GEOLOGICAL, GECHEMICAL AND GEOPHYSICAL REPORT

ON THE

CHRIS CLAIMS
OLIVER, BRITISH COLUMBIA

Osoyoos Mining Division
British Columbia
N.T.S. Map 82E/4E
Latitude: 49° 18' 11"
Longitude: 119° 30' 34"

FOR

Operator: Atlar Resources Ltd.
405 - 595 Howe Street
Vancouver, B.C.
Tel: (604) 681-7787

Owner: R. McTieeman

CONSULTANTS:

Gewargis Geological Consulting Inc.
811- 850 West Hastings Street
Vancouver, B.C. V6C 1E1
Tel: (604) 687-6245

Author:

Wilson A. Gewargis, B.Sc., F.G.A.C.

Date:

October 1986
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>RECOMMENDATION</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.1 Phase I Budget</td>
<td>2-3</td>
</tr>
<tr>
<td>3.0</td>
<td>INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>4.0</td>
<td>LOCATION, ACCESS AND TOPOGRAPHY</td>
<td>4</td>
</tr>
<tr>
<td>5.0</td>
<td>PROPERTY DESCRIPTION</td>
<td>7</td>
</tr>
<tr>
<td>6.0</td>
<td>MINING HISTORY</td>
<td>9</td>
</tr>
<tr>
<td>7.0</td>
<td>CURRENT WORK (1986)</td>
<td>10</td>
</tr>
<tr>
<td>8.0</td>
<td>REGIONAL GEOLOGY</td>
<td>10-11</td>
</tr>
<tr>
<td>9.0</td>
<td>PROPERTY GEOLOGY</td>
<td>11-15</td>
</tr>
<tr>
<td>10.0</td>
<td>GEOCHEMICAL SURVEY</td>
<td>15-17</td>
</tr>
<tr>
<td>11.0</td>
<td>GEOPHYSICAL SURVEY</td>
<td>17-18</td>
</tr>
<tr>
<td></td>
<td>11.1 Survey Procedures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.2 Presentation of Results and Discussions</td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>CERTIFICATION OF QUALIFICATIONS</td>
<td>19</td>
</tr>
<tr>
<td>13.0</td>
<td>REFERENCES</td>
<td>20</td>
</tr>
</tbody>
</table>
APPENDIX AND ILLUSTRATIONS

APPENDICES:

A. Acme Analytical Lab Certificate of Assay Results for Soil and Rock Descriptions

ILLUSTRATIONS

Figure 1: Location Map, Scale 1:2,500,000
Figure 2: Topographic Map, Scale 1:50,000
Figure 3: Claim Map, Scale 1:50,000
Figure 4: Regional Map, Scale 1:63,360
Figure 5: Property Geology Map, Scale 1:2,000
Figure 6: Magnetometer Contour Map, Scale 1:2000
Figure 7: VLF Profile Map, Scale 1:2000
Figure 8: Geochemical Survey, Gold (Au) Scale 1:2,000
Figure 9: Geochemical Survey, Silver (Ag) Scale 1:2,000
1.0 SUMMARY

Exploration on the Chris Claims in the Osoyoos Mining Division was carried out during July - August 1986, and consisted of reconnaissance geological mapping, sampling, geochemical and geophysical (Magnetic and VLF-EM) surveys.

The geological mapping and geochemical sampling confirmed the existence of gold mineralization within a shear zone hosted by granitic rocks. The VLF-EM and Magnetic Surveys revealed weak anomalies that coincide with the above gold anomalies. Also the magnetic survey was effective in the mapping of various geological formations.

The Chris claims lies along the eastern trend of well-known gold producers in British Columbia such as the Fairview Camp, which is approximately 3 km east of the Morning Star Mine.

The recorded production of the Fairview Camp (including the Morning Star) between 1933 to 1941 was 110,272 tons, 15,301 oz. of gold, and 167 oz. of silver.

Since the property lies within a district of significant geological environment and, several gold anomalies have been confirmed within a quartz shear zone hosted by granitic rock, the author recommends an exploration program to test and delineate targets with economic potential.

The Phase 2 exploration program should include geological sampling, mapping, and percussion drilling. The estimated cost of Phase 2 is $15,000.00.
2.0 RECOMMENDATIONS

The shear zone within the granitic rock that hosts precious metal mineralization (quartz vein system) should be considered the primary exploration target. To test the geological and economical potential of the above structure, the following exploration program is recommended.

1. **Thorough geological mapping and sampling** along the shear zone within the granitic rock to determine the nature of the mineralization, and to assess its potential.

2. **Prospecting** the entire claim block.

3. **Percussion drilling:** A total of 122 meters (400 ft) of percussion drilling is required to test, delineate, and verify the structural attitude of the shear zone within the granitic rocks.

Contingent upon favourable results from the Phase 2 program, a tentative plan will be made for Phase 3.

2.1 Phase 2 Budget

Following are the estimated costs of the Phase 2 program on the Chris Claims:

- Cost of percussion drilling 122 meters (400 ft) including Mob and Demob; Room & Board for drilling crew: $5,500.00
- Supervision of drilling, geological mapping, and sampling: $3,000.00
- Room and Board for field crew: $500.00
- Transportation from Vancouver to property/return and on-site, including insurance and gas: $1,000.00
Phase 2 Budget on the Chris Property (Continued)

Assaying of drilling samples and soil samples $2,000.00
Report writing, drafting, printing, word processing, xeroxing $3,000.00

TOTAL $15,000.00

Respectfully submitted

GEWARGIS GEOLOGICAL CONSULTING INC.

Wilson A. Gewargis, B.Sc., F.G.A.C.
Consulting Geologist
3.0 INTRODUCTION

The author, Wilson A. Gewargis, B.Sc., F.G.A.C., of Gewargis Geological Consulting Inc., and Laroth Engineering Ltd. were engaged by Atlar Resources Ltd. to carry out an exploration program on the Chris Claims. The exploration program was carried out between July - August 1986.

Work included reconnaissance geological mapping, geochemical and geophysical surveys over the entire property. The geological mapping was carried out by R. Plummer, B.Sc., F.G.A.C, of Gewargis Geological Consulting Inc. and the geochemical and geophysical surveys by Laroth Engineering Ltd.

This report discusses the results of the geophysical, geological, and the geophysical work performed on the property.

4.0 LOCATION, ACCESS AND TOPOGRAPHY (Figure 1 and 2)

The Chris claims are located approximately 3.5 km west of Oliver, British Columbia within the Fairview Camp.

The property can be reached most directly from Vancouver by travelling east to Osoyoos via Highways #1 and 3, then north on Highway #97 to Oliver for a distance of approximately 26 km (Figure 1). From Oliver travel 3.5 km southwest to Fairview then north 1.5 km.

The property topography is characterized by an area of gently sloping, northeasterly facing hillside, with elevations ranging between 610 m to 700 m (Figure 2).

Vegetation is predominately open grassland. Bedrock exposure on the property is spread over the entire property.
ATLAR RESOURCES LTD.

CHRIS CLAIMS PROPERTY
OLIVER, B.C.
OSOYOOS MINING DIVISION
N.T.S. MAP 82E/4E
TOPOGRAPHY MAP

SCALE: 1:50,000
FIG: 2
DRAWN BY: D.G.
DATE: OCT. 1996

GEWARGIS GEOLOGICAL CONSULTING INC.
5.0 PROPERTY DESCRIPTION (Figure 3)

The Chris Property comprises 8 mineral claims and 1 claim fraction, and was staked by R. McTiernan of Osoyoos, British Columbia and recorded in Osoyoos Mining Division, on Claim Map N.T.S. 82E/4E. The geographic co-ordinates of the property are 49°10'N latitude, and 119°30'W longitude.

The Chris Property consists of the following claims:

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Record No.</th>
<th>No. of Units</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chris McTiernan</td>
<td>2372</td>
<td>3</td>
<td>Feb. 1987</td>
</tr>
<tr>
<td>Ebony Fraction</td>
<td>2387</td>
<td>1 Fraction</td>
<td>Feb. 1987</td>
</tr>
<tr>
<td>Steve McTiernan</td>
<td>2442</td>
<td>3</td>
<td>Jul. 1987</td>
</tr>
<tr>
<td>R. McTiernan</td>
<td>2448</td>
<td>2</td>
<td>Jul. 1987</td>
</tr>
</tbody>
</table>

The property is owned by R. McTiernan (75%) and Osborne Lakevold (25%). Atlar Resources Ltd., of Vancouver acquired an option on the property by virtue of an agreement with R. McTiernan and Osborne Lakevold in 1986. The claims have been staked in accordance with the Claims Act of British Columbia.
6.0 MINING HISTORY

The Chris claims are located within the Fairview Camp, which is one of the older mining camps in the Province of British Columbia. Many of the claims in the Camp were staked in the early nineties, and the greater part of the work was done prior to 1900.

The chief development in this camp was the Morning Star Claim, which in 1899 was operated by S. Mangott and Associates. It is reported that in 1933, a total of 2983 tons of ore with a gross value of $55,936.00 in gold was produced.

In 1936, a total of 12,960 tons of ore was mined with a total of 1511 oz of gold and 21,334 oz. of silver.

In the latter part of 1937, with a view to develop a vein at greater depth, a development program was carried out and as a result a large ore body 259 meters from the No.6 Adit portal was intersected. The mining operation concentrated on this new discovery.

The camp was idle for a number of years until work was resumed by Consolidated Mining & Smelting Co. in 1946.

The recorded production of the Fairview Camp, (including the Morning Star) between 1933 to 1941 was 110,272 tons grading 15,301 oz. gold, and 167 oz. of silver.

The recorded production of the Stemwinder between 1898 to 1949 totalled 27,666 tons grading 962 oz. of gold and 18,749 oz. of silver.

Since the recent increase in gold prices, the area has been active in gold exploration and the entire camp has been staked. No exploration work has been carried out on the Chris claims by the present owners prior to it being optioned by Atlar Resources Ltd.
7.0 CURRENT WORK (1986)

The field work on the Chris claims was conducted between July - August 1986. During this period the undernoted work was completed.

- **Mapping and sampling:** Reconnaissance geological mapping of the entire claims block and sampling of interesting outcrops. All the data has been plotted on map scale 1:1000 (Figure 5).

- **Grid:** A total of 15.2 kilometers of grid lines was completed. The lines are marked, chained, and flagged. The baseline runs almost north-south for a distance of 1.1 km, and crosslines are running east-west at 50 meter intervals.

 The grid was established so that detailed geological mapping, geophysical and geochemical surveys could be conducted in this area.

- **Sampling:** A total of 233 soil samples and 10 rock samples were taken from the grid area. The data is plotted on map scale 1:1000 (Figures 8-9)

- **Geophysical Survey:** Magnetometer and VLF-EM Surveys were conducted in the grid area, and all geophysical data is plotted on map, scale 1:1000 (Figures 6-7).

8.0 REGIONAL GEOLOGY (Figure 4)

The geology of the centre part of Keremeos and Oliver has been described in a number of memoirs and government reports by H.S. Bostock (1929, 1930) Map 341A, and also W.E. Cockfield (1935) Memoir 179, on the **Lode Gold Deposit** of the Fairview Camp, Camp Mckinney, Vidette Lake area, and the Dividend-Lakeview property near Osoyoos, British Columbia.
The Kobau group (Unit 3), which covers the entire claim block, comprises a thick metamorphosed, stratified rocks mainly of sedimentary origin. The quartzite members are thinly-bedded and commonly micaceous or graphitic; There are also fine grained, siliceous, mica schists, and others containing chlorite, hornblende, graphite and talc. The associated greenstones are variously sheared, and in a few locations are greatly faulted. It is probable that slices of other formations than those represented are present.

The Kobau group (Unit 3) has been intruded by younger intrusive rocks of Jurassic or younger in age and consists of granodiorite, diorite and syenite. The intrusive rocks of the area, with the exception of the Fairview (Unit 11b) and the Osoyoos (Unit 11a) bodies, indicate a succession from ultrabasic and alkaline to more siliceous types. The syenites (Unit 14) have been invaded and largely replaced by intrusions of granodiorite and granite. The diorite (Unit 13) and grandiorite (Unit 15), lying within the area of Oliver granite, have been intruded by the granite. Elsewhere diorite is intruded by granodiorite.

The Osoyoos and Fairview intrusives (Units 11a and 11b) include types varying from granite to diorite, granodiorite and quartz diorite being the most abundant. Some of the small bodies mapped as diorite are like dioritic phases of the Osoyoos and Fairview intrusives and may be contemporaneous with them. The age of the Osoyoos and Fairview bodies (Unit 11a, b) relative to other intrusives in the area is not known, but they are believed to be older as they are more sheared and altered.

The gold veins of the Fairview Camp and vicinity are grouped in a northwest trending belt and occur mainly in rocks of the Kobau group (Unit 3), and within 1.6 kilometers of the contact of the Oliver granite (Unit 16a). Gold-bearing veins are also found in this granite.

9.0 PROPERTY GEOLOGY (Figure 5)

The entire grid lines were mapped in detail at a scale of 1:1000 (Figure 5). The property is underlain by a thick sequence of metamorphosed, stratified rocks of
sedimentary origin which are mainly quartzite, schist, limestone, and andesitic rocks, which belong to the Kobau Group of the Carboniferous Age.

This group hosts the veins of the Fairview Camp and trends northwest. The quartzite members are thinly interbedded and commonly micaceous or graphitic. There are fine grained, siliceous, mica schists and others containing chlorite, hornblende, graphic and talc. The associated volcanic andesitic rocks are variously sheared, and in some locations are faulted.

Intruding the above formations are younger rocks which belong to the Fairview and Oliver intrusive rocks which also hosts quartz veins with mineralization. The following are lithological descriptions of the rock units observed on the Chris claims which are classified as 6 mappable units:

Unit 1: **Biotite schist/phyllite:** Dark grey to black, fine grained, well foliated, bedded with pronounced schistosity striking northwesterly and dipping between 40°-70° northeast. This unit covers almost 60% of the property, mainly in the north-northwest and appears as massive bluff and cliffs.

Unit 2: **Chlorite Schist/Phyllite:**

This unit is similar to Unit 1 and consists of green to dark green, fine to medium groundmass, well foliated, and trends northeast. It is exposed in the middle of the property along the Baseline, intermixes with Unit 1, and represents 5 - 10% of the mapped area.

Unit 3: **Limestone:** Recrystallized, grey in color, massive, 3 to 5 meters of thick layer occurs within Unit 1 and Unit 2. It is exposed up to 2%, mainly on the northwest portion of the property, which has similar trends to the Biotite Schist Unit 1.
Unit 4: **Quartzite:** Light brown, fine to medium grained, massive, interbedded within the schist/phylite Unit 1 and 2. It represents 5% of the mapped area, mainly in the middle of the grid area.

Unit 5: **Granitic Dyke:** 5 to 10 meters wide, light grey in color, fine to medium grained, massive. This unit occurs in the upper northeast part of the property, and hosts a shear zone with associated quartz vein and mineralization.

Unit 6: **Feldspar Porphyry:** Light grey to white, fine to medium grained rock with felsitic groundmass and phenocrysts of quartz or quartz and feldspar. In general, the phenocrysts are not very abundant; a few rocks of this group are fine grained.

The microscopic studies on these rocks show that phenocrysts of quartz appear in some specimens, and phenocrysts of feldspars in others; a few have phenocrysts of both quartz and feldspar.

The feldspars are generally well zoned. The groundmass is usually very fine grained and consist of feldspar and quartz with shreds of biotite or muscovite. The relation of these rocks to either Oliver or Fairview granite has not been studied during the field season, since only one location on the property exhibits such units, i.e., Line 7+00S to 7+50S 1+50W to 2+00W.

Mineralization:

The mineralization of the Chris Claims consists of a sheared quartz vein, 1 to 2 meters wide and approximately 70 to 100 meters long. This vein system occurs within granitic rock.

A field examination of the vein materials indicates that it is composed of quartz, dark grey graphitic streaks, bands, and is occasionally associated with limonitic staining.
No precious or base metals have been observed on the Chris Claims. A total of ten rock samples were taken from the property and submitted to Acme Analytical Lab in Vancouver, British Columbia for fire assay. These samples represent grab samples from the shear-limonitic and graphitic quartz vein material. The assay results range between 0.01 to 0.05 \(\text{oz. silver/ton} \) and 0.001 \(\text{oz. gold/ton} \). All the assay results, rock descriptions and locations are shown in Appendix "A".

10.0 GEOCHEMICAL SURVEY (Figure 8-9)

Geochemical Soil Sampling was performed on the Chris Claims. Soil samples were taken from the "B" horizon at 25 meter intervals along the crosslines. Soil samples were placed in Kraft paper envelopes (10 cm x 23 cm) in size. A total of 237 soil samples were selected and submitted to Acme Analytical Laboraties for ICP (Inductively Coupled Plasma) analysis of 30 elements plus gold. Locations and results for gold and silver were plotted on a scale of 1:2000 maps (Figure 8-9) and also included in Appendix "A".

Both the gold-silver values are enhanced in the upper north portion of the grid lines, and most of the anomalies for gold-silver coincides or lies within the granitic rock unit which has been mapped on the property. A quartz vein (shear zone) also occurs within this unit.

The following are descriptions of the anomalies found on the Chris claims.

Gold Assays: (Figure 8)

Assay results for gold range between 1 ppb to 375 ppb; 31 samples (13%) of total soil samples has gold concentrations ranging from 10 ppb to 375 ppb. The remaining 206 samples (87%) represents the background population associated with the unmineralized rock units.

The above 13% of the soil samples have been plotted numerically as anomalous values.
These anomalous values are scattered throughout the property, but their economical significance lies within a trend in the granitic rock unit between Line 0+50S, 0+25W to 1+25W to Line 3+50S, 2+50E to 5+25E.

A second significant anomaly occurs east of the main trend which lies between Line 0+50S, 4+00E and Line 2+50S, 4+75E trending north-south almost parallel to the baseline.

Silver Assays (Figure 9)

Five silver values ranging between 0.6 to 1.0 pprn coincide with the gold trend within the shear zone. The highest value 1.0 pprn silver is located near the second gold anomaly. Since the silver values indicate weak anomalies, it should not be considered a significant exploration target at the present time. Further detailed sampling will be required to test this possibility.

Other Elements:

The distribution of the other elements are not presented in map form, but are described in the following summary:

- **Arsenic:** Exhibits low values ranging between 2 to 18 ppm. The highest value 18 ppm is located at Line 1+50S 0+75E, and is located within a shear zone and granitic rock. The second 18 ppm value is located at Line 2+50S 4+75E and coincides with the gold anomaly.

- **Copper:** Copper values range between 17 to 538 ppm, and the highest value located at Line 2+50S 4+75E coincides with the silver/gold most easterly anomaly which trends north/south.

Eight soil samples have values of over 100 ppm.
• **Lead:** No gradient lead concentration has been observed across the grid lines. The highest lead value is 27 ppm and the remainder of the results range between 4 to 27 ppm.

• **Zinc:** Similar to lead exhibits no gradient in concentration. The highest zinc is 354 ppm.

The base metals copper, lead, and zinc show weak responses and therefore may not have economical potential.

Discussion of Results:

The geochemical survey has indicated weak base metals, and silver anomalies with significant gold anomalies. These anomalies are related to the geologically controlled features where a shear zone hosted quartz vein occurs within the granitic rock unit and a structure to the east on the property.

Gold enhancement in the soil represents a significant feature and its potential cannot be determined solely on the basis of the present work. These anomalies should be investigated through detailed mapping, sampling, and finally by percussion drilling.

11.0 GEOPHYSICAL SURVEY (Figure 6-7)

11.1 Survey Procedures:

From the middle of July to August 1986, Laroth Engineering Ltd., conducted geophysical surveys which included (VLF-EM and Magnetic) over the 15.2 km of grid lines on the Chris Claims. The following instruments were used:

- a) Portable Proton Magnetometer (Scintrex Model MP-2).
- b) VLF-EM Receiver (Sabre Model 27) tuned to VLF Station, Seattle.

The Magnetometer measures the earth's total magnetic field in gammas (1
gamma) and the VLF-EM system measures the horizontal field strength of very low frequency electromagnetic field initiated from designated radio stations. The prime electromagnetic field propagated in undisturbed areas is horizontal. Conductivity contrasts within the earth create secondary fields resulting in variations in net field strength. These field strength variations yield the VLF anomalies recorded and plotted. All the geophysical data interpretation was carried out by R. Plummer, B.Sc., F.G.A.C.

11.2 Presentation of the Results and Discussions:

The Magnetic readings were taken at 25 meter intervals over the entire grid lines. Loops were run to the baseline and crosslines and the corrections were made for diurnal variation accordingly.

The regional gradients of the property which represents 57,000 gammas was subtracted from all the magnetic readings. All the readings were contoured at 100 gamma intervals (Figure 6).

The magnetic readings on the Chris Claims range between 56,883 to 58,022 gammas. Such large variations in readings indicates that various geological rocks exist on the property. A localized magnetic high at Line 1+50S 2+50W which is the most northerly edge of the property, represents a linear geological feature. A lower magnetic reading at Line 1+00S 2+00E to 2+75E represents a geological formation. Other magnetic anomalies represents the shear zone within the granitic rock.

The VLF-EM data detected a number of northeast-southeast, and north/south trending weak conductors which are adjacent to the localized geological features and geochemical gold anomalies. Some of the above conductors are probably caused by topography and others reflect faults or shear zones.

The above results of the VLF-EM and Magnetic Surveys outlined weak anomalies that coincide with the gold mineralization occurring within the granitic rock.
12.0 CERTIFICATE OF QUALIFICATIONS

I, Wilson A. Gewargis, B.Sc., F.G.A.C., of 4811 Dunfell Road, Richmond, British Columbia, hereby certify as follows:

1. I am a Consulting Geologist with an office at Suite 811, 850 West Hastings Street, Vancouver, British Columbia.

2. I am a graduate of the University of Mosul, Iraq (1970), and hold a Bachelor of Science degree in Geology. In addition, I spent two years of post graduate studies in geology and geophysics at the University of Stuttgart, West Germany.

3. I have engaged in mineral exploration work and studies for 15 years in Canada, United States of America, and Europe.

4. I am a Fellow of the Geological Association of Canada and a member of the Society of Mining Engineers of AIME.

5. I did personally visit the Chris Property in Oliver, British Columbia.

6. I have no interest, either directly or indirectly in the "Chris Claims Property" or securities of Atlar Resources Ltd.

Dated at Vancouver, British Columbia, this 8th day of October 1986.

Wilson A. Gewargis, B.Sc., F.G.A.C.
Consulting Geologist
13.0 REFERENCES

STATEMENT OF COST
CHRIS CLAIMS PROPERTY
TOTAL FIELD COST $12386.50

TOTAL OF $4000.00 APPLIED FOR ASSESSMENT WORK.
August 15, 1986

Invoice No. 1

Atlar Resources Ltd.
Suite 811
850 West Hastings Street
Vancouver, B.C.
V6C 1E1

<table>
<thead>
<tr>
<th>Description</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 days engineer @ $300.00/day</td>
<td></td>
<td>$1,800.00</td>
</tr>
<tr>
<td>6 days assistant @ $110.00/day</td>
<td></td>
<td>660.00</td>
</tr>
<tr>
<td>4 x 4 vehicle - 6 days @ $60.00/day</td>
<td></td>
<td>360.00</td>
</tr>
<tr>
<td>Expenses G. Partridge, Geologist</td>
<td></td>
<td>61.50</td>
</tr>
<tr>
<td>Gas - 2500 km</td>
<td></td>
<td>200.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$3,081.50</td>
</tr>
</tbody>
</table>
Aug 4/86

To: Latawe Engineering Ltd.
Kelowna, B.C.

in account with G. Partridge, F.G.A.E.

Expenses for travel:

<table>
<thead>
<tr>
<th>Date</th>
<th>Trip</th>
<th>Km</th>
<th>2X</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 23/86</td>
<td>Osoyoos / Daniel</td>
<td>27</td>
<td>54</td>
</tr>
<tr>
<td>June 24/86</td>
<td>Osoyoos / Summerland</td>
<td>65</td>
<td>130</td>
</tr>
<tr>
<td>June 26/86</td>
<td>Osoyoos / Summerland</td>
<td>65</td>
<td>130</td>
</tr>
<tr>
<td>June 27/86</td>
<td>Osoyoos / Keremeos</td>
<td>98</td>
<td>96</td>
</tr>
</tbody>
</table>

410 km

410 km x 0.15 = $61.50

G. Partridge
August 15, 1986

Invoice No. 2

Atlas Resources Ltd.
Suite 811
850 W. Hastings Street
Vancouver, B.C.
V6C 1E1

To flag, perform geochemical survey, magnetometer and electromagnetic survey on McTiernan, Oliver, B.C. property.

Total 15.2 km

Flag 15.2 km line @ $100.00/km $1,520.00

Geochemical Survey total 600 samples
Sampler and assistant
10 man day @ $190.00/day 1,900.00

Magnetometer and VLF survey
15.2 km operator
6 man days @ $300.00/day 1,800.00

Supervision - 5 days @ $300.00/day 1,500.00

Room & Board - Motel & Restaurant
31 man days @ $35.00/day 1,085.00

4 x 4 rental - 1/2 month 600.00

4 x 4 Toyota - 5 days @ $60.00/day 300.00

Gas for vehicles 600.00

Total $9,305.00
APPENDIX "A"

ACME ANALYTICAL LAB CERTIFICATE OF ASSAY RESULTS
FOR SOIL, ROCK SAMPLES, AND ROCK DESCRIPTIONS
<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4706</td>
<td>Line 1+00S/2+60E</td>
<td>Grab sample of limonitic quartz in schist.</td>
</tr>
<tr>
<td>4707</td>
<td>South Line 2+00/0+0</td>
<td>Graphitic quartz rubble.</td>
</tr>
<tr>
<td>4708</td>
<td>5M north of Line 1+50S/0+30E</td>
<td>Grab sample of muck pile + 3M large pit. Vein trends 335°/55E.</td>
</tr>
<tr>
<td>4709</td>
<td>10M south of Line 1+50S/0+75E</td>
<td>1.5 M grab of limonitic stained quartz vein in pit.</td>
</tr>
<tr>
<td>4710</td>
<td>Line 2+00S/1+25E</td>
<td>Grab of 3M wide graphitic, sheared and fractured quartz vein in biotite schist and granitic vein trends 340°/35°E.</td>
</tr>
<tr>
<td>4711</td>
<td>Line 2+50S/2+35E</td>
<td>1.5 M grab of grey sheared quartz vein trends 325°/50°E.</td>
</tr>
<tr>
<td>4712</td>
<td>20 M up slope of Line 3+00S/0+75E</td>
<td>1 M grab of limonitic quartz vein in pit.</td>
</tr>
<tr>
<td>4713</td>
<td>Line 4+00S/1+65E</td>
<td>25M grab sample of muck pile along the edge of old trench.</td>
</tr>
<tr>
<td>4714</td>
<td>Line 4+00S/2+15E</td>
<td>Muck pile grab sample at edge of old pit.</td>
</tr>
<tr>
<td>4715</td>
<td>Line 4+50S/1+50W</td>
<td>Grab sample of limonitic grey banded quartz in small pit.</td>
</tr>
</tbody>
</table>
Assay Certificate

Sample Type: Rock Chips
Au and **Ag** by Fire Assay

Assayer: DEAN TOYE. CERTIFIED B.C. ASSAYER.

Laroth Engineering
Project: Gene Larabee
File #: 86-2049A
Page: 1

<table>
<thead>
<tr>
<th>Sample#</th>
<th>Au**</th>
<th>Ag**</th>
</tr>
</thead>
<tbody>
<tr>
<td>4706</td>
<td>0.02</td>
<td>0.001</td>
</tr>
<tr>
<td>4707</td>
<td>0.05</td>
<td>0.001</td>
</tr>
<tr>
<td>4708</td>
<td>0.02</td>
<td>0.001</td>
</tr>
<tr>
<td>4709</td>
<td>0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>4710</td>
<td>0.02</td>
<td>0.001</td>
</tr>
<tr>
<td>4711</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>4712</td>
<td>0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>4713</td>
<td>0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>4714</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>4715</td>
<td>0.03</td>
<td>0.001</td>
</tr>
</tbody>
</table>

CME ANALYTICAL LABORATORIES LTD.
852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE 253-3158
DATA LINE: 251-1011

DATE RECEIVED: AUG 14 1986
DATE REPORT MAILED: AUG 19 1986
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>%C</th>
<th>%Ca</th>
<th>%Pb</th>
<th>%Zn</th>
<th>%Cu</th>
<th>%Ni</th>
<th>%Zo</th>
<th>%Fe</th>
<th>%Al</th>
<th>%Na</th>
<th>%K</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3+500 1+2SW</td>
<td>45</td>
<td>67</td>
<td>92</td>
<td>11</td>
<td>95</td>
<td>46</td>
<td>2</td>
<td>18</td>
<td>41</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>L3+500 0+5SW</td>
<td>26</td>
<td>88</td>
<td>96</td>
<td>22</td>
<td>57</td>
<td>47</td>
<td>3</td>
<td>37</td>
<td>17</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>L3+500 0+6SW</td>
<td>24</td>
<td>99</td>
<td>122</td>
<td>26</td>
<td>35</td>
<td>13</td>
<td>2</td>
<td>31</td>
<td>7</td>
<td>51</td>
<td>16</td>
</tr>
<tr>
<td>L3+500 0+7SW</td>
<td>42</td>
<td>11</td>
<td>125</td>
<td>25</td>
<td>35</td>
<td>13</td>
<td>1</td>
<td>51</td>
<td>16</td>
<td>51</td>
<td>16</td>
</tr>
<tr>
<td>L3+500 0+7SE</td>
<td>24</td>
<td>99</td>
<td>122</td>
<td>26</td>
<td>35</td>
<td>13</td>
<td>2</td>
<td>31</td>
<td>7</td>
<td>51</td>
<td>16</td>
</tr>
<tr>
<td>L3+500 0+7SE</td>
<td>28</td>
<td>92</td>
<td>122</td>
<td>33</td>
<td>35</td>
<td>13</td>
<td>2</td>
<td>31</td>
<td>7</td>
<td>51</td>
<td>16</td>
</tr>
<tr>
<td>L3+500 0+7SE</td>
<td>57</td>
<td>10</td>
<td>12</td>
<td>22</td>
<td>67</td>
<td>41</td>
<td>1</td>
<td>37</td>
<td>17</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>L3+500 0+7SE</td>
<td>65</td>
<td>12</td>
<td>12</td>
<td>22</td>
<td>67</td>
<td>41</td>
<td>1</td>
<td>37</td>
<td>17</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>L3+500 0+7SE</td>
<td>27</td>
<td>13</td>
<td>12</td>
<td>22</td>
<td>67</td>
<td>41</td>
<td>1</td>
<td>37</td>
<td>17</td>
<td>19</td>
<td>26</td>
</tr>
</tbody>
</table>

ATLAR RESOURCES PROJECT OLIVER FILE # 06-217
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>No</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
<th>W</th>
<th>Mo</th>
<th>Cr</th>
<th>Ni</th>
<th>Co</th>
<th>V</th>
<th>Cr</th>
<th>Cu</th>
<th>Mo</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS+005+2+25E</td>
<td>108</td>
<td>5</td>
<td>67</td>
<td>1</td>
<td>24</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LS+005+4+25E</td>
<td>39</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+6+25E</td>
<td>20</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+8+25E</td>
<td>20</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+10+25E</td>
<td>108</td>
<td>5</td>
<td>67</td>
<td>1</td>
<td>24</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LS+005+12+25E</td>
<td>39</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+14+25E</td>
<td>20</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+16+25E</td>
<td>20</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+18+25E</td>
<td>39</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+20+25E</td>
<td>20</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+22+25E</td>
<td>20</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+24+25E</td>
<td>39</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+26+25E</td>
<td>20</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+28+25E</td>
<td>20</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+30+25E</td>
<td>39</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+32+25E</td>
<td>20</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LS+005+34+25E</td>
<td>20</td>
<td>9</td>
<td>90</td>
<td>1</td>
<td>24</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

ATLAR RESOURCES

PROJECT : OLIVER FILE # 80-2173

PAGE 4
GEOCHEMICAL ICP ANALYSIS

Sample 50G gram sample is digested with TEH (1:10 ml-10 ml) at 95 deg. C for one hour and is diluted to 10 ml with water.

This lead is partial for nn, Fe, Ca, P, Pb, Mg, Ba, B, Al, Na, Mg, Si, Fe, Ca, and TI. Au detection limit by ICP is 1 ppm.

- **Sample Type:** Soil-Rocks
 - **Analyst:** By an AF 10 gram sample.

Date Received: Sept 1, 1988
Date Report Mailed: Dec 22, 1988

Agassiz, B.C., Certified B.C. Assayer.

Lab Resources:
- **Phone:** 251-1011
- **Data Line:** 251-3158
- **Vancouver, B.C., Phone:** 251-3158

Table

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ag</th>
<th>Au</th>
<th>Ba</th>
<th>Ca</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
<th>K</th>
<th>Mg</th>
<th>Mn</th>
<th>Na</th>
<th>Ni</th>
<th>P</th>
<th>Pb</th>
<th>Sr</th>
<th>Ti</th>
<th>Zn</th>
<th>(\text{ppm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0500</td>
<td>41</td>
<td>.3</td>
<td>41</td>
</tr>
<tr>
<td>L0500</td>
<td>47</td>
<td>.3</td>
<td>47</td>
</tr>
<tr>
<td>L0500</td>
<td>47</td>
<td>.3</td>
<td>47</td>
</tr>
<tr>
<td>L0500</td>
<td>47</td>
<td>.3</td>
<td>47</td>
</tr>
<tr>
<td>L0500</td>
<td>47</td>
<td>.3</td>
<td>47</td>
</tr>
<tr>
<td>L0500</td>
<td>47</td>
<td>.3</td>
<td>47</td>
</tr>
<tr>
<td>L0500</td>
<td>47</td>
<td>.3</td>
<td>47</td>
</tr>
<tr>
<td>L0500</td>
<td>47</td>
<td>.3</td>
<td>47</td>
</tr>
</tbody>
</table>

Page 1