<table>
<thead>
<tr>
<th>PROPERTY NAME</th>
<th>Down Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAIM NAME(S)</td>
<td>Down Dip 01-15, Down Dip 02-15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMODITIES SOUGHT</th>
<th>Pb, Zn, Ag</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MINING DIVISION</th>
<th>Fort Steele</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTS</td>
<td>082G.011</td>
</tr>
</tbody>
</table>

| LATITUDE | 0 00' 00" | LONGITUDE | 0 00' 00"
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(at centre of work)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OWNER(S)</th>
<th>Darlene Lavoie, Craig Kennedy</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MAILING ADDRESS</th>
<th>2290 Dewolfe Ave, Kimberley B.C., VIA-1P5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OPERATOR(S)</th>
<th>who paid for the work</th>
<th>1) Craig Kennedy</th>
</tr>
</thead>
</table>

| PROPERTY GEOLOGY KEYWORDS | Middle Aldridge rocks within upper sill package in area of stacked mud volcanism. Tourmaline fragmental vent hosts pyrrhotite rich outcrop of "chemical mud" some visible fracture and disseminated mineralization. Foliation indicates late north/south movement. |

<table>
<thead>
<tr>
<th>REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS</th>
<th></th>
</tr>
</thead>
</table>

(OVER)
<table>
<thead>
<tr>
<th>TYPE OF WORK IN THIS REPORT</th>
<th>EXTENT OF WORK (IN METRIC UNITS)</th>
<th>ON WHICH CLAIMS APPORTIONED</th>
<th>PROJECT COSTS APPORTIONED (incl. support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGICAL (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground, mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo interpretation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOPHYSICAL (line-kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induced Polarization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GECHEMICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(number of samples analysed for...)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td>4 Samples DOWN DIP 02-15 1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRILLING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(total metres; number of holes, size)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELATED TECHNICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling/assaying</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralogic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallurgic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROSPECTING (scale, area)</td>
<td>MAP 1:10,000 DOWN DIP 01-15 02-15 22.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREPARATORY/PHYSICAL</td>
<td>GPS VENT GEOLOGY 1:500 DOWN DIP 02-15 6332.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line/grid (kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topographic/Photogrammetric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal surveys (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road, local access (kilometres)/trail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trench (metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground dev. (metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>REPAD & MAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>£6332.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessment Report

ROCK GEOCHEMISTRY & PROSPECTING

DOWN DIP PROPERTY

FORT STEELE MINING DIVISION

N.T.S. MAP SHEET 082G.011

UTM COORDINATES 543700N – 580900E

OWNER
Darlene Lavoie
Kimberley BC

REPORT AUTHOR
Craig Kennedy
Prospector

October 2016
TABLE OF CONTENTS

1.00 Introduction
 1.10 Location and Access .. 3
 1.20 Property ... 3
 1.30 Physiography .. 3
 1.40 History of Previous Exploration 3

2.00 Summary .. 4

3.00 Program .. 7

4.00 Conclusion & Recommendations 8

5.00 Statement of Expenditures 8

6.00 Author’s Qualifications 9

7.00 Rock Sample Descriptions 10

List of Illustrations

<table>
<thead>
<tr>
<th>Figure</th>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Regional Property Location Map</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Claim Location Map</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Prospecting Map</td>
<td>11</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Sample Location Map</td>
<td>12</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Geology Map</td>
<td>13</td>
</tr>
</tbody>
</table>

Appendix Acme Rock Geochem Analyses 14
Down Dip Property

ROCK GEOCHEM & PROSPECTING REPORT

Craig Kennedy

October 2016

1.00 INTRODUCTION

1.10 Location and Access
The Down Dip Property is centered at UTM 5437100N – 580900E. Trim map 082G.011. The property is located approximately 50 km southwest of Cranbrook BC and is 13 km due east of Yahk BC. Access is provided by taking the Hawkins Creek logging road east from its junction with highway #3 at Yahk. At 12 km on the Hawkins logging road you break off onto the north trending Cold Creek Road; at 6 km you take the all-terrain east running branch road. Old logging roads and cat skid trails provide foot access to most of the property.

1.20 Property
The Down Dip is made up of tenure # 1037317 and 1039036. The property is registered to Darlene Lavoie of Kimberley BC.

1.30 Physiography
The Down Dip Property has seen extensive historic logging, all of which is now regenerated. Outcrops, where encountered, are in most cases mafic intrusives (dio-gabbro) sills and dikes(?) Terrain is moderate to gentle with thick decadent spruce, balsam and pine in areas not harvested. These areas can host heavy deadfall which inhibits foot travel.

1.40 History of Previous Exploration
The area has seen moderate exploration activity over the last 60 years carried out by major and junior mining companies. The majority of activity has been
directed at searching for Pb/Zn/Ag style deposits similar to the Sullivan or the St. Eugene past producers.

2.00 SUMMARY
Recent exploration in the Middle Aldridge Formation of the Belt Purcell Super Group has been largely focused in the search for base metals, specifically Pb/Zn, associated with Mud Volcanism. A large portion the known surface geology in the Canadian Belt belongs to the upper sill package which occupies the central portion of the Middle Aldridge. Three mafic sills generally reside within this section with the largest being the Sundown sill at its base. The Sundown can be in excess of 100 meters in width and in some locations shows signs of near intrusion. The Meadowbrook and R sills tend to be much narrower with the R sill being no greater than 25 meters in width.

Mud volcanism is intimately associated with the Middle Aldridge sill package. Prospecting has long recognized that areas associated with mud volcanism are often environments exhibiting alteration styles similar to those seen with the Sullivan mine at Kimberley BC. Mud volcanism is thought to be the product of dewatering of the Belt basin brought on by deep seated seismic activity. Fluidized sedimentary material was channeled along and up conduits to be deposited onto the ancient sea floor.

At Sullivan this process is thought to have occurred with extrusion and subsequent collapse of dewatering sedimentary material. This process was immediately followed by a metal rich hydrothermal event which began the development of the Sullivan orebody. Structures responsible for channeling fluidized sediments in some cases remain open and receptive to ongoing activity. This includes the movement of hydrothermal gas and fluid, some of which may be endowed with metal. Recognition of these types of geological settings is an important focus for prospecting. The Down Dip property is one such area and requires a detailed evaluation.
Figure 1: Regional Location Map

Down Dip Property Location
Figure 2, Claim Location Map – Down Dip

Legend

- National Parks - Outlined
- National Parks - Colour Fille
- Ecological Reserves - Tanta
- Protected Areas - Tantalis -
- Recreation Areas - Tantalis
- Conservancy Areas - Tantal
- Mapsheet Grid(1:20,000)

Mapsheet Grid (1:250,000)

Land Act Primary Parcels -
Filled

Contours - (1:20,000)

- FCODE
- Contour - Index
- Contour - Index Indefinite Contour
- Index Depression Contour -
- Index Depression Ind Contour -
- Intermediate

Copyright/Disclaimer

The material contained in this web site is owned by the Government of British Columbia and protected by copyright law. It may not be reproduced or redistributed without the prior written permission of the Province of British Columbia. To request permission to reproduce all or part of the material on this web site please complete the

Datum: NA083
Projection: Web Mercator

Key Map of British Columbia
3.00 PROGRAM
The Down Dip Property occupies Middle Aldridge stratigraphy within the upper sill package. The property partially covers an area which hosts a number of tourmalinized fragmental outcrops, two of which have disseminated and fracture controlled Pb/Zn mineralization. In the section west of the property below the Sundown sill exists an extensive 100 – 250 meter wide and in excess of 4 km long, small clast fragmental unit. This unit is interpreted to be the distal edge of a large mud volcano sequence; potentially part of a Caldera setting such as that which host’s the Sullivan deposit at Kimberley BC.

A mineralized tourmaline fragmental occurrence on the property was detail mapped for structure and alteration. At the Cruz property, near Moyie Lake, an unmineralized tourmalinized vent was tested by four drill holes in 1994. Drilling indicated continued mud volcano style alteration to the depth of drilling. Spurious anomalous mineralization was intersected at a number of intervals within the drilling. Interestingly, the deepest hole intersected a stratabound horizon of fragmental rocks in the same interpreted position of the fragmental west of the Down Dip property. The tourmalinized fragmental complex “A” on the attached prospecting map is one of 5 similar features on or close to the property. These fragmentals are layered through an approximate 300 meters of stratigraphy; this indicates a common structural control with potential deep seated connections. The detailed mapping of the most mineralized complex was completed in hopes of defining structural controls and alteration zoning which may support some short hole drilling. General prospecting indicates that other than the fragmentals complexes very little sedimentary rock is available for view. Most outcrop encountered are coarse to medium grained diorite to gabbro intrusive rocks. Some zones of these outcrops are rusty and have finely disseminated pyrrhotite with rare chalcopyrite. Occasional blocks of fragmental and grey-brown sericite float are seen, these are sporadically scattered throughout the general area.
4.00 CONCLUSION & RECOMMENDATIONS
A number of property and regional scale geological attributes require more
detailed work. The Down Dip property occupies a stratigraphic level which host
mud volcano activity regionally. Venting is wide spread and can be found at
many different levels, this active geology is found within the domain hosted by
the Moyie anticline. Recognition of disseminated and fracture controlled Pb/Zn
mineralization with the “A” mud volcano complex on the Down Dip is an
economically important characteristic. Recent work at the St. Eugene Mine has
indicated the importance of focused resurgent structure for development of
significant mineralization. The St. Eugene structure was an active growth fault
responsible for episodal mud volcanism in a large scale economic Pb/Zn/Ag
mineralization developed at a number of levels in this geological setting. The
Down Dip may represent the same undiscovered opportunity.

Follow-up work should include more detailed geology and rock geochemistry.
Geology should attempt to locate evidence of growth fault activity and focus. A
VLF survey may prove to be a worthwhile exercise.

5.00 STATEMENT OF EXPENDITURES

Rock Geochemistry
Down Dip Property

Work performed: Summer 2015

Craig Kennedy - 1 day @ 500/day Jul 11/16 $500.00
1 4X4 Truck @ 100/day

Tom Kennedy - 1 day @ 500/day Jul 11/16 500.00

Mike Kennedy - 1 day @ 500/day Jul 11/16 500.00

Sean Kennedy – 1 day @500/day Jul 11/16 500.00
1 4X4 Truck @ 100/day

4 Rock Samples – Acme 132.00

Craig Kennedy – Report & Maps 1000.00

Total: $3332.00
6.00 AUTHOR’S QUALIFICATIONS

1. As the author of this report I, Craig Kennedy, certify that:

2. I am an independent prospector residing at 2290 Dewolfe Avenue, Kimberley, BC.

3. I have been actively prospecting in the East and West Kootenays district of BC for the past 35 years and have made my living prospecting for the past 26 years.

4. I have been employed as a professional prospector by major and junior mineral exploration companies.

5. I own and maintain mineral claims in BC and have optioned numerous claims to various exploration companies.

Craig Kennedy, Prospector
7.00 Rock Sample Descriptions

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>UTM N</th>
<th>UTM E</th>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK16-96</td>
<td>5437370</td>
<td>580391</td>
<td>Down Dip</td>
<td>Dark black biotite, quartz grained wacke clots & disseminations of Po/Py/Pbs/Zns</td>
</tr>
<tr>
<td>CK16-97</td>
<td>5437375</td>
<td>580393</td>
<td>Down Dip</td>
<td>Same as above but no visible Pbs/Zns</td>
</tr>
<tr>
<td>CK16-98</td>
<td>5437375</td>
<td>580390</td>
<td>Down Dip</td>
<td>Same as above but no visible Pbs/Zns</td>
</tr>
<tr>
<td>CK16-99</td>
<td>5437372</td>
<td>580390</td>
<td>Down Dip</td>
<td>Same as above with rare Pbs/Zns</td>
</tr>
</tbody>
</table>
Rock Sample Locations Down Dip Property

PROSPECTING TRAVERSE MAP

SCALE 1 : 10,000

LEGEND

FLOAT

GABBRO

PROSPECTING TRAVERSE ROUTE

RUSTY GABBRO

SERICITE ALTERED

GABBRO

RUSTY ZONES

MIXED GREY/BROWN TURBIDITES

16 TURBIDITES

GSI VENT

12°

GREY BLACK THINBEDDED RUSTY SEDIMENTS

SERICITE ALTERED

SERICITE ALTERED FRAGMENTAL

SERICITE ALTERED FLOAT

MIXED TURBIDITES GREY/BROWN

SERICITE ALTERED

GABBRO
Rock Sample Locations Down Dip Property

SCALE 1: 10,000

500 0 500 1,000 1,500 FEET

CK16-96,97,98,99

CK16-%(Pb, Zn) PPM VALUES

5438000
580000
1039036
1037317
GPS Vent Detailed Geology

Bedding
Cleavage/foliation
Vein

AREA ROCK SAMPLES TAKEN

0 20 40m
1:500 m

ser. alt frag

Cap unit
(partially bedded)
Disrupted/rip-up clasts
Tn beds
ser. wacke
80°

foliated ser. wacke

Clay alt.

sulphidic (Py/Po)

Int. foliation
massive
white-ser.
Chl. flakes

36°

White-ser.

Partial bedded

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

sericitic
(granofels?)

'Baked'

biotite
clots/hornfels

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

small Tn clasts
in Qtztite
(coarse sand)

Bx/frag
Brown
Aphanitic Tn.
Brown-massive

White/ser.

Vein

Bedding

Cleavage/foliation

Vein

AREA ROCK SAMPLES TAKEN

0 20 40m
1:500 m

ser. frag.

late Qtztite veins
50°

Brown Tn
(sen) 80°

Tn

Qtztite/wacke
matrix

Brown Qtztite/ wacke

Qtztite

Bx

Frag.

Bx

White-ser.

80-90° Qtztite wacke

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

sericitic

(granofels?)

'Baked'

biotite
clots/hornfels

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

small Tn clasts
in Qtztite
(coarse sand)

Bx/frag
Brown
Aphanitic Tn.
Brown-massive

White/ser.

Vein

Bedding

Cleavage/foliation

Vein

AREA ROCK SAMPLES TAKEN

0 20 40m
1:500 m

ser. frag.

late Qtztite veins
50°

Brown Tn
(sen) 80°

Tn

Qtztite/wacke
matrix

Brown Qtztite/ wacke

Qtztite

Bx

Frag.

Bx

White-ser.

80-90° Qtztite wacke

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

sericitic

(granofels?)

'Baked'

biotite
clots/hornfels

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

small Tn clasts
in Qtztite
(coarse sand)

Bx/frag
Brown
Aphanitic Tn.
Brown-massive

White/ser.

Vein

Bedding

Cleavage/foliation

Vein

AREA ROCK SAMPLES TAKEN

0 20 40m
1:500 m

ser. frag.

late Qtztite veins
50°

Brown Tn
(sen) 80°

Tn

Qtztite/wacke
matrix

Brown Qtztite/ wacke

Qtztite

Bx

Frag.

Bx

White-ser.

80-90° Qtztite wacke

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

sericitic

(granofels?)

'Baked'

biotite
clots/hornfels

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

small Tn clasts
in Qtztite
(coarse sand)

Bx/frag
Brown
Aphanitic Tn.
Brown-massive

White/ser.

Vein

Bedding

Cleavage/foliation

Vein

AREA ROCK SAMPLES TAKEN

0 20 40m
1:500 m

ser. frag.

late Qtztite veins
50°

Brown Tn
(sen) 80°

Tn

Qtztite/wacke
matrix

Brown Qtztite/ wacke

Qtztite

Bx

Frag.

Bx

White-ser.

80-90° Qtztite wacke

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

sericitic

(granofels?)

'Baked'

biotite
clots/hornfels

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

small Tn clasts
in Qtztite
(coarse sand)

Bx/frag
Brown
Aphanitic Tn.
Brown-massive

White/ser.

Vein

Bedding

Cleavage/foliation

Vein

AREA ROCK SAMPLES TAKEN

0 20 40m
1:500 m

ser. frag.

late Qtztite veins
50°

Brown Tn
(sen) 80°

Tn

Qtztite/wacke
matrix

Brown Qtztite/ wacke

Qtztite

Bx

Frag.

Bx

White-ser.

80-90° Qtztite wacke

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

sericitic

(granofels?)

'Baked'

biotite
clots/hornfels

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

small Tn clasts
in Qtztite
(coarse sand)

Bx/frag
Brown
Aphanitic Tn.
Brown-massive

White/ser.

Vein

Bedding

Cleavage/foliation

Vein

AREA ROCK SAMPLES TAKEN

0 20 40m
1:500 m

ser. frag.

late Qtztite veins
50°

Brown Tn
(sen) 80°

Tn

Qtztite/wacke
matrix

Brown Qtztite/ wacke

Qtztite

Bx

Frag.

Bx

White-ser.

80-90° Qtztite wacke

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

sericitic

(granofels?)

'Baked'

biotite
clots/hornfels

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

small Tn clasts
in Qtztite
(coarse sand)

Bx/frag
Brown
Aphanitic Tn.
Brown-massive

White/ser.

Vein

Bedding

Cleavage/foliation

Vein

AREA ROCK SAMPLES TAKEN

0 20 40m
1:500 m

ser. frag.

late Qtztite veins
50°

Brown Tn
(sen) 80°

Tn

Qtztite/wacke
matrix

Brown Qtztite/ wacke

Qtztite

Bx

Frag.

Bx

White-ser.

80-90° Qtztite wacke

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

sericitic

(granofels?)

'Baked'

biotite
clots/hornfels

sericitic

80°-90°

Black brown
Tn clasts
Tn white-pink Qtztite matrix
Bx
Brown/aphanitic

small Tn clasts
in Qtztite
(coarse sand)

Bx/frag
Brown
Aphanitic Tn.
Brown-massive

White/ser.
CERTIFICATE OF ANALYSIS

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>Procedure Code</th>
<th>Number of Samples</th>
<th>Code Description</th>
<th>Test Wgt (g)</th>
<th>Report Status</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP70-250</td>
<td>4</td>
<td>Crush, split and pulverize 250 g rock to 200 mesh</td>
<td></td>
<td></td>
<td>VAN</td>
</tr>
<tr>
<td>AQ201</td>
<td>4</td>
<td>1:1:1 Aqua Regia digestion ICP-MS analysis</td>
<td>15</td>
<td>Completed</td>
<td>VAN</td>
</tr>
<tr>
<td>DRPLP</td>
<td>4</td>
<td>Warehouse handling / disposition of pulps</td>
<td></td>
<td></td>
<td>VAN</td>
</tr>
<tr>
<td>DRRJT</td>
<td>4</td>
<td>Warehouse handling / Disposition of reject</td>
<td></td>
<td></td>
<td>VAN</td>
</tr>
</tbody>
</table>

ADDITIONAL COMMENTS

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

CERTIFICATE OF ANALYSIS

VAN16002144.1

Invoice To:
Kootenay Silver Inc.
Suite 1820 - 1055 W. Hastings St.
Vancouver British Columbia V6E 2E9
Canada

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

*All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted.

**asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.
Method	Analyte	Unit	Wght	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P		
			0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
CK16-96	Rock		0.38	0.3	283.8	86.4	492	0.2	47.5	50.7	851	11.34	4.8	3.5	1.0	35	0.5	0.5	1.6	428	1.34	0.053		
CK16-97	Rock		0.65	0.4	203.9	316.5	516	0.9	39.5	37.4	726	8.44	40.4	5.7	1.2	50	11.1	0.5	5.0	420	1.83	0.059		
CK16-98	Rock		0.49	0.4	213.3	200.5	412	0.4	39.3	39.9	626	8.15	80.5	3.5	1.0	57	0.8	0.4	3.3	449	2.03	0.060		
CK16-99	Rock		0.38	0.5	296.2	191.6	422	0.5	45.9	52.8	778	10.64	30.8	3.5	1.2	50	1.0	0.5	3.4	431	1.92	0.055		

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.
<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Unit</th>
<th>La</th>
<th>Cr</th>
<th>Mg</th>
<th>Ba</th>
<th>Ti</th>
<th>B</th>
<th>Al</th>
<th>Na</th>
<th>K</th>
<th>W</th>
<th>Hg</th>
<th>Sc</th>
<th>Ti</th>
<th>S</th>
<th>Ga</th>
<th>Se</th>
<th>Te</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ201</td>
<td>AQ201</td>
<td>AQ201</td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
</tr>
<tr>
<td>MDL</td>
<td>1</td>
<td>1</td>
<td>0.01</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>CK16-96 Rock</td>
<td>3</td>
<td>10</td>
<td>3.70</td>
<td>129</td>
<td>0.208</td>
<td><1</td>
<td>6.58</td>
<td>0.087</td>
<td>1.13</td>
<td>0.1</td>
<td><0.01</td>
<td>32.7</td>
<td>0.7</td>
<td>2.38</td>
<td>0.1</td>
<td>21</td>
<td>2.6</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>CK16-97 Rock</td>
<td>2</td>
<td>11</td>
<td>3.01</td>
<td>139</td>
<td>0.228</td>
<td><1</td>
<td>6.63</td>
<td>0.120</td>
<td>1.35</td>
<td>0.1</td>
<td><0.01</td>
<td>34.7</td>
<td>1.1</td>
<td>1.60</td>
<td>0.1</td>
<td>20</td>
<td>2.1</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>CK16-98 Rock</td>
<td>3</td>
<td>10</td>
<td>2.80</td>
<td>128</td>
<td>0.208</td>
<td><1</td>
<td>6.64</td>
<td>0.146</td>
<td>1.49</td>
<td>0.1</td>
<td><0.01</td>
<td>34.4</td>
<td>1.0</td>
<td>1.70</td>
<td>0.1</td>
<td>18</td>
<td>2.2</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>CK16-99 Rock</td>
<td>3</td>
<td>10</td>
<td>2.96</td>
<td>98</td>
<td>0.221</td>
<td><1</td>
<td>6.56</td>
<td>0.119</td>
<td>1.48</td>
<td>0.1</td>
<td><0.01</td>
<td>34.9</td>
<td>1.0</td>
<td>2.45</td>
<td>0.1</td>
<td>19</td>
<td>2.3</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.
This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.
QUALITY CONTROL REPORT

Reference Materials

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Unit</th>
<th>MDL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>La</td>
<td>ppm</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cr</td>
<td>ppm</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ba</td>
<td>ppm</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ti</td>
<td>ppm</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Al</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>ppm</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>ppm</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Hg</td>
<td>ppm</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Sc</td>
<td>ppm</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ti</td>
<td>%</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>ppm</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Ga</td>
<td>ppm</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Se</td>
<td>ppm</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Te</td>
<td>ppm</td>
<td>0.05</td>
</tr>
</tbody>
</table>

STD DS10

- **Standard**: 19 63 0.80 384 0.090 1.08 0.072 0.35 3.00 0.30 3.2 0.27 5 2.4 5.2

STD OXC129

- **Standard**: 12 53 1.52 49 0.408 <1 1.62 0.612 0.39 <0.1 <0.1 <0.05 5 <0.5 <0.2

STD DS10 Expected

- **Expected**: 17.5 54.6 0.775 359 0.0817 1.075 0.067 0.338 3.32 0.3 3.0 0.29 4.5 2.3 5.01

STD OXC129 Expected

- **Expected**: 13 52 1.545 50 0.4 1.58 0.6 0.37 1.1 5 6 1 5.6

BLK

- **Blank**: <1 <1 <0.01 <1 <0.001 <1 <0.01 <0.001 <0.1 <0.1 <0.1 <0.05 <1 <0.5 <0.2

Prep Wash

- **ROCK-VAN**: 5 2 0.45 55 0.068 2 0.85 0.107 0.10 <0.1 <0.01 2.5 <0.1 <0.05 4 <0.5 <0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.