TYPE OF REPORT [type of survey(s)]: Geophysical

TOTAL COST: $ 4622.63

AUTHOR(S): Angelique Justason

SIGNATURE(S): <signed>

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):

STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 5652382

YEAR OF WORK: 2017

PROPERTY NAME: Barker

CLAIM NAME(S) (on which the work was done): 568171, 575666, 575669, 575670, 587533 and 589989

COMMODITIES SOUGHT: Gold

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: Cariboo

MINING DIVISION: 093H/04 or 093H.003

LATITUDE: 53° 04' 27.2" N

LONGITUDE: 121° 02' 28.6" W

(at centre of work)

OWNER(S):
1) Ray Blaine PO Box 236, Wells BC V0K2R0
2) Clinton Blaine PO Box 236, Wells BC V0K2R0
3) Cindy Evans 2332 Gorder Road, Quesnel BC V2J7A9
4) Tony Derrien 6202 190th Street, Surrey BC V3S 8H7

OPERATOR(S) [who paid for the work]:
1) Barkerville Exploration 2)

MAILING ADDRESS:
PO Box 236, Wells BC V0K2R0

PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):
Snowshoe Group, Barkerville Terrane, placer, tertiary, gold

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 22255 and 24336
<table>
<thead>
<tr>
<th>TYPE OF WORK IN THIS REPORT</th>
<th>EXTENT OF WORK (IN METRIC UNITS)</th>
<th>ON WHICH CLAIMS</th>
<th>PROJECT COSTS APPORTIONED (incl. support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GEOLOGICAL (scale, area)
- Ground, mapping
- Photo interpretation

GEOPHYSICAL (line-kilometres)
- Ground Magnetic
 - Electromagnetic
 - Induced Polarization
 - Radiometric
 - Seismic
 - Other
- Airborne LIDAR 187ha
 - 568171, 575666, 575669, 575670, 587533 and 589989
 - 4622.63

GEOCHEMICAL
- Soil
- Rock
- Other

DRILLING
- Total metres; number of holes, size
 - Core
 - Non-core

RELATED TECHNICAL
- Sampling/assaying
- Petrographic
- Mineralographic
- Metallurgic

PROSPECTING (scale, area)

PREPARATORY / PHYSICAL
- Line/grid (kilometres)
- Topographic/Photogrammetric (scale, area)
- Legal surveys (scale, area)
- Road, local access (kilometres)/trail
- Trench (metres)
- Underground dev. (metres)
- Other

TOTAL COST: 4622.63
Technical Report

Acquisition of LiDAR Imagery
At the Barker Property

Cariboo Mining Division
NTS 093H/04
TRIM 93H.003
53.07423° North Latitude, 121.49129° West Longitude
Tenures 568171, 575666, 575669, 575670, 587533 and 589989

Prepared for
Barkervillein Exploration Ltd. (Operator)
c/o Ray and Clinton Blaine (Owners)
PO Box 236
Wells, British Columbia
V0K 2R0

By
Angelique Justason
Tenorex GeoServices
336 Front Street
Quesnel, British Columbia
V2J 2K3

April 2018
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>1</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>2</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>PROPERTY DESCRIPTION AND LOCATION</td>
<td>4</td>
</tr>
<tr>
<td>ACCESS, PHYSIOGRAPHY, CLIMATE AND PHYSIOGRAPHY</td>
<td>5</td>
</tr>
<tr>
<td>GEOLOGICAL SETTING</td>
<td>6</td>
</tr>
<tr>
<td>HISTORY</td>
<td>12</td>
</tr>
<tr>
<td>COMPILATION OF GEOPHYSICAL IMAGERY</td>
<td>13</td>
</tr>
<tr>
<td>RESULTS AND RECOMMENDATIONS</td>
<td>15</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>17</td>
</tr>
<tr>
<td>STATEMENT OF COSTS</td>
<td>20</td>
</tr>
</tbody>
</table>

APPENDIX I: Figures
Introduction

The Barker Placer Property is owned by four different owners at the time of writing of this report and Barkervillain Exploration (owned by Clinton Blaine, also part owner of the Barker Property) hired Tenorex to acquire, digitize and provide basic interpretation of the LiDAR imagery available at the property. The purpose was to maintain assessment, provide possible target areas for future exploration and to update the basemap and/or in-house shapefiles for use in future permitting applications.

The property is located on Mount Conklin immediately adjacent Barkerville, BC and St.George’s Mining Company F Grant (near the Ballarat Mine). The Barker property consists of six placer claims covering 13 cells over a 252.6 hectare area and has 187 hectares of placer rights.

The acquired imagery was cropped to the 187 hectare area of the property which holds 100% placer rights and is presented with some discussion in this report.

The resulting maps may prove useful in future testing programs and have provided a more accurate basemap for use in future permitting and exploration or mining plans. Several areas of historical disturbances were noted and several target areas, not known to have been previously tested, were noted along possible troughs or possible high valley/channels. Careful and systemic hand and/or mechanical testing should continue and consider the outlined target areas as first priority after any current works.
Property Description and Location

The Barker placer claim group is located on Mount Conklin, immediately west of Barkerville, BC on TRIM map 093H003. The property is owned, at present, by four individual owners and consists of six celled placer claims covering an actual area of 252.56 hectares on the map. The actual physical area that not encumbered by Heritage Reserve or F-Grants is 187 hectares and the survey area outlined in this report.

Ray Blaine, founding owner of the claim group, has held interest and conducted work various sections of the Barker Property for well over 30 years.

A statement of placer claims related to the current project area is shown below.

<table>
<thead>
<tr>
<th>Title Number</th>
<th>Claim Name</th>
<th>Owners</th>
<th>Title Type</th>
<th>Issue Date</th>
<th>Good To Date</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>568171</td>
<td>BARKER</td>
<td>See below*</td>
<td>Placer Claim</td>
<td>2007/OCT/17</td>
<td>2019/APR/12</td>
<td>155.43</td>
</tr>
<tr>
<td>575666</td>
<td>BARKER 2</td>
<td>See below*</td>
<td>Placer Claim</td>
<td>2008/FEB/08</td>
<td>2019/APR/12</td>
<td>19.43</td>
</tr>
<tr>
<td>575669</td>
<td>BARKER3</td>
<td>See below*</td>
<td>Placer Claim</td>
<td>2008/FEB/08</td>
<td>2019/APR/12</td>
<td>19.42</td>
</tr>
<tr>
<td>575670</td>
<td>BARKER 4</td>
<td>See below*</td>
<td>Placer Claim</td>
<td>2008/FEB/08</td>
<td>2019/APR/12</td>
<td>19.43</td>
</tr>
<tr>
<td>587533</td>
<td>BARKER 5</td>
<td>See below*</td>
<td>Placer Claim</td>
<td>2008/JUL/07</td>
<td>2019/APR/12</td>
<td>19.42</td>
</tr>
<tr>
<td>589989</td>
<td>BARKER 6</td>
<td>See below*</td>
<td>Placer Claim</td>
<td>2008/AUG/15</td>
<td>2019/APR/12</td>
<td>19.42</td>
</tr>
</tbody>
</table>

* Clinton Blaine, FMC 138403, is registered owner of 5% of the listed claims as of the date of this report
* Ray Blaine, FMC 102542, is registered owner of 10% of the listed claims as of the date of this report
* Cindy Evans, FMC 140315, is registered owner of 25% of the listed claims as of the date of this report
* Tony Derrien, FMC 134952, is registered owner of 60% of the listed claims as of the date of this report
Access, Physiography, Climate and Physiography

The Barker placer claim group is located on Mount Conklin, adjacent Barkerville BC, and about one kilometer east of the junction of Highway 26 and the 3100 Forest Service Road. Access to the property is made by travelling approximately one kilometre north of Barkerville or six kilometres east of Wells along Highway 26, also locally known as the Barkerville Highway. The closest populated community is that of New Barkerville, an unincorporated area of houses located along Reduction Road, just north of Barkerville BC, and less than one kilometre west of the western edge of the Barker Property. The 3100 Forest Service Road staddles the north edge of the property, providing the best main access to the property. Several new forest service roads also now cut through the property along with historical trails and well established old mining and waggon roads that have been in place since the 1860s.

The survey area lies within the Quesnel Highlands along gently to moderately sloped and generally well rounded terrain. Elevations range from 1250 meters above sea level near the 3100FSR to approximately 1520 meters at the highest point on the property. Mountain summits in the region and at the property are generally rounded, having been glaciated by continental ice sheets during the Pleistocene Epoch. Although the property appears to have had limited geological mapping, bedrock exposure are likely to be found near the summit of Mount Conklin and likely along the newer road cuts made from recent logging activities. Local natural drainage basins are mostly placer bearing creeks and have been extensively worked and hydralicked in the past. Water also collects in historical hand trenched ditches located along near flat contours (usually less than about 0.5% grade) of the mountainside. These ditches were used to collect runoff or divert water to and from historical placer mining operations. The area is in a moist climatic belt, subject to heavy snowfall in winter and generally rainy conditions in summer. The District of Wells and the town of Barkerville can see winter accumulations of snow from about eight to over twenty feet. The project area is usually snow free from early June to mid to late autumn, providing about a five month window for an exploration season where the ground can be readily accessed and worked.

The Barkerville area is generally well forested; hillside slopes are dominated by spruce, pine, sub-alpine fir, accompanied by alders and other deciduous foliage on lower, wetter slopes flanking river valleys. The destructive nature of Mountain Pine Beetle and Spruce Beetle has had significant impacts on the forests surrounding the property, but its impacts within the bounds of the property are not currently known by the author; although the author has, in the past, observed beetle swarms and numerous destructive galleries on nearby Barkerville Mountain and Mount Proserpine.

The community of Wells, the nearest incorporated town, is home to a population of about 215 permanent residents (pers. comms. District of Wells staff, 2017). The town houses one gas station, one Canada Post postal outlet, two small grocery stores, an elementary school, several art galleries, a public library with publicly accessible high-speed internet computer kiosks, an RCMP detachment, an ambulance station, a volunteer Fire Brigade, one hotel, one motel, several restaurants and several other privately owned businesses. No cell service is available here. Although a broad range of amenities can be found here, the City of Quesnel, located about a 55 minute drive to the west, provides a more complete range of services, such as a
hospital, medical clinics, banking services and larger commercial stores. The economy of Wells is mainly supported by summer and winter tourism, followed by mining activities, mineral and placer exploration, forestry and other recreational activities.

A helipad is located next to the Wells RCMP detachment and a small airstrip is located at the junction of Highway 26 and the Bowron Lake Road, approximately 4 kilometers east of Wells and just one kilometer northwest of the claim group. Float planes can access the Jack of Clubs Lake at Wells, only six kilometers away. A regional airport is also located in Quesnel.

Geological Setting

Regional Bedrock Geology: Quesnel Highlands

The geology of the Cariboo mining district has been presented in various reports / memoirs and maps presented by geologists such as Bowman (1889, 1895), Dawson (1894), Johnston and Uglow (1926), Hanson (1935), Sutherland Brown (1957), Struik (1988), Leveson and Giles (1993) and Schiarizza (2004). Many mineral assessment reports of the area also state the regional geology of the area typically see paraphrasing of the region’s geological setting by the above noted geologists.

Struik (1988) describes the northern Quesnel Highlands as underlain by four geological terranes, three of which are fault bounded. The terranes are defined by their unique stratigraphic successions. The easternmost is the Cariboo Terrane consisting of sedimentary rocks in fault contact with the western margin of the Precambrian North American Craton along the Rocky Mountain Trench. The Barkerville Terrane consists of mostly sedimentary rocks and is west of, and in fault contact with, the Cariboo Terrane. The Barkerville and Cariboo Terranes are overthrust by the Slide Mountain Terrane [which is] composed of basic volcanics and intrusives [as well as] generally fine grained clastic rocks. The root zone of the Slide Mountain Terrane is considered to be serpentinite and sheared mafic rocks that exist locally at the western boundary of the Barkerville Terrane. West of that root zone is the Quesnel Terrane composed of volcanic, volcaniclastic and fine grained clastic rocks.

The property occurs within the mapped boundaries of the Barkerville Terrane.

Local Bedrock Geology: Barkerville Terrane

The Barkerville Terrane is dominated by folded and overturned Precambrian and Paleozoic varieties of grit, quartzite, black to green pelite or argillite with lesser amounts of limestone and volcaniclastic rocks (Struik, 1988). The Barkerville Terrane is regionally metamorphosed to low and middle greenschist facies, sometimes making it difficult to define the original fabric of the rock. The intrusive rocks of the Barkerville Terrane occur sporadically as diorite, rhyolite or rhyodacite dykes and sills. Although none are known to have been mapped at the property, nearby Mount Proserpine near the headwaters of Conklin Gulch to the Warspite Mine as well as the St.Lawrence area to Maude Creek have noted exposures which could possibly extend to Mount Conklin. Also, fossiliferous units within the Barkerville Terrane are
Above: Ice Flow Direction (from Eyles and Kocis, 1988)
few and are, for the most part, limited to the crinoidal and fossilized algae limestone units, though, to date, none of these units have been mapped at the property; however, limestone bodies have been noted in the adjacent property of French Creek and also in other parallel trends along Conklin Gulch to Barkerville and also between Conklin Gulch and the Proserpine Shaft area. Such exposures or subcrops may exist at the Barker Property.

Struik (1988) describes the Barkerville Terrane as containing one structural package; defined as a deformed sequence of rock separated from others by an angular unconformity. This package has been named the Snowshoe Group and contains several subunits.

Structures of the Snowshoe Group are divided into three categories: from oldest to youngest they are shear/ductile shortening, brittle shortening and extension (Struik, 1988). The subunits separated by conformable and non-conformable contacts. Common to the Barkerville Terrane are compression strike faults which parallel the Terrane’s northwest-southeast trending stratigraphy which are further cut and displaced by the younger extensional, north and northeast trending, steeply dipping faults. The gold bearing quartz veins of the Barkerville Terrane are generally found to be within these faults.

Surficial Quaternary Geology

The Cariboo region, as described by Bichler and Bobrowsky (2000), contains abundant evidence resulting from at least two episodes of glaciation during the Pleistocene: the penultimate glaciation and the Fraser Glaciation. During these two events, glaciers generally flowed eastward from the Coast Mountains and westward from the Cariboo Mountains to coalesce over the Interior Plateau (Tipper, 1971; Fulton, 1991). Tertiary deposits consisting of broad, stable, gravel fluvial deposits are exposed primarily in deeply incised river valleys (Levson and Giles, 1993). Such deposits are often gold bearing and have been a major focus of activity for the placer industry in the area.

Overlying the Tertiary fluvial deposits are younger glaciofluvial and glacial sediments. Most deposits of this age consist of massive and stratified silt, sand and gravel occasionally intercalated with till. Though very rare, the oldest till deposits are from the penultimate glaciation, and are likely pre-Late Wisconsinan in age (Clague, 1988; Levson and Giles, 1993). Such deposits are described as units of diamicton separated by thin sand and gravel beds (Clague, 1988; Clague, 1991). The presence of striated and faceted stones, the texture, and the fabric of the diamictons suggest that in most cases, these are in fact tills. No concrete dates have been assigned to this older till unit as they are beyond the limits of radiocarbon dating. Once the glaciers of the penultimate glaciation had receded, the region remained ice-free from about 51,000 to 40,000 years ago (Clague et al., 1990). During this time interval, valleys were incised by ancestral rivers to levels similar to present (Clague, 1991). Following this erosional phase, the deposition of thick units of fluvial and lacustrine sediments directly preceded the Fraser Glaciation. Evidence for the last glacial advance, the Fraser Glaciation (Late Wisconsinan), is much more pronounced. Glaciers advancing from the Cariboo Mountains, in the east, deposited thick layers of glacial, glaciofluvial and glaciolacustrine sediments over the landscape. This last event contributed most of the landforms presently observed, including U-shaped valleys, terraces, eskers, drumlins, roche moutonnées and whale backs throughout the region.
Thick and extensive gravel units, truncated by Late Wisconsin glacial deposits, can be recognized throughout the Barkerville area. These gravels are older than 30,000 years and evidence suggests that they accumulated during a lengthy cool-temperate nonglacial interval (Clague, 1980; Clague, et al., 1988; Fulton, 1984) when older glacial deposits and contained placers were extensively reworked by low-sinuosity braided rivers. These gravels, which commonly rest on bedrock as a result of a lengthy period of downcutting and reworking, are volumetrically the most important placers in the Cariboo area. They are often the most difficult to work, however, given the thickness of overburden [in some areas]. These gravels were, and still are, regarded as “Tertiary” by many placer miners because of their stratigraphic position below glacial sediments. The basal, and in general, the most coarse-grained gravels are the richest paying. On the northeast margins of Tregillus Lake the highest gold values are also associated with boulder horizons within tabular beds of massive gravel that show a weak horizontal bedding. Deposition on longitudinal bars is indicated by boulder clusters suggesting frequent flood events (Brayshaw, 1984; Morison and Hein, 1987). At the Ballarat claim on Williams Creek gold grains, up to 1 gram in weight, occur within bouldery gravels recording sedimentation on the tops of longitudinal bars. Because of the wide exposure of these preglacial gravels in placer mines, tentative paleogeographic reconstruction is possible. Braided rivers along valley floors, flanked by large valley-side fans and talus slopes, appear to have been dominant landscape elements. At California Gulch, about 7 kilometres southeast of Barkerville, talus 2 to 5 metres thick and consisting of crudely bedded downslope-dipping sheets of angular clasts, occurs below late Wisconsin lodgement till. These gravels produce coarse, angular gold particles indicating local derivation, with grades averaging between 0.67 to 8.18 grams per cubic metre. These talus gravels are derived from nearby bedrock phyllites and limestones, and are representative of the “slide rocks” described by early placer miners (Johnson and Uglow, 1926). The Baker property is located along trend immediately adjacent the Ballarat and Forest Rose Mines, and just 3 kilometers northwest of the California Gulch ground, in a well known placer gold producing belt which runs a length of at least 10 kilometers along Pleasant Valley generally between, but also beyond, Cunningham Pass and the Ballarat Mine.
Below: Depositional Settings and Potential Gold Bearing Zones
History

Interest in the region dates back to the early 1860’s when a surge of hopeful prospectors and miners arrived to the area in search of placer gold, after reports of significant gold discoveries were reported at Keithley Creek, then Antler Creek, Williams Creek and Lightning Creek.

The current boundary of the Barker claim group is encumbered by or is immediately adjacent the following productive F Grants and placer mines/workings, some of which have active surface, undersurface and/or production rights to this day:

- 5F, Ballarat Mining Company
- 35F, St George’s Mining Company (Prairie Flower Claim)
- 33F, Forest Rose Mining Company
- 34F, California Tunnel Mining Company
- 46F, New Aurora Mining Company
- Conklin Gulch
- French Creek

Although the property is centrally located to these historical and still active mining areas of Mount Conklin and is, at its closest, about 500m from Barkerville and the infamous section of Williams Creek, relatively little has been located by the author to date for recorded gold production within the current bounds of the property. Gold production in BC was only recorded in an official manner up to about 1945. Placer gold production before and since these dates are not available on the public record and it can be assumed that the record is probably lesser than what was actually produced.

Other more recent mineral and placer activities are recorded on and adjacent to the property in the form of technical assessment reports, available from the BC Government’s Assessment Report Indexing System (ARIS) website and archive in the BC Geological Survey Branch in Victoria, BC. The following select technical work was noted to take place over the Barker property.

1991 A 22.8Lkm ground VLF-EM survey was conducted over an area which included the area of the current Barker property. (ARIS 22255)

1995 Gold City conducted an airborne geophysical survey (1539Lkm) on their Welbar Project. The survey area was along a 40km long section of the Barkerville Gold Belt and generally centered on the current Barker Property. (ARIS 24336)

Other recent work immediately adjacent the claim occurred on Lot 35F in 2010 by Devlin’s Bench Mining Ltd. An internet blog by the Company highlights some of their work and details of their excavation through the blue clay layer and down to bedrock. The gravels of the “old pay channel…are showing coarse gold in the boxes” (Devlin’s Bench Aug.16, 2010 Blog).
Compilation of Geophysical Imagery

LiDAR Survey Overview (Taken in part from Dechuck, 2005)
Proprietary LiDAR data and related imagery was purchased to use in support of exploration activities at Goldin Rock’s mineral property. The data can be further used to update the Company’s basemap and the also provides accurate elevation data which will allow for better details when reinterpreting the local geology, historical mining and will provide excellent coverage in support of future permitting and exploration plans. The LiDAR data and imagery, including orthophotos (previously purchased and used in earlier reports) were originally flown by IGI Consulting for West Fraser Mills Ltd in the early fall 2012 and summer 2013. The final complete version of the updated dataset became available for purchase in 2014 and the deliverables made available for this report, ordered in 2017, include images and raw data containing, 10m contour intervals, digital hillshaded bare-earth imagery (1:5,000 and 1:10,000) over the 187 hectare area.

LiDAR (light radar) data are collected using an active sensor, mounted on the bottom of a fixed-wing aircraft or helicopter. LiDAR systems are based on principles similar to those of RADAR systems. Instead of using microwave frequency radiation (~1010Hz), a swath of laser pulses, within the infrared frequency range (~1013 Hz) is fired at the ground at a user-specified rate. The transmitted laser pulses reflect off various surfaces and those reflections are recorded by a sensor on board the aircraft. The point spacing of the laser pulses (i.e. closeness of reflected pulses) is usually small (e.g. 1 point per 1.15 m² to 1.35 m²), resulting in a high point density. This also differentiates LiDAR and satellite RADAR systems, as the latter typically record a lower point density. The LiDAR system also includes a differential GPS and an inertial measuring unit; these allow for exact positions of the aircraft, and x, y, z coordinates of point reflections, to be determined.

LiDAR systems can be used to determine the range or distance to a target, for example the earth’s surface. Known as range finders, these LiDAR sensors are able to detect multiple returns for a single laser pulse. In topographic mapping applications, the first return can be associated with the top of vegetation cover or tree canopy and the last with the ground surface. Because multiple returns can be detected, the resulting data is a series of x, y, and z coordinates that form a point cloud. This point cloud includes every point for which a reflection off a surface was recorded. Using a variety of software algorithms the top layer and bottom layer of points can be separated into two data files of x, y, and z coordinates. These two data files are typically associated with the first reflected and last reflected returns, respectively. From these two data files digital elevation models (DEMs) are created at user-specified resolutions that can highlight relative differences in elevation as little as 30 cm. Depending on how the data are interpolated two elevation models are typically produced: (1) full earth for generating a vegetation inclusive image, using the first returns detected by the sensor, and (2) bare earth for generating a vegetation exclusive image, using the last returns detected by the sensor. In areas with very dense vegetation cover the laser pulse may not penetrate to ground surface, making it more difficult to create an accurate bare earth DEM.

The accuracy of LiDAR data depends on various acquisition and post-processing parameters. Important acquisition parameters to consider are flight altitude, scanner frequency, inertial update rate, point spacing and base station range (Bufton et al., 1991). Post processing of acquired data can involve a variety of software algorithms that interpolate the data clouds
generated from the recorded laser pulse returns. Experience in data handling is important as the data smoothing that takes place during post processing can remove important features, or leave noise or unwanted information, in the final data set.

The high point density of LiDAR data results has fairly high vertical and horizontal accuracy, and is, therefore, very useful for mapping surficial geology and glacial features. This high accuracy makes DEMs produced from these data effective for identifying small changes in elevation and, therefore, particularly useful in areas of low topographic relief such as northeast BC. LiDAR DEMs have proven to be a useful tool for mapping Quaternary landforms including kame-like deposits, fans, terraces, eskers, meltwater channels, and shorelines; and has also been useful in initial studies in the eastern Cariboo by Tenorex GeoServices identifying highly productive placer regions, precise locations of hardrock mine sites and related disturbances, structural geological features partially controlling mineralized bodies of bedrock and other previously unmapped or previously misrepresented surficial features. Such studies are in progress but not part of this report at this time. This report relates solely to the acquisition and presentation of the data.

LiDAR DEMs are also useful for mapping details within a feature that are not seen in other data sets (e.g. lower resolution RADARSAT DEMs, DEMs produced by photogrammetry, and analog aerial photographs), because the bare earth model can remove the masking effects of vegetation. Cross-sections through selected features or areas, to aid in interpretation of genesis, can be produced in the digital environment because these data have x, y, and z values. These two attributes make LiDAR data particularly useful in areas of limited vertical relief.

Although a powerful dataset on its own, LiDAR DEMs can be even more effective for mapping purposes when used in combination with other spatial data. For example, seismic shot hole data, geophysical well data (e.g. gamma logs), and orthophotos have also been used in conjunction with LiDAR DEMs to assess the aggregate potential of glacial features in the region.

The detail inherent to LiDAR DEMs can, however, show surface textures that do not represent surface topography. Areas with very dense ground vegetation, such as black spruce bogs, can make it difficult for the laser to penetrate through to bare ground surface. Mosses and other ground cover, and periglacial features such as peat palsas, can grow to create mounds and hummocks independent of the underlying topography. In some cases changes in elevation created by these vegetation surfaces can be up to 1m. The result is that textures in bare earth LiDAR imagery occasionally represent surfaces of dense vegetation. In places where the image displays this texture, digital orthophotos can be draped on top to help investigate the genesis of these textures.

For the survey data presented with this report, a Piper Aztec PA23-250 aircraft was used during the aerial survey (by Kisik Aerial Survey Inc.) and flew at heights ranging from 13,700 to 16,600 feet elevation. Flight lines were spaced at 2500m apart on an E-W flight path and photo centers located every 470-480m and 80% forward overlap. The LiDAR data was acquired using an Optech 3100 LiDAR Mapping System (pers comms., Ian Grady, IGI Consulting) and had a planned point density of 3-5 points per square meter (some areas have points every 0.5m whereas other areas may be greater). Imagery was acquired using a Vexcel Ultracam X full format digital camera 4 band (RGBi) with a 25cm GSD (ground sample distance). Accuracy for the entire larger project area, which includes the data presented in this
report, was 0.153m2 for RMSE$_z$ LiDAR and had a vertical accuracy of 95% (0.299m). Accuracy for the Imagery compared to the ground survey and to the LiDAR survey was stated to be 1.876m (pers comms., Ian Grady, IGI Consulting).

Results and Recommendations

The LiDAR data acquisition provided the Company with a colour orthophoto of the survey area as well as bare earth hillshade imagery and a digital elevation model of the property, provided for now as 10m contour intervals and as represented in Appendix I. This will prove immediately useful in when it comes time for new testing projects and is useful for future Notice of Work applications, annual summary reports or physical reports.

Many glacial and surficial features are evident throughout the property, as are possible bedrock locations, including a possible location of the more resistant limestone beds otherwise seen peripheral to the property. The focus of this report is mainly for the acquisition and initial presentation of the imagery, so a detailed interpretation has yet to be conducted.

The most prominent features of the survey area are the eskers (and possible crevice filled deposits), kettles and a possible kame located to the north east edge of the survey area around Hospital Lakes. Placer testing has been conducted in this area, and several locations of possible old test pits or shafts are noted on the map. In the 1920’s, Joseph Wendle worked at one or more of these locations but the exact site and, while water (too much of it) was noted to be an issue, more details of his work here has yet to be located. The 1930’s survey map also notes a Placer Lease, No.3340, located in August 1935. Additional research and including use of the Barkerville Archives may be helpful in identifying the work conducted during this period or other periods in time.

The upper elevations of the property appear to have a veneer of overburden in most places and bedrock appears to generally strike to the northwest which is further supported by regional bedrock mapping and overlays of geophysical survey data for the project area. For the south half of the property, the western most portion may see deeper overburden than that likely found near the top of Mount Conkin, to the east. Regardless of depth, these troughs and possible bedrock or subcrop ridges observed on Mount Conklin should be carefully considered for placer testing. Some of the more likely prospective targets are shown in the appendix.

Other notable cultural or manmade features highlighted on the bareearth hillshade imagery include possible open cuts on the southwest side of the property, two shafts which occur along the southern boundary of the California Tunnel Company F-Grant and also noted on a 1930’s survey map of the area, a ditchline and/or road which ran north across Conklin Gulch and along the western edge of the current project area, a narrower ditchline which is seen running west towards St.George’s F-Grant along the north edge of the current project area, and numerous trails and roads. Only the most obvious and seemingly well established sections of roads were digitized and shown on the figures in the appendix.
While there are no obvious outwash channels or other obvious ancient channels or streams noted on the surface of the property upon first review of the imagery, it was noted that a prospective bench may have creeped downslope slightly or been covered by a newer deposit of glacial material along the southwest (SW) portion of the Barker 6 claim, above Hospital Lakes. Additional and systematic testing is recommended along this section and along trend towards the current staging area near Hospital Lakes and recommendations here include an approximate two line kilometer seismic survey over three separate lines.

The Barker Property is located along the northern edge of the Barkerville Gold Belt and in a prospective, productive placer gold belt – one of many in the area. Ground geophysical surveys may be useful in better defining target depths and location of any possible buried channels not otherwise observed on surface. It is recommended to continue with permitted placer testing activities generally on the northern half of the property for the time being, while systematically prospecting and hand testing the peripheral target areas or other regions of the property.
References

Dumont, R., et al. (2009). Geological Survey of Canada Open File 6164 and 6165 (2 reports), Airborne Geophysical Survey, Likely, British Columbia. 93A/12, 93B/09, 93B/16, 93H/04 and part of 93H/03

http://devlinsbenchminingltd.blogspot.ca

Statement of Costs

For Event 5652382

LiDAR Imagery acquisition (187ha@$7.50/ha) 1870.00
Data processing, research & GIS (30 hours at $60/hr) 1800.00
Technical report (20 hours at $60/hr) 1200.00

SUBTOTAL $ 4402.50

5% administration and contingencies 220.13
TOTAL technical value available to use towards assessment $ 4,622.63

Total credits applied ... $4,207.12
Total amount to be credited to Clinton Blaine’s PAC account............... $ 415.51
Statement of Qualifications

I, Angelique Justason of Quesnel, British Columbia certify the following:

- I am owner of Tenorex GeoServices, a Cariboo based mineral exploration support services company.

- I have attended geology courses at Camosun College and the University of Victoria.

- I have successfully completed and received certificates for the Advanced Prospecting Course (1992) and Petrology for Prospectors Course (1993).

- I have 4 seasons work experience with the BC Geological Survey and the Geological Survey of Canada.

- I was employed in the Cariboo Region as a geotechnician and mine surveyor for over 9 years and have held a supervisory position, in that capacity, for over 6 years.

- I have been an avid prospector for over 25 years, solely managed or assisted in managing field crews and exploration programs for 23 years and have spent over 18 years researching and conducting mineral exploration & mapping activities in the Wells/Barkerville area.

Signed,

Angelique Justason
APPENDIX I

Figures
Orthophoto for the Barker Placer claim group area (1:10,000)

Orthophoto taken in 2013 and is most recent image available for the property as of the date of this report.
Bareearth Hillshade LiDAR Imagery with 10m Contours (1:5,000), showing target areas

- Possible buried channels on bedrock rims - testing recommended
- Main target - testing recommended

Current Staging Area