Assessment Report
Title Page and Summary

TYPE OF REPORT [type of survey(s)]: Technical - Geochemical

TOTAL COST: $5,375

AUTHOR(S): Carl von Einseedel

SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): N/A

YEAR OF WORK:

STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 5583773

PROPERTY NAME: HONEY MOON EAST

CLAIM NAME(S) (on which the work was done):

MINING DIVISION: Kamloops

NTS/BCGS: NTS 82M12

LATITUDE: 51°36'24.4" N

LONGITUDE: 120°33'17.6" W (at centre of work)

MAILING ADDRESS:

1) Vendetta Resources Ltd

2) Carl von Einseedel

OPERATOR(S) (who paid for the work):

1) ____________________________

2) ____________________________

MAILING ADDRESS:

1) ____________________________

2) ____________________________

PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):

Silver - Lead - Zinc

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

Aris Report Nos. 30940 and 33179
<table>
<thead>
<tr>
<th>TYPE OF WORK IN THIS REPORT</th>
<th>EXTENT OF WORK (IN METRIC UNITS)</th>
<th>ON WHICH CLAIMS</th>
<th>PROJECT COSTS APPORTIONED (incl. support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGICAL (scale, area)</td>
<td>Ground, mapping</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Photo interpretation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOPHYSICAL (line-kilometres)</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electromagnetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Induced Polarization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiometric</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seismic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Airborne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOCHEMICAL</td>
<td>(number of samples analysed for...)</td>
<td>27</td>
<td>921131</td>
</tr>
<tr>
<td></td>
<td>Soil</td>
<td></td>
<td>5,375</td>
</tr>
<tr>
<td></td>
<td>Silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRILLING</td>
<td>(total metres; number of holes, size)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELATED TECHNICAL</td>
<td>Sampling/assaying</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petrographic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineralographic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metallurgic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROSPECTING (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREPARATORY / PHYSICAL</td>
<td>Line/grid (kilometres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topographic/Photogrammetric</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(scale, area)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Legal surveys (scale, area)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Road, local access (kilometres)/trail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trench (metres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Underground dev. (metres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL COST: 5,375
ITEM 1: TITLE PAGE

TECHNICAL ASSESSMENT REPORT
GEOLOGICAL AND GEOCHEMICAL SURVEYS

HONEYMOON EAST PROPERTY

KAMLOOPS MINING DISTRICT
SOUTH CENTRAL BRITISH COLUMBIA

LOCATION OF 2015 EXPLORATION WORK: the center of the 2015 work program is UTM 3713800N / 392200E NAD 83 Zone 10.

Prepared for
VENDETTA MINING CORP. (formerly Azincourt Resources Inc.)

SOW NO. 5583773

Author
CARL A. VON EINSIEDEL, P.GEO.

Effective Date
March 30, 2016
ITEM 2: TABLE OF CONTENTS

ITEM 1: TITLE PAGE 1

ITEM 2: TABLE OF CONTENTS 2

ITEM 3: SUMMARY 4

ITEM 4: INTRODUCTION AND TERMS OF REFERENCE 6

ITEM 5: RELIANCE ON OTHER EXPERTS 6

ITEM 6: PROPERTY DESCRIPTION AND LOCATION
6.1 Property Description and Location 7
6.2 Provincial Mining Regulations 9

ITEM 7: ACCESSIBILITY, CLIMATE, PHYSIOGRAPHY & INFRASTRUCTURE
7.1 Accessibility and Infrastructure 10
7.2 Physiography, Climate, Vegetation and Current Land Use 10

ITEM 8: HISTORY OF EXPLORATION 11

ITEM 9: GEOLOGICAL SETTING 12
9.1 Regional Geology 12
9.2 Property Geology 13

ITEM 10: DEPOSIT TYPES
10.1 VMS (Cypress and Kuroko type) massive sulphide mineralization 13
10.2 Structurally controlled Gold and polymetallic vein type mineralization 14

ITEM 11: MINERALIZATION
11.1 Joseph Prospect 14

ITEM 12: EXPLORATION
12.1 Summary of exploration work carried out in 2010 15
12.2 Summary of exploration work carried out in 2011 15
12.3 Summary of exploration work carried out in 2015 17

ITEM 13: STATEMENT OF COSTS 2015 20

ITEM 14: SAMPLING METHOD AND APPROACH 21

ITEM 15: SAMPLE PREPARATION, ANALYSIS AND SECURITY 21
APPENDIX 1: LIST OF REPORT FIGURES

Fig. 1: SOUTH CENTRAL BC MAP SHOWING PROPERTY LOCATION, EXISTING CLAIMS, PARKS, LOCAL COMMUNITIES AND ACCESS ROADS (1:250,000 scale)

Fig. 2: SOUTH CENTRAL BC GEOLOGICAL MAP SHOWING BCMEM MINFILE PROSPECTS (1:250,000 scale)

Fig. 3: TOPOGRAPHIC MAP SHOWING MINERAL TENURE REFERENCE NUMBERS (1:65,000 scale)

Fig. 4: INDEX MAP SHOWING EXPLORATION WORK COMPLETED IN 2015 – AREAS OF SOIL GEOCHEMICAL SURVEYS AND AREAS OF ROCK SAMPLING (1:65,000 scale)

Fig. 5: DETAIL PLAN SHOWING HISTORIC GEOCHEMICAL DATA FOR THE JOSEPH TARGET AND THE 2015 XRF RESULTS (ZINC) (1:5,000 scale)

Fig. 6: DETAIL PLAN SHOWING HISTORIC GEOCHEMICAL DATA FOR THE JOSEPH TARGET AND THE 2015 XRF RESULTS (LEAD) (1:5,000 scale)

FIG. 7 DETAIL PLAN SHOWING HISTORIC GEOCHEMICAL DATA FOR THE JOSEPH TARGET AND THE 2015 XRF SAMPLE ID NUMBERS (1:5,000 scale)
ITEM 3: SUMMARY

In 2010 Vendetta Mining Corp. acquired a northwest oriented, staircase shaped block of ground (comprising 21 contiguous mineral tenures (4,862 hectares)) located south of the community of Clearwater in south central BC. The claims are accessible by existing forest service roads and covered a known, early stage stratiform polymetallic massive sulphide occurrence identified in the BC Ministry of Mines (BCMEM) Minfile database as the JOSEPH PROSPECT (Minfile No. 082M-194 located in the south eastern part of the claim group) and potential extensions of structurally controlled gold bearing quartz veins referred to as the HONEYMOON PROSPECT (Minfile No. 092P 174 located in the south western part of the claim group). In July 2015 Vendetta reduced the size of the property to four mineral tenures comprising 965 hectares that cover the stratiform massive sulfide occurrence and transferred ownership of the property in exchange for a royalty interest.

The property (referred to as the Honeymoon East Property) is located in the Adams Plateau – Clearwater exploration area. Regional geological maps published by the BC Ministry of Energy and Mines (BCMEM) show that the claim area covers a north to northwest trending package of Paleozoic aged Fennell and Eagle Bay Formation volcanic and sedimentary rocks cut by a series of complex, north to northwest trending thrust faults. According to BCMEM the Fennell Formation hosts various styles of mineralization including Cypress-type massive sulphide Cu (Zn) mineralization, Noranda/Kuroko-type massive sulphide Cu-Pb-Zn mineralization, and Ag-Pb-Zn+/Au vein mineralization. The most significant prospects in the project area include the Harper Creek copper deposit located approximately 11 kilometers east of the Property, the Chu Chua copper deposit located approximately 15 kilometres to the south of the Property, the Joseph Prospect located within the Honeymoon East Property and the Jake Gold Prospect located approximately 10 km to the northwest of the Property. The reader is cautioned that there is no assurance that mineralization similar to the Harper Creek copper deposit, the Chu Chua copper deposit, the Jake Prospect or the former Windpass Gold Mine will be identified within the boundaries of the Honeymoon East Property.

Previous exploration work was carried out within the boundaries of the original Honeymoon East Property between 1978 and 1988 by Craigmont Mines, “Craigmont”, Esso Minerals Canada, “Esso”, and Kerr Addison Mines, “Kerr Addison”. Previous work consisted of airborne geophysical surveys (total field magnetic and EM surveys), prospecting, rock sampling and geological mapping, soil geochemical surveys, limited ground geophysical surveys and a limited drill program in 1984 (two drill holes) designed to test the JOSEPH PROSPECT which was identified by the geochemical and geophysical surveys. According to BCMEM Minfile records (Occurrence number 082M-194) one of the two drill holes intersected a 9.2 meter wide interval that assayed 2.39% lead, 1.05% zinc, 0.014% copper, 30.9 g/t silver and 0.07 g/t gold together with 1.27% barium. This intersection included a 2.7 meter interval that assayed 9.2% lead, 1.56% zinc, 0.02% copper, 93.9 g/t silver and 0.17 g/t gold with 2.45% barium. According to Marr (1984) the mineralized zone trends north and has an estimated true width of 8.0 meters. The second drill hole completed approximated 210 meters to the northwest reportedly intersected a 1.8 meter interval that assayed 2.9% lead, 0.45% zinc and 26.1 g/t silver.

During 2010 Vendetta compiled all available exploration data from the Craigmont Mines, Esso Minerals and Kerr Addison Properties work programs and completed a detailed soil geochemical survey using specialized augers in the area of the Joseph Prospect. The objectives of the 2010 program were to verify the soil geochemical sampling results reported by Esso, delineate the extent of mineralization at the Joseph Prospect using the soil sampling data and to determine if the limited drill program, carried out by Esso in 1984 adequately tested the potential of the Joseph Prospect.
The preliminary exploration work completed by Vendetta in 2010 identified very strong “lead in soils” and “zinc in soil” anomalies in the area of the Joseph Prospect and clearly showed that the extent of the target area was only partially tested by the 1984 drill holes. During 2011 Vendetta completed two large soil geochemistry grids comprising 1,537 samples (referred to as the Main Grid and the North grid) to test two priority target areas identified by the Craigmont airborne survey along strike of the Joseph Target and carried out a prospecting program to evaluate the Honeymoon prospect. The Main Grid geochemical survey successfully identified a north northwest trending continuation of the soil geochemical anomaly identified in 2010 associated with the Joseph Prospect. Although the lead and zinc values reported for the extension of the Joseph Prospect are lower than those encountered in the area that was drill tested overburden appears to be thicker and may simply be muting the geochemical response of bedrock mineralization. The current claims cover the Joseph prospect and the anomaly identified within the Main Grid.

Between September and December of 2015 a follow up program was carried out to meet the 2016 assessment work requirements of the reduced claim group. A total of 27 sample pulps from the 2010 program were retrieved from storage and analyzed with a hand held XRF analyzer to verify the high lead and zinc results reported by ALS Global for the Joseph target area and to assess the effectiveness of using the XRF unit as an alternative to laboratory analysis of soil samples. Results of the pulp analyses showed good correlation with the assay results reported by ALS Global. XRF values for Zinc ranged from 96% to 140% of the values reported by ALS. XRF values for Lead ranged from 91% to 129% of the values reported by ALS.

In addition to the XRF test work the author completed a literature review of the Ministry of Mines database and identified an incorrectly filed assessment report documenting 15 additional drill holes comprising 1,675.9 meters of drilling that were completed in 1988 by Gold Spring Resources within the area of the Joseph Prospect. The locations of the 1988 drill holes were georeferenced and entered into the Honeymoon East Property database. The 1988 drill program encountered mineralization similar to the mineralization reported by Esso and extended the strike length of the mineralized zone to 700 meters but has not tested the western and north western extensions of the Joseph prospect. This work was recorded on SOW No.5583773.

ITEM 4: INTRODUCTION AND TERMS OF REFERENCE

The author was retained by the Board of Directors of Vendetta Mining Corp. (formerly Azincourt Resources Inc.) to supervise the 2015 follow up exploration program on the Honeymoon East Property and if warranted, outline recommendations for follow-up exploration program.

ITEM 5: RELIANCE ON OTHER EXPERTS

The author has prepared this report based on information which is believed to be accurate but which is not guaranteed. The available technical data for the Honeymoon East Property consists of regional geological and airborne geophysical information compiled by the BC Ministry of Energy and Mines and documentation regarding field investigations completed within the current claim area by various previous operators including Craigmont Mines Ltd. in 1979, Esso Minerals Ltd. and Barrier Reef Resources Ltd. in 1983 and 1984 and by Kerr Addison Mines Ltd. in 1988. Sources are listed in the References section of this report and are cited where appropriate in the body of the report. The technical reports listed in the References section of this report appear to have been completed by professional geologists without any promotional or misleading intent and the author has no reason to doubt the accuracy or completeness of the contained information.

To the best of the author’s knowledge at the time of writing of this report, the Honeymoon East Property is free of any liens or pending legal actions and is not subject to any underlying royalties, back-in rights, payments or other encumbrances.

To the best of the author’s knowledge, there are no known existing environmental liabilities to which the property is subject, other than the requirement to mitigate any environmental impact on the claims that may arise in the course of normal exploration work and the requirement to remove any camps constructed on the Honeymoon East Property or any equipment used in exploration of the claims in the event that exploration work is terminated.

The author conducted an online title search on March 30, 2016 to verify that all of the mineral claims that comprise the Honeymoon East Property are properly registered. This title search is not a legal opinion as to the validity of the property claims as such opinions are not within the professional scope of the author.
ITEM 6: PROPERTY DESCRIPTION AND LOCATION

6.1 Property Description and Location

In 2010 Vendetta Mining Corp. acquired 21 contiguous mineral tenures (4,862 hectares) that covered a northwest oriented, staircase shaped block of ground located south of the community of Clearwater in south central BC. The claims are accessible by existing forest service roads and cover a known, early stage stratiform massive sulphide occurrence identified in the BC Ministry of Mines (BCMEM) Minfile database as the JOSEPH PROSPECT (Minfile No. 082M-194 located in the south eastern part of the claim group) and potential extensions of structurally controlled gold bearing quartz veins referred to as the HONEYMOON PROSPECT (Minfile No.092P 174 located in the south western part of the claim group). In July 2015 Vendetta reduced the size of the property to four mineral tenures comprising 965 hectares and transferred ownership of the property in exchange for a royalty interest.

LOCATION OF 2015 EXPLORATION WORK: the center of the 2015 work program is UTM 3713800N / 392200E NAD 83 Zone 10.

All of the claims which comprise the Honeymoon East Property were staked pursuant to the BC Ministry of Energy and Mines MTO system (Mineral Titles Online System). The earliest expiry date of the claim package is December 30, 2016. The location of the property relative to other mining claims, local communities, parks and access roads is shown in figure 1. The individual claim tenure numbers are shown in figure 3. The central and eastern parts of the property are on NTS Mapsheet 92P09 and the southeastern part of the property is on NTS Mapsheet 82M12.

The mineral cell title claim statistics are summarized in Table 1; note that this claim information is not a legal title opinion but is a compilation of claims data based on the author's review of the government of the British Columbia Mineral Rights inquiry website (BC Mineral Titles March 30, 2015). The mineral claims do not have to be legally surveyed; since they are BC Government established mineral cell title claims.

There is one area of mineralization that has been identified within the present Honeymoon East Property. This area is referred to as the Joseph Prospect (initially identified by Esso Minerals in 1983). The Joseph Prospect is located in the eastern part of the Honeymoon East Property and is accessible by existing four wheel drive roads as described in Section 7.

The southern boundary of the Honeymoon East property is located immediately north of the northern boundary of the Dunn Peak Protected Area. None of the claims that comprise the Honeymoon East Property are located within the Dunn Peak Protected Area.
Table 1. List of Mineral Claims

<table>
<thead>
<tr>
<th>Title Number</th>
<th>Claim Name</th>
<th>Owner</th>
<th>Title Type</th>
<th>Title Sub Type</th>
<th>Map Number</th>
<th>Issue Date</th>
<th>Good To Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>846679</td>
<td>232801 (100%)</td>
<td>Mineral Claim</td>
<td>092P</td>
<td>2011/feb/16</td>
<td>2016/dec/31</td>
<td>GOOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>846680</td>
<td>232801 (100%)</td>
<td>Mineral Claim</td>
<td>092P</td>
<td>2011/feb/16</td>
<td>2016/dec/31</td>
<td>GOOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>927737</td>
<td>HME</td>
<td>232801 (100%)</td>
<td>Mineral Claim</td>
<td>082M</td>
<td>2011/nov/02</td>
<td>2016/dec/31</td>
<td>GOOD</td>
<td></td>
</tr>
<tr>
<td>927744</td>
<td>HME_1</td>
<td>232801 (100%)</td>
<td>Mineral Claim</td>
<td>092P</td>
<td>2011/nov/02</td>
<td>2016/dec/31</td>
<td>GOOD</td>
<td></td>
</tr>
</tbody>
</table>
6.2: Provincial Mining Regulations

To the best of the author’s knowledge no government permits are required to carry out the proposed surface geological work but will be required for any follow up diamond drilling program recommended after completion of this program. These programs will require application to the Ministry of Energy and Mines for permits and the Issuer may be required to post security equivalent to the estimated costs of any reclamation work which will be required after completion of the proposed exploration work.

To the best of the author’s knowledge approval from local First Nations communities may also be required to carry out the proposed Stage 2 exploration program. The reader is cautioned that there is no guarantee that the Issuer will be able to obtain approval from local First Nations. However, the author is not aware of any problems encountered by other junior mining companies in obtaining approval to carry out similar programs in nearby areas nor is the author aware of any instances where local First Nations communities have objected to exploration work in the general project area.

To the best of the author’s knowledge, none of the claims which comprise the Honeymoon East Property have surface rights. The BCMEM online database indicates that surface rights for the Honeymoon East property are held by the Crown. In the event that a significant mineralized zone is identified an application that includes detailed environmental impact studies must be made to the Crown for surface rights prior to initiation of any advanced exploration or mining activities. The reader is cautioned that there is no guarantee that areas for potential mine waste disposal or areas for processing plants will be available within the subject property.
ITEM 7: ACCESSIBILITY, CLIMATE, PHYSIOGRAPHY AND INFRASTRUCTURE

7.1 Accessibility and Infrastructure

Access to the property is by Provincial Highway 5, 110 kilometres north from Kamloops, along the north Thompson River to Clearwater. The current property can be accessed by travelling east from Birch Island along the south side of the North Thompson River and then by travelling south and west along the Jones Creek Forest Service Road. This is the access road that was utilized during the 2010 exploration program to access the Joseph prospect area.

In general, infrastructure in the vicinity of the subject property is considered excellent. There are existing roads that can be used to access the known areas of mineralization and the proposed exploration areas. There are numerous small lakes and streams within the claim area that would easily provide sufficient water for exploration purposes. Trained exploration personnel are available in several local nearby communities.

7.2 Physiography, Climate, Vegetation and Current Land Use

Climate in the Clearwater area is typical of the Shushwap Highlands ranging from sub-alpine in the mountains to a semi-arid, more temperate, continental climate. Summer is normally warm and dry and winter is moderate to very cold and dry.

The property is in the Shuswap Highlands physiographic region and encompasses a rugged, hilly upland area. Elevations range from 1070 – 2130 meters in elevations. The slopes are covered with tall, close spaced fir and spruce forest. Open areas are thick with buck brush and similar vegetation. Swamps and small lakes dot the uplands in virtually every depression. Figure 3 shows the generalized topography of the Honeymoon East property.
ITEM 8: HISTORY OF EXPLORATION

In 1977 a consortium of companies consisting of Vestor Explorations Ltd., Seaforth Mines Ltd. and Pacific Cassiar Mines Ltd. carried out reconnaissance geochemical sampling to explore the Fennel and Eagle Bay Formation rocks in the area around Chu Chua Mountain approximately 30 kilometers south of Clearwater. Results of this program generated considerable industry interest in the Clearwater area and the claims were optioned to Craigmont Mines in 1978. In 1978 and 1979 Craigmont drilled a total of forty drill holes and delineated a significant zone of copper rich massive sulphide mineralization referred to as the Chu Chua deposit.

In 1979 Craigmont, acquired the ground between Clearwater and the Chu Chua deposit and completed a DIGHEM II airborne electromagnetic and magnetic survey to explore the continuation of the Fennel and Eagle Bay Formation rocks. Several bands of conductors, magnetic highs and resistivity lows were delineated. In 1980 and 1981 Craigmont and Barrier Reef initiated ground follow-up and in 1982 Esso optioned the Craigmont and Barrier Reef property.

During 1983 Esso completed numerous grid based soil geochemical surveys designed to evaluate the targets identified by the airborne surveys. Each of the geochemical survey grids consisted of varying numbers of 25 – 50 meter spaced samples collected along lines spaced 100 to 200 meters apart. This work defined multiple soil anomalies which were identified by letters of the alphabet. One of the strongest anomalies, referred to as Anomaly “B” was tested by two short drill holes in 1984 and resulted in the discovery of a previously unknown zone of stratiform lead – zinc – copper -silver mineralization referred to as the “Joseph Prospect”. According to BCMEM Minfile records (Occurrence number 082M-194) one of the two drill holes intersected a 9.2 meter wide interval that assayed 2.39% lead, 1.05% zinc, 0.014% copper, 30.9 g/t silver and 0.07 g/t gold together with 1.27% barium. This interval included a 2.7 meter interval that assayed 9.2% lead, 1.56% zinc, 0.02% copper, 93.9 g/t silver and 0.17 g/t gold with 2.45% barium. According to Marr (1984) the mineralized zone trends north and has an estimated true width of 8.0 meters. The second drill hole completed approximated 210 meters to the northwest intersected a 1.8 meter interval that assayed 2.9% lead, 0.45% zinc and 26.1 g/t silver.

It is important to note that the work completed by Esso in 1983 and 1984 did not evaluate all of the target areas identified by the airborne geophysical survey. No additional follow up work was reported by Esso and the claims covering the airborne geophysical anomalies and the Joseph Prospect were allowed to lapse.

In addition to the XRF test work the author completed a literature review of the Ministry of Mines database and identified an incorrectly filed assessment report documenting 15 additional drill holes comprising 1,675.9 meters of drilling that were completed in 1988 by Gold Spring Resources within the area of the Joseph Prospect. The locations of the 1988 drill holes were geo-referenced and entered into the Honeymoon East Property database. The 1988 drill program encountered mineralization similar to the mineralization reported by Esso and extended the strike length of the mineralized zone to 700 meters but has not tested the western and northwestern extensions of the Joseph prospect.
ITEM 9: GEOLOGICAL SETTING

9.1 Regional geology

The Honeymoon Project is situated within the Adams Plateau - Clearwater Exploration area which lies near the southern end of the Omineca Crystalline Belt, one of the five morphological belts of the Canadian Cordillera. The Omineca belt refers to variably deformed and metamorphosed rocks of continental affinity, that are exposed east of Mesozoic arc and back-arc sequences (i.e., Intermontane belt) and west of deformed Paleozoic continental margin sedimentary rocks (i.e., Foreland belt). The Adams Plateau - Clearwater Exploration area includes the Fennel Formation of the Slide Mountain Terrane and the Eagle Bay assemblage of the Kootenay Terrane.

The regional geology of the project area is taken from Paper 1982-1, BCDM Geological Fieldwork 1981, Clearwater Area by P. Schiarizza. Figure 2 shows the generalized geology of the Clearwater - Chu Chua Area that shows the locations of the most advanced prospects. In the area of the Harper Creek Prospect (located approximately 10 kilometers to the east) the predominant rock types are rusty weathering greenish-grey feldspathic chlorite schists, chlorite schists, sericite schists and sericitic quartzites of the Eagle Bay Formation.

The area of the Honeymoon East Property is primarily underlain by rocks of the Lower and Upper Fennel Formation. The Lower Fennel Formation consists of aphanitic to very coarse grained basalt, chert and cherty mudstone, quartz - feldspar porphyry, conglomerate, sandstone, argillite and phyllite and partly crystalline limstone. The Upper Fennel Formation consists mainly of aphanitic to fine grained pillowed basalts with minor discontinuous pods of chert. Although the contact is not exposed the contact between the Lower and Upper Fennel Formation appears to be stratigraphic rather than tectonic. This is the unit that hosts the Chu Chua Copper deposit and the Joseph Prospect.

The middle Cretaceous Baldy Batholith occupies the southeast corner of the project area. Coarse grained biotite quartz monzonite comprises much of the batholith. A small body of similar rock outcrops in the Joseph Creek Valley (located immediately south of Area 1 defined by Kerr Addison) in the southeastern part of the Honeymoon East Property. The Raft Batholith located in the northwestern part of the project area is associated with the mineralization identified at the Jake prospect.

The Honeymoon Project straddles the lower and upper structural divisions of the Fennell Formation. The basalts, of the upper division, are aphanitic to fine-grained medium to dark grey or green in colour, and rarely display a tectonic foliation. Microscopically, they consist of relict clinopyroxene and plagioclase variably altered to an assemblage of chlorite, actinolite, epidote, leucoxene, titanite, and minor carbonates and quartz (Schiarizza and Preto, 1987). The diabase and gabbro, of the lower division, are coarser grained than the volcanic rocks, but they have the same composition. Un-pillowed and
pillowed basalt flows of the upper structural division host the stratabound Chu Chua Cu-Zn-Au-Ag sulphide deposit (Paradis et al. 2006).

9.2 Property Geology

According to Everett, 1983 the geochemical survey grids that were sampled by Esso (Grid No.s B1 to B5 and B8) are underlain by aphanitic to coarse grained basalt, basic lapilli crystal tuffs, gabbro, chert, cherty siltstone, conglomerate, sandstone, argillite and limestone of the Upper Fennel Formation.

A westerly overturned syncline in the Fennel Formation is the dominant structural feature between Joseph Creek and Clearwater. It plunges shallowly towards the north north-west and there appears to be a slight flexure in the axial trace from the northeast to the north.

The generalized trend of the volcanic and sedimentary rocks within the Honeymoon East property is from northwest to southeast. Outcrop is generally scarce on the property and general unit trends are extrapolated mainly from float occurrences. Detailed soil geochemical sampling using augers is believed to be the most effective exploration method for tracing the mineralized horizons within the Fennel Formation. The extensive database of soil sample assays that exists for the project area will improve the ability to target mineralized zones that are completely masked by overburden.

The geological work completed by Kerr Addison in the central part of the Honeymoon East Property did not include detailed geological mapping so there is only a limited amount of detailed information available on the rock units that host the vein occurrences referred to as Area 1.

ITEM 10: DEPOSIT TYPES

10.1 VMS (Cypress and Kuroko type) massive sulfide mineralization

Volcanogenic massive sulfide ("VMS") deposits are a type of metal sulfide ore deposit, mainly Cu-Zn-Pb which are associated with and created by volcanic-associated hydrothermal events in submarine environments. They are predominantly stratiform accumulations of sulfide minerals that precipitate from hydrothermal fluids on or below the seafloor. Their immediate host rocks can be either volcanic or sedimentary. Most VMS deposits have two components. There is typically a mound-shaped to tabular, stratabound body composed principally of massive sulfide, quartz and subordinate phyllosilicates, and iron oxide minerals and altered silicate wall-rock. These stratabound bodies are typically underlain by discordant to semidiscordant stockwork veins and disseminated sulfides. The stockwork vein systems are enveloped in distinctive alteration halos, which may extend into the strata above the VMS deposit.

VMS deposits are grouped according to base metal content, gold content, and host-rock lithology. The base metal classification divides VMS deposits into Cu-Zn, Zn-Cu, and Zn-Pb-Cu groups according to their contained ratios of these three metals. Gold content has a simple bimodal definition of “normal” versus “Au-rich”. Au-rich VMS deposits are arbitrarily defined as those in which the abundance of Au in ppm is
numerically greater than the combined base metals (Zn+Cu+Pb in wt%). VMS deposit classification by their host lithologies includes all strata within a host succession defining a distinctive time-stratigraphic event. There are five different groups: bimodal-mafic, bimodal-felsic, felsic-siliciclastic, mafic-backarc, and mafic-siliciclastic. These lithologic groupings generally correlate with different submarine tectonic settings. Bimodal-mafic VMS deposits are formed during the extensional stages (island arc-rifting) of an island arc. The Minfile classification G06 Noranda/Kuroko-type VMS deposit contains the Bimodal-mafic VMS deposits. Bimodal-felsic VMS deposits are formed during the extensional stages (continental arc-rifting) of a continental margin arc. The Minfile classification G06 Noranda/Kuroko-type VMS deposit contains the Bimodal-felsic VMS deposits. Back-arc mafic VMS deposits are hosted in mature back-arc ophiolites found in oceanic arc settings. The Minfile classification G05 Cyprus-type VMS deposit is Back-arc mafic VMS deposit. Mafic-siliciclastic VMS deposits are formed in oceanic extensional environments close to continental margins. The Minfile classification G04 Besshi-type VMS deposit is a Mafic-siliciclastic VMS deposit. Felsic-siliciclastic VMS deposits are formed in continental back-arc basins. The Minfile classification G06 Noranda/Kuroko-type VMS deposit contains the felsic-siliciclastic deposits.

10.2 Structurally controlled Gold and polymetallic vein type mineralization

Mineralization in structurally controlled Polymetallic (Ag-Pb-Zn ± Au) veins is epigenetic and is formed from structurally focused hydrothermal fluids. These types of deposits are normally associated with regional faults, fault sets and fractures; however, veins are typically associated with second order structures. Veins typically occur in the central parts of discrete shear zones within a larger regional fault, where the rotational or simple shear strains predominate. Vein systems are tabular, sub vertical structures of varying thickness and lateral extent. Precious metal mineralization often occurs as coarse individual grains, occasionally making this type of deposit difficult to evaluate, due to a “nugget effect” on sample analyses.

ITEM 11: MINERALIZATION

Between 1979 and 1987 Craigmont Mines, Esso and Kerr Addison carried out surface exploration of the claim area now covered by the Honeytmoon East Property. The Honeytmoon East Property covers a known, early stage stratiform massive sulphide occurrence identified in the BC Ministry of Mines (BCMEM) Minfile database as the JOSEPH PROSPECT (Minfile No. 082M-194) and potential extensions of structurally controlled gold bearing quartz veins referred to as the HONEYMOON PROSPECT (Minfile No.092P-174).

11.1 Joseph Prospect

The strongest soil geochemical anomaly identified by Esso is within the Honeytmoon East Property (referred to as Anomaly "B2" and also referred to as the Joseph Prospect). According to published technical reports prepared by Esso there is a 50-100 by 1800 meter area in the B2 grid that exhibits elevated zinc, lead, copper and silver in the soil, referred to as anomaly “B”. There is also a 30-75 by 1100 meter area, parallel to anomaly “B” that exhibits elevated copper, lead, zinc and silver in the soil,
referred to as anomaly “C”. Esso tested this target with two short drill holes in 1984 and identified a previously unknown zone of stratiform lead - zinc - copper -silver mineralization which is now referred to as the "Joseph Prospect". According to BCMEM Minfile records one of the two drill holes intersected a 9.2 meter wide interval that assayed 2.39% lead, 1.05% zinc, 0.014% copper, 30.9 g/t silver and 0.07 g/t gold together with 1.27% barium. This intersection included a 2.7 meter interval that assayed 9.2% lead, 1.56% zinc, 0.02% copper, 93.9 g/t silver and 0.17 g/t gold with 2.45% barium. According to Marr (1984) the mineralized zone trends north and has an estimated true width of 8.0 meters. The second drill hole completed approximately 210 meters to the northwest reportedly intersected a 1.8 meter interval that assayed 2.9% lead, 0.45% zinc and 26.1 g/t silver. Based on the characteristics of the mineralization and the classification proposed by the BCMEM the Joseph Prospect is believed to be a Kuroko type massive sulphide occurrence. No additional follow up work was reported by Esso and the claims covering the airborne geophysical anomalies and the Joseph Prospect were allowed to lapse. In 1988 Kerr Addison staked most of the ground that had been held by Esso to explore for structurally controlled, gold bearing quartz veins similar to those developed at the former Windpass Mine located approximately 10 kilometers south of the Property.

ITEM 12: EXPLORATION WORK COMPLETED IN 2015

12.1 Summary of exploration work carried out in 2010

The preliminary exploration work completed by Vendetta in 2010 confirmed the historic Esso technical data and clearly showed that existing exploration targets within the Honeymoon East property have only been partially tested. Based on the results of the 2010 program the author recommended that Vendetta complete a staged exploration program designed to evaluate potential extensions of the mineralization identified by Esso at the Joseph Prospect and to assess the gold bearing vein targets identified in Area 1 by Kerr Addison.

12.1 Summary of exploration work carried out in 2011

Between March and November of 2011 Vendetta completed an extensive program of soil and rock sampling at a total cost of $118,932.00 as outlined in SOW No.s 5191027 and 5191030. Two large soil geochemistry grids (referred to as the Main Grid (which covers and area of approximately 4 square kilometers) and the North grid (which covers and area of approximately 2 square kilometers)) comprising 1,537 samples were completed to test two priority target areas identified by the Craigmont airborne survey along strike of the Joseph Target and an area of approximately 9 square kilometers (covering the area referred to as Area 1 (SW Target) by Kerr Addison) was systematically prospected for gold bearing quartz veins. Several areas of interest were identified and a total of 97 rock samples were collected however analysis of the rock samples was deferred pending confirmation of exploration budgets for 2012.
The Main Grid geochemical survey successfully identified a north northwest trending continuation of the soil geochemical anomaly associated with the Joseph Prospect. Samples were collected from depths of between 0.2 and 0.5 meters using augers and were placed in standard kraft soil sample bags and delivered to the ALS Chemex assay facility in North Vancouver. Samples were dried, sieved to minus 80 mesh and analyzed by ICP 41 for a suite of 35 trace and path finder elements. To ensure adequate QA and QC ALS Chemex includes 5% industry standard and blank samples into the sample stream and the reported results were within industry standards. A total of 27 strongly anomalous zinc results and 12 strongly anomalous lead results were reported. Peak values within the anomalies are subdued relative to the soil geochemistry results reported for Joseph Prospect however the anomalous samples define a distinctive north trending target that extends for approximately 1,200 meters to the north northwest of the area surveyed by Esso. The results also indicate that the new target area may be up to four hundred meters in width which is similar to the overall width of the geochemical anomaly associated with the Joseph Prospect. Assay values of up to 787 ppm zinc and 354 ppm lead were recorded in the assay reports provided by ALS Chemex.

Based on the results of the work completed in 2011 it is recommended that Vendetta carry out additional fill-in surveys to delineate the overall extent of Joseph Prospect. Overburden conditions with the target area are variable and a combination of sampling methods will need to be utilized to ensure that the limits of the target area can be accurately defined. Additional auger sampling should be carried out within the areas surveyed in 2010 and in 2011 and should be designed to evaluate the relationship between surface values and depth to bedrock. Although the lead and zinc values reported for the extension of the Joseph Prospect are lower than those reported by Esso in the area that was drill tested overburden appears to be thicker and may simply be muting the geochemical response of bedrock mineralization. In the event that in fill and auger sampling confirms that the geochemical anomalies are associated with areas of overburden covered mineralization ground geophysical surveys and follow up drill testing would be warranted.

No significant results were reported from the North grid (see figure 6 to 8) and assays are pending for the rock samples collected from Area 1 (also referred to as the SW Target Area).
Summary of Main Grid soil geochemical data

Main Grid - Lead Anomalies – Figure 9
There are 12 strongly anomalous (lead > 75 ppm) lead samples. The lead anomalies have confirmed there is a north to northwest trending extension of the geochemical anomalies identified by Esso minerals B2 grid (Joseph Target). These anomalous areas are likely the expression of multiple mineralized horizons, which is common in VMS environments.

Main Grid - Zinc Anomalies – Figure 10
There are 27 anomalous (zinc > 150 ppm) zinc samples. The zinc anomalies have verified the geochemical anomalies identified by Esso minerals B2 grid and have confirmed there is a north to northwest trending extension of the geochemical anomalies identified by Esso minerals B2 grid (Joseph Target). These anomalous areas are likely the expression of multiple mineralized horizons, which is common in VMS environments. The distribution of zinc values have also outlined a significantly broader zone than that defined by Esso’s soil program.

Main Grid - Silver Anomalies – Figure 11
There are 21 strongly anomalous (silver > 2 ppm) identified on the Main Grid. The silver anomalies have verified the geochemical anomalies identified by Esso minerals B2 grid and have confirmed there is a north to northwest trending extension of the geochemical anomalies identified by Esso minerals B2 grid (Joseph Target). These anomalous areas are likely the expression of multiple mineralized horizons, which is common in VMS environments. The distribution of zinc values have also outlined a significantly broader zone than that defined by Esso’s soil program.

Assay certificates for the soil sampling program completed on the Honeymoon East Property are included as Appendix 2. Large format figures LF-1 to LF-4 show sample locations and sample reference numbers as well as thematic data for lead, zinc and silver for the Main Grid. Large format figures LF-5 to LF-8 show sample locations and sample reference numbers as well as thematic data for lead, zinc and silver for the North Grid.

Exploration work completed in 2015

The results of the XRF verification sampling program are considered significant and has confirmed that XRF can be a cost effective alternative to conventional laboratory analysis. During October of 2015 the author reviewed the technical report submitted by Goldspring Resources (Aris Report 18320). To assess the reliability and accuracy of the hand held XRF geochemical analyses a total of 27 selected soil sample pulps derived from the soil sampling program reported in 2010 for the Joseph Prospect area were analyzed using a hand held XRF analyzer. The original analyses were completed by ALS Global in North Vancouver utilizing conventional ICP 41 geochemical analysis methods.
The suite of pulp samples that were utilized for the current validation program were recovered from Vendetta’s storage facility in the Fraser Valley and transported to a clean building that could be utilized to set-up an XRF analyzer and to assess the correlation with conventional ICP analysis. The selected pulp samples ranged from background values to strongly anomalous values to allow for a reliable test of the accuracy of the portable XRF analyzer. Pulp samples included individual samples that returned lead values of up to 616 ppm and zinc values of up to 1,595 ppm and cover the range of values reported for the soil geochemical samples collected by Inti Gold resources.

The assays provided by ALS Global are included as Table 12.1 of this report. The XRF analytical results of the same 27 sample pulps are included in Table 12.1. A total of two elements – zinc and lead were selected for comparative analysis. Comparative data for each of the selected elements are included in table 12.1 and list the percentage variation for each sample analyzed.

The validation program carried out in 2015 clearly demonstrated that the hand held XRF analyzer is an accurate, cost effective tool for analyzing soil samples collected from the Honeymoon East Property.
<table>
<thead>
<tr>
<th>XRF Id</th>
<th>Lab Id</th>
<th>A/B</th>
<th>Pb XRF</th>
<th>Zn XRF</th>
<th>Pb Lab</th>
<th>Zn Lab</th>
<th>Var Pb %</th>
<th>Var Zn %</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>695</td>
<td>A</td>
<td>85</td>
<td>104</td>
<td>81</td>
<td>97</td>
<td>1.05</td>
<td>1.07</td>
</tr>
<tr>
<td>5</td>
<td>696</td>
<td>A</td>
<td>65.9</td>
<td>56</td>
<td>54</td>
<td>40</td>
<td>1.22</td>
<td>1.40</td>
</tr>
<tr>
<td>6</td>
<td>724</td>
<td>A</td>
<td>236</td>
<td>5214</td>
<td>245</td>
<td>5,530</td>
<td>0.96</td>
<td>0.94</td>
</tr>
<tr>
<td>7</td>
<td>725</td>
<td>B</td>
<td>161</td>
<td>8856</td>
<td>162</td>
<td>9,160</td>
<td>0.99</td>
<td>0.97</td>
</tr>
<tr>
<td>8</td>
<td>726</td>
<td>C</td>
<td>132</td>
<td>9310</td>
<td>138</td>
<td>9,330</td>
<td>0.96</td>
<td>1.00</td>
</tr>
<tr>
<td>9</td>
<td>727</td>
<td>A</td>
<td>123</td>
<td>2204</td>
<td>120</td>
<td>2,400</td>
<td>1.03</td>
<td>0.92</td>
</tr>
<tr>
<td>10</td>
<td>728</td>
<td>A</td>
<td>97</td>
<td>916</td>
<td>89</td>
<td>886</td>
<td>1.09</td>
<td>1.03</td>
</tr>
<tr>
<td>11</td>
<td>729</td>
<td>B</td>
<td>58</td>
<td>559</td>
<td>52</td>
<td>537</td>
<td>1.12</td>
<td>1.04</td>
</tr>
<tr>
<td>12</td>
<td>730</td>
<td>C</td>
<td>86</td>
<td>1240</td>
<td>81</td>
<td>1,190</td>
<td>1.06</td>
<td>1.04</td>
</tr>
<tr>
<td>13</td>
<td>731</td>
<td>A</td>
<td>64</td>
<td>1568</td>
<td>57</td>
<td>1,665</td>
<td>1.12</td>
<td>0.94</td>
</tr>
<tr>
<td>14</td>
<td>732</td>
<td>A</td>
<td>374</td>
<td>1461</td>
<td>370</td>
<td>1,530</td>
<td>1.01</td>
<td>0.95</td>
</tr>
<tr>
<td>15</td>
<td>733</td>
<td>B</td>
<td>466</td>
<td>1731</td>
<td>457</td>
<td>1,875</td>
<td>1.02</td>
<td>0.92</td>
</tr>
<tr>
<td>16</td>
<td>734</td>
<td>A</td>
<td>210</td>
<td>344</td>
<td>205</td>
<td>379</td>
<td>1.02</td>
<td>0.91</td>
</tr>
<tr>
<td>17</td>
<td>735</td>
<td>B</td>
<td>412</td>
<td>878</td>
<td>416</td>
<td>965</td>
<td>0.99</td>
<td>0.91</td>
</tr>
<tr>
<td>18</td>
<td>736</td>
<td>A</td>
<td>66</td>
<td>125</td>
<td>60</td>
<td>121</td>
<td>1.10</td>
<td>1.03</td>
</tr>
<tr>
<td>19</td>
<td>737</td>
<td>B</td>
<td>80</td>
<td>150</td>
<td>78</td>
<td>162</td>
<td>1.03</td>
<td>0.93</td>
</tr>
<tr>
<td>20</td>
<td>738</td>
<td>C</td>
<td>77</td>
<td>166</td>
<td>69</td>
<td>169</td>
<td>1.12</td>
<td>0.98</td>
</tr>
<tr>
<td>21</td>
<td>141</td>
<td>A</td>
<td>109</td>
<td>199</td>
<td>103</td>
<td>212</td>
<td>1.06</td>
<td>0.94</td>
</tr>
<tr>
<td>22</td>
<td>142</td>
<td>B</td>
<td>123</td>
<td>203</td>
<td>115</td>
<td>219</td>
<td>1.07</td>
<td>0.93</td>
</tr>
<tr>
<td>23</td>
<td>143</td>
<td>A</td>
<td>97</td>
<td>94</td>
<td>86</td>
<td>94</td>
<td>1.13</td>
<td>1.00</td>
</tr>
<tr>
<td>24</td>
<td>144</td>
<td>A</td>
<td>322</td>
<td>708</td>
<td>310</td>
<td>704</td>
<td>1.04</td>
<td>1.01</td>
</tr>
<tr>
<td>25</td>
<td>145</td>
<td>A</td>
<td>42</td>
<td>175</td>
<td>32</td>
<td>136</td>
<td>1.31</td>
<td>1.29</td>
</tr>
<tr>
<td>26</td>
<td>146</td>
<td>A</td>
<td>214</td>
<td>1549</td>
<td>211</td>
<td>1,575</td>
<td>1.01</td>
<td>0.98</td>
</tr>
<tr>
<td>27</td>
<td>147</td>
<td>A</td>
<td>41.1</td>
<td>85</td>
<td>38</td>
<td>79</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>28</td>
<td>148</td>
<td>B</td>
<td>233</td>
<td>2075</td>
<td>227</td>
<td>2,120</td>
<td>1.03</td>
<td>0.98</td>
</tr>
<tr>
<td>29</td>
<td>149</td>
<td>A</td>
<td>35.6</td>
<td>472</td>
<td>34</td>
<td>487</td>
<td>1.05</td>
<td>0.97</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>B</td>
<td>49</td>
<td>246</td>
<td>45</td>
<td>258</td>
<td>1.09</td>
<td>0.95</td>
</tr>
</tbody>
</table>
ITEM 13: STATEMENT OF COST

The total cost of completing a comparative analytical program XRF geochemical data to validate the ALS Global database for the Joseph Prospect area.

Technical review of Aris Report No.18320
-C. von Einsiedel – 9 hours @ $90 $ 810.00

Technical mapping – database review
-Dorian Leslie – 2 hours @ $85 170.00

Retrieval of Honeymoon East – Joseph soil sample pulps (2010 survey)
-travel expenses to pulp storage site 100.00
-pulp retrieval and pro-rated storage charges 735.00

XRF Rental
-3 days minimum rental @ $200 per day 600.00
-XRF technician set up and project review fee 925.00

Technical mapping – comparative ICP / XRF analysis and figures
-Dorian Leslie – 7 hours @ $85 595.00

Preparation of required report and design of follow-up program
-C. von Einsiedel – 16 hours @ $90 1,440.00

Total applied for assessment credit: $5,375.00
ITEM 14: SAMPLING METHOD AND APPROACH

Between September and December of 2015 a follow up program was carried out to meet the 2016 assessment work requirements of the reduced claim group. A total of 27 sample pulps from the 2010 program were retrieved from storage and analyzed with a hand held XRF analyzer to verify the high lead and zinc results reported by ALS Global for the Joseph target area and to assess the effectiveness of using the XRF unit as an alternative to laboratory analysis of soil samples. Results of the pulp analyses showed good correlation with the assay results reported by ALS Global. XRF values for Zinc ranged from 96% to 140% of the values reported by ALS. XRF values for Lead ranged from 91% to 129% of the values reported by ALS.

ITEM 15: SAMPLE PREPARATION, ANALYSIS AND SECURITY

The published technical reports which detail previous exploration work on the Honeymoon East Property indicate that standard QA and QC procedures were implemented by the laboratories that analyzed the samples and that the variability of all reported analyses are within acceptable industry standards.

ALS Vancouver is in compliance for the requirements of ISO 9001:2000 through February 12, 2011 (ALS Laboratory Group, 2009). ALS Vancouver is accredited through the Standards Council of Canada (SCC) for Metallic Ores and Products Mineral Analysis testing for several techniques including Fire Assay with an Atomic Absorption (AA) finish, Fire Assay with a gravimetric finish and ICP-AES using a four acid digestion. Standard QA and QC procedures were implemented by ALS Chemex including one blank, one reference standard and one duplicate analysis in every 20 samples submitted. In the author’s opinion the variability of all reported analyses are within acceptable industry standards and the ALS Chemex data can be considered to be reliable.

ITEM 16: DATA VERIFICATION

The objectives of this program were to assess potential extensions of the soil geochemical sampling results reported by Esso for the Joseph Target area. The compilation work carried out by Vendetta Mining Corp. (formerly Azincourt Resources Inc.) involved geo-referencing the historic technical maps from Craigmont, Esso and Kerr Addison, digitizing the UTM locations of the reported soil and rock sample sites and entering the historic assay data into a GIS database. A total of 1,281 historic soil sample sites and data from 790 2010 soil samples were incorporated into the database for the Honeymoon East property.

The soil sample pulp assay results from the 2010 and 2015 program appear to be consistent between the results reported by Vendetta in 2010 and the results obtained using the XRF analyzer.
ITEM 17: ADJACENT PROPERTIES

The property (referred to as the Honeymoon East Property) is located in the Adams Plateau – Clearwater exploration area. Regional geological maps published by the BC Ministry of Energy and Mines (BCMEM) show that the claim area covers a north to northwest trending package of Paleozoic aged Fennell and Eagle Bay Formation volcanic and sedimentary rocks cut by a series of complex, north to northwest trending thrust faults. According to the BCMEM the Fennell Formation hosts various styles of mineralization including Cypress-type massive sulphide Cu (Zn) mineralization, Noranda/Kuroko-type massive sulphide Cu-Pb-Zn mineralization, and Ag-Pb-Zn+/-Au vein mineralization. The most significant prospects in the project area include the Harper Creek copper deposit located approximately 11 kilometres east of the Property, the Chu Chua copper deposit located approximately 15 kilometres to the south of the Property, the former producing Windpass Gold Mine located approximately 10 kilometres to the south of the Property, the Joseph Prospect located within the Honeymoon East Property and the Jake Gold Prospect located approximately 10 km to the northwest of the Property. The reader is cautioned that there is no assurance that mineralization similar to the Harper Creek copper deposit, the Chu Chua copper deposit, the Jake Prospect or the former Windpass Gold Mine will be identified within the boundaries of the Honeymoon East Property.

The Joseph Target, which consists of the soil geochemical anomaly located in the southeastern part of the Honeymoon East Property, appears to lie completely within the Honeymoon East Property. According to Marr (1984) the mineralized zone associated with this geochemical anomaly trends north and it is important to note that possible extensions of this mineralized zone are now covered by the claims held by Vendetta.

ITEM 18: MINERAL PROCESSING AND METALLURGICAL TESTING

There is no mineral processing or metallurgical testing data available from the Honeymoon East Property.

ITEM 19: MINERAL RESOURCE AND MINERAL RESERVE ESTIMATE

There is no mineral resource compliant with CIM Standards on Mineral Resources and Reserves (CIM, 2000) and therefore no NI 43-101 compliant resource for the Honeymoon East Property

ITEM 20: OTHER RELEVANT DATA AND INFORMATION

There is no other relevant data or information concerning the Honeymoon East Property.
ITEM 21: INTERPRETATION AND CONCLUSIONS

The geology of the area south of Clearwater is prospective for both Cypress and Kuroko type massive sulphide deposits and for structurally controlled, gold bearing vein deposits. Airborne geophysical surveys completed by Craigmont in 1978 identified multiple targets that warrant follow-up exploration. In 1983 Esso completed soil geochemical and ground geophysical surveys over some of the airborne survey targets and successfully identified several areas which exhibit elevated base and precious metal contents in soils. In 1984 Esso tested one of the soil geochemical anomalies with two short drill holes and intersected a previously unknown zone of lead – zinc – silver – barite mineralization. According to Marr (1984) the mineralized zone trends north and has an estimated true width of 8.0 meters. In 1988 Kerr Addison completed an extensive prospecting and sampling program designed to identify structurally controlled, gold bearing veins within the project area and successfully identified two areas of exposed mineralization. One of these areas (Area 1) is located within the Honeymoon East Property. Between January and March of 2010 Vendetta compiled all available technical data for the former Craigmont Mines, Esso Minerals and Kerr Addison Properties and completed a detailed soil geochemical survey consisting of 790 samples in the area of the Joseph Prospect. The assay data from the 2010 samples confirmed the historic Esso technical data and shows that the soil geochemical anomaly associated with the Joseph Prospect is significantly larger than was estimated by Esso.

ITEM 22: RECOMMENDATIONS

Based on the results of the work completed in 2015 it is recommended that Vendetta carry out additional fill-in surveys to delineate the overall extent of Joseph Prospect. Overburden conditions with the target area are variable and a combination of sampling methods will need to be utilized to ensure that the limits of the target area can be accurately defined. Additional auger sampling should be carried out within the areas surveyed in 2010 and in 2011 and should be designed to evaluate the relationship between surface values and depth to bedrock. Although the lead and zinc values reported for the extension of the Joseph Prospect are lower than those reported by Esso in the area that was drill tested overburden appears to be thicker and may simply be muting the geochemical response of bedrock mineralization. In the event that in fill and auger sampling confirms that the geochemical anomalies are associated with areas of overburden covered mineralization ground geophysical surveys and follow up drill testing would be warranted.
ITEM 23: SOURCES OF INFORMATION

Fraser, D.C., Dvorak, Z., 1979. Airborne geophysical report. ARIS: 7659

BC Ministry of Energy and Mines online database and BCMEM Minfile Listing:

http://www.empr.gov.bc.ca/Mining/Geoscience/geoData/Pagers/default.aspx
ITEM 24: CERTIFICATE OF QUALIFIED PERSON, CARL A. VON EINSIEDEL

I, Carl A. von Einsiedel, PGeo. hereby certify that:

1) I am an independent consulting geologist with a business address at #8888 Shook Road, Mission, BC, V2V-7N1.

2) I am a graduate of Carleton University, Ottawa, Ontario (1989) with a B.Sc. in Geology.

3) I am a registered Professional Geologist in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC – License no. 21474).

4) I have worked as a geologist for a total of 29 years since graduation from university. I have work experience in most parts of Canada, as well as the United States and Mexico. I have VMS deposit exploration experience in British Columbia.

5) I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirement to be a "qualified person" for the purposes of NI 43-101.

6) I am responsible for all sections of the technical report titled "TECHNICAL ASSESSMENT REPORT – HONEYMOON EAST PROPERTY" prepared for Vendetta Mining Corp. (formerly Azincourt Resources Inc.) dated March 30, 2016 (the "Technical Report") relating to the Honeymoon East Property.

7) As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Carl von Einsiedel, P.Geo.

Dated at Vancouver, B.C. this 30th day of March, 2016
HONEYMOON EAST SYNDICATE
HONEYMOON EAST PROPERTY, BRITISH COLUMBIA

DETAIL PLAN SHOWING HISTORIC GEOCHEMICAL DATA FOR THE JOSEPH TARGET AND THE 2015 XRF RESULTS BY ZINC IN PPM

DATE: 2016 03 30
SCALE: 1:5,000 @ 8.5 x 11
PROJECTION: NAD 83 ZONE 10
DRAWN BY: DORIAN LESLIE

Note: Mineral tenure information downloaded from the Province of British Columbia Data Distribution Service at https://apps.gov.bc.ca/pub/dwds/home.sp
or 20,000 scale TIRM topography from Geo BC at http://archive.ilmib.gov.bc.ca/crgb/products/madata/trim_positional_maps.htm