have access to data associated with this certificate:
CHAO CHEN MARTIN GUO

SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEI-21</td>
<td>Received Sample Weight</td>
</tr>
<tr>
<td>LOG-22</td>
<td>Sample login - Rcd w/o BarCode</td>
</tr>
<tr>
<td>PUL-QC</td>
<td>Pulverizing QC Test</td>
</tr>
<tr>
<td>CRU-31</td>
<td>Fine crushing - 70%<2mm</td>
</tr>
<tr>
<td>SPL-21</td>
<td>Split sample - riffle splitter</td>
</tr>
<tr>
<td>PUL-31</td>
<td>Pulverize split to 85%<75 um</td>
</tr>
</tbody>
</table>

ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
<th>INSTRUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME-ICP41</td>
<td>35 Element Aqua Regia ICP- AES</td>
<td>ICP- AES</td>
</tr>
<tr>
<td>Au-AA23</td>
<td>Au 30g FA- AA finish</td>
<td>AAS</td>
</tr>
</tbody>
</table>

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Colin Ramshaw, Vancouver Laboratory Manager
<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Method</th>
<th>Recvd Wt.</th>
<th>Au</th>
<th>Ag</th>
<th>Al</th>
<th>As</th>
<th>B</th>
<th>Ba</th>
<th>Be</th>
<th>Bi</th>
<th>Ca</th>
<th>Cd</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WE-21</td>
<td></td>
</tr>
<tr>
<td>2K1 GP6</td>
<td></td>
<td>0.34</td>
<td><0.005</td>
<td>0.3</td>
<td>0.57</td>
<td><2</td>
<td><10</td>
<td>190</td>
<td>1.0</td>
<td><2</td>
<td>3.55</td>
<td><0.5</td>
<td>13</td>
<td>7</td>
<td>31</td>
<td>3.83</td>
</tr>
<tr>
<td>2K1 GP9</td>
<td></td>
<td>0.28</td>
<td><0.005</td>
<td>0.7</td>
<td>0.55</td>
<td><2</td>
<td><10</td>
<td>130</td>
<td>0.7</td>
<td><2</td>
<td>1.92</td>
<td>5.3</td>
<td>9</td>
<td>19</td>
<td>71</td>
<td>2.17</td>
</tr>
<tr>
<td>2K1 GP15</td>
<td></td>
<td>0.32</td>
<td><0.005</td>
<td><0.2</td>
<td>0.44</td>
<td><2</td>
<td><10</td>
<td>200</td>
<td>0.6</td>
<td><2</td>
<td>5.69</td>
<td><0.5</td>
<td>11</td>
<td>7</td>
<td>16</td>
<td>2.64</td>
</tr>
<tr>
<td>2K2 GP2</td>
<td></td>
<td>0.38</td>
<td><0.005</td>
<td>0.2</td>
<td>1.02</td>
<td>5</td>
<td><10</td>
<td>70</td>
<td><0.5</td>
<td><2</td>
<td>16.7</td>
<td><0.5</td>
<td>11</td>
<td>19</td>
<td>22</td>
<td>2.89</td>
</tr>
<tr>
<td>2K2 GP15</td>
<td></td>
<td>0.58</td>
<td><0.005</td>
<td>0.2</td>
<td>0.93</td>
<td>35</td>
<td><10</td>
<td>80</td>
<td><0.5</td>
<td><2</td>
<td>7.7</td>
<td>0.7</td>
<td>6</td>
<td>13</td>
<td>8</td>
<td>2.76</td>
</tr>
<tr>
<td>2K2 GP19</td>
<td></td>
<td>0.46</td>
<td><0.005</td>
<td><0.2</td>
<td>1.53</td>
<td>12</td>
<td><10</td>
<td>140</td>
<td>0.5</td>
<td><2</td>
<td>3.41</td>
<td><0.5</td>
<td>6</td>
<td>19</td>
<td>9</td>
<td>2.67</td>
</tr>
<tr>
<td>2K3 B1</td>
<td></td>
<td>0.24</td>
<td><0.005</td>
<td>0.3</td>
<td>4.03</td>
<td>3</td>
<td><10</td>
<td>140</td>
<td>0.7</td>
<td><2</td>
<td>0.54</td>
<td>0.8</td>
<td>32</td>
<td>154</td>
<td>81</td>
<td>6.10</td>
</tr>
<tr>
<td>2K3 B2</td>
<td></td>
<td>0.22</td>
<td><0.005</td>
<td><0.2</td>
<td>2.86</td>
<td>4</td>
<td><10</td>
<td>150</td>
<td>0.5</td>
<td><2</td>
<td>3.09</td>
<td><0.5</td>
<td>11</td>
<td>14</td>
<td>33</td>
<td>3.78</td>
</tr>
<tr>
<td>2K3 B3</td>
<td></td>
<td>0.26</td>
<td>0.008</td>
<td>0.2</td>
<td>2.84</td>
<td>8</td>
<td><10</td>
<td>140</td>
<td>0.5</td>
<td><2</td>
<td>1.94</td>
<td><0.5</td>
<td>18</td>
<td>25</td>
<td>48</td>
<td>4.19</td>
</tr>
<tr>
<td>Sample Description</td>
<td>Method</td>
<td>Analyte</td>
<td>Units</td>
<td>LOR</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ga</td>
<td>Hg</td>
<td>K</td>
<td>La</td>
<td>Mg</td>
<td>Mn</td>
<td>Mo</td>
<td>Na</td>
<td>Ni</td>
<td>P</td>
<td>Pb</td>
<td>S</td>
<td>Sb</td>
<td>Sc</td>
<td>Sr</td>
<td></td>
</tr>
<tr>
<td>2K1 GP6</td>
<td><10</td>
<td><1</td>
<td>0.31</td>
<td>20</td>
<td>1.33</td>
<td>493</td>
<td><1</td>
<td>0.08</td>
<td>29</td>
<td>390</td>
<td>21</td>
<td>1.10</td>
<td><2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2K1 GP9</td>
<td><10</td>
<td><1</td>
<td>0.33</td>
<td>20</td>
<td>0.86</td>
<td>116</td>
<td>18</td>
<td>0.04</td>
<td>90</td>
<td>610</td>
<td>33</td>
<td>1.52</td>
<td><2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2K1 GP15</td>
<td><10</td>
<td><1</td>
<td>0.25</td>
<td>10</td>
<td>1.32</td>
<td>377</td>
<td><1</td>
<td>0.05</td>
<td>25</td>
<td>420</td>
<td>8</td>
<td>0.93</td>
<td><2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2K2 GP2</td>
<td><10</td>
<td><1</td>
<td>0.13</td>
<td>10</td>
<td>0.55</td>
<td>3320</td>
<td>1</td>
<td>0.02</td>
<td>45</td>
<td>280</td>
<td>13</td>
<td>1.56</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2K2 GP15</td>
<td><10</td>
<td><1</td>
<td>0.15</td>
<td><10</td>
<td>0.62</td>
<td>2790</td>
<td><1</td>
<td>0.02</td>
<td>37</td>
<td>900</td>
<td>4</td>
<td>1.10</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2K2 GP19</td>
<td><10</td>
<td><1</td>
<td>0.09</td>
<td><10</td>
<td>0.94</td>
<td>972</td>
<td><1</td>
<td>0.03</td>
<td>18</td>
<td>620</td>
<td><2</td>
<td>0.17</td>
<td><2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2K3 B1</td>
<td>10</td>
<td><1</td>
<td>0.18</td>
<td><10</td>
<td>2.50</td>
<td>912</td>
<td>2</td>
<td>0.02</td>
<td>201</td>
<td>1060</td>
<td>12</td>
<td>0.05</td>
<td><2</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2K3 B2</td>
<td>10</td>
<td><1</td>
<td>0.19</td>
<td><10</td>
<td>1.51</td>
<td>2130</td>
<td><1</td>
<td>0.04</td>
<td>26</td>
<td>630</td>
<td>5</td>
<td>0.04</td>
<td><2</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2K3 B3</td>
<td>10</td>
<td><1</td>
<td>0.18</td>
<td><10</td>
<td>1.87</td>
<td>1500</td>
<td>1</td>
<td>0.03</td>
<td>38</td>
<td>870</td>
<td>6</td>
<td>0.04</td>
<td><2</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample Description | Method | Analyte Units | LOR | ME-ICP41 Th | ME-ICP41 Ti | ME-ICP41 Ti | ME-ICP41 U | ME-ICP41 V | ME-ICP41 W | ME-ICP41 Zn |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2K1 GP6</td>
<td>ME-ICP41</td>
<td>ppm</td>
<td><20</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td>8</td>
<td><10</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>2K1 GP9</td>
<td>ME-ICP41</td>
<td>ppm</td>
<td><20</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td>150</td>
<td><10</td>
<td>499</td>
<td></td>
</tr>
<tr>
<td>2K1 GP15</td>
<td>ME-ICP41</td>
<td>ppm</td>
<td><20</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td>12</td>
<td><10</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>2K2 GP2</td>
<td>ME-ICP41</td>
<td>ppm</td>
<td><20</td>
<td>20</td>
<td><10</td>
<td><10</td>
<td>17</td>
<td><10</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>2K2 GP15</td>
<td>ME-ICP41</td>
<td>ppm</td>
<td><20</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td>15</td>
<td><10</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>2K2 GP19</td>
<td>ME-ICP41</td>
<td>ppm</td>
<td><20</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td>24</td>
<td><10</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>2K3 B1</td>
<td>ME-ICP41</td>
<td>ppm</td>
<td><20</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td>92</td>
<td><10</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>2K3 B2</td>
<td>ME-ICP41</td>
<td>ppm</td>
<td><20</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td>40</td>
<td><10</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>2K3 B3</td>
<td>ME-ICP41</td>
<td>ppm</td>
<td><20</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td>53</td>
<td><10</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Hole ID</td>
<td>From T0</td>
<td>CRI Tag</td>
<td>Rock sample</td>
<td>Bag No.</td>
<td>Shipment Date</td>
<td>WR Majors</td>
<td>WR Trace</td>
<td>Au</td>
<td>ICP</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td>----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>148.9</td>
<td>ZK1GP2</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>168.0</td>
<td>ZK1GP3</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>188.0</td>
<td>ZK1GP4</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>213.0</td>
<td>ZK1GP5</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>227.0</td>
<td>ZK1GP6</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>237.0</td>
<td>ZK1GP7</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>239.0</td>
<td>ZK1GP8</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>354.5</td>
<td>ZK1GP10</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>368.0</td>
<td>ZK1GP11</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>376.0</td>
<td>ZK1GP12</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>76.0</td>
<td>ZK1GP13</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK1</td>
<td>176.5</td>
<td>ZK1GP14</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>17.0</td>
<td>ZK2GP1</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>33.7</td>
<td>ZK2GP2</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>44.5</td>
<td>ZK2GP3</td>
<td>Quartz vein 3cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>105.5</td>
<td>ZK2GP4</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>106.0</td>
<td>ZK2GP5</td>
<td>Quartz vein 3cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>122.0</td>
<td>ZK2GP6</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>140.0</td>
<td>ZK2GP7</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>155.0</td>
<td>ZK2GP8</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>170.0</td>
<td>ZK2GP9</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>179.0</td>
<td>ZK2GP10</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>185.5</td>
<td>ZK2GP11</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>215.0</td>
<td>ZK2GP12</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>224.0</td>
<td>ZK2GP13</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>234.0</td>
<td>ZK2GP14</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>339.5</td>
<td>ZK2GP15</td>
<td>Quartz vein 3cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>389.0</td>
<td>ZK2GP16</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>389.5</td>
<td>ZK2GP17</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>392.0</td>
<td>ZK2GP18</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK2</td>
<td>392.5</td>
<td>ZK2GP19</td>
<td>Quartz vein 3cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK3</td>
<td>4.0</td>
<td>ZK3GP1</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK3</td>
<td>5.4</td>
<td>ZK3GP2</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK3</td>
<td>5.9</td>
<td>ZK3GP3</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZK3</td>
<td>316.0</td>
<td>ZK3GP4</td>
<td>Reference sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4: Statement of Qualifications
Statement of qualifications, Hardolph Wasteneys Ph.D., P.Geo.

I, Hardolph Wasteneys, Ph.D, P.Geo., resident at Strathcona Park Lodge, Campbell River BC, do hereby certify that:

- I am a self-employed Professional Geoscientist and have worked primarily in mineral exploration, mining, geological and U-Pb geochronological research, and geological education since 1978.
- I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia and of the Association of Professional Geoscientists of Ontario.
- I graduated with the degree of Bachelor of Science in Geological Engineering, Mineral Resources option from the Faculty of Applied Science, Queen’s University, Kingston in 1979.
- I graduated with the degree of Doctor of Philosophy (Geological Sciences) from Queen’s University, Kingston in 1990 in the field of economic geology with research specialized in the study of epithermal ore deposits of southern Peru under the supervision of Prof. Alan H. Clark.
- I conducted U-Pb geochronological research at the Jack Satterley Geochronology Laboratory in the Royal Ontario Museum directed by Dr. T. E. Krogh from 1990 to 1997 and completed numerous studies on the timing of ore deposition and regional metamorphism in collaboration with university and government survey geologists and resulting in several publications in peer reviewed international journals.
- I have read the definition of “Qualified Person” set out in National Instrument 43-101 (“NI 43-101”) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a “Qualified Person” for the purposes of NI 43-101.
- I have no beneficial interest in Canada Rockies International Investment Group Ltd. Nor in its mineral and placer tenures.

Signed at Strathcona Park Lodge, Campbell River BC, this 17th day of April, 2013.

[Signature]

Hardolph Wasteneys, Ph.D, PGeo.