GEOPHYSICAL-GEOCHEMICAL REPORT

on

VLF-EM AND SOIL GEOCHEMISTRY SURVEYS

SAM CLAIM GROUP

EDITH LAKE AREA, KAMLOOPS M.D., B.C.

SAM CLAIM GROUP : 9.0 km S20°W of Kamloops, British Columbia

: 50° 120° NE

: N.T.S. 921/9W

Written for : Argenta Resources Ltd., 2602-1055 West Hastings St. Vancouver, B.C.

by : David G. Mark
GEOTRONICS SURVEYS LTD., 420-890 W Pender Street, Vancouver, B.C.

Dated : June 6th, 1980
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>i</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>ii</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION AND GENERAL REMARKS</td>
<td>1</td>
</tr>
<tr>
<td>PROPERTY AND OWNERSHIP</td>
<td>2</td>
</tr>
<tr>
<td>LOCATION AND ACCESS</td>
<td>2</td>
</tr>
<tr>
<td>PHYSIOGRAPHY</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY OF PREVIOUS WORK</td>
<td>3</td>
</tr>
<tr>
<td>GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>VLF-EM SURVEY</td>
<td>6</td>
</tr>
<tr>
<td>1. Instrumentation and Theory</td>
<td>6</td>
</tr>
<tr>
<td>2. Survey Procedure</td>
<td>7</td>
</tr>
<tr>
<td>3. Compilation of Data</td>
<td>7</td>
</tr>
<tr>
<td>SOIL GEOCHEMISTRY SURVEY</td>
<td>7</td>
</tr>
<tr>
<td>1. Survey Procedure</td>
<td>7</td>
</tr>
<tr>
<td>2. Testing Procedure</td>
<td>7</td>
</tr>
<tr>
<td>3. Treatment of Data</td>
<td>8</td>
</tr>
<tr>
<td>DISCUSSION OF RESULTS</td>
<td>10</td>
</tr>
<tr>
<td>1. VLF-EM Survey</td>
<td>10</td>
</tr>
<tr>
<td>2. Soil Geochemistry Survey</td>
<td>11</td>
</tr>
<tr>
<td>a) Copper-Molybdenum</td>
<td>11</td>
</tr>
<tr>
<td>b) Zinc, lead, silver</td>
<td>12</td>
</tr>
<tr>
<td>c) Nickel, cobalt</td>
<td>14</td>
</tr>
<tr>
<td>d) Iron, manganese</td>
<td>15</td>
</tr>
<tr>
<td>SELECTED BIBLIOGRAPHY</td>
<td>16</td>
</tr>
<tr>
<td>GEOPHYSICIST'S CERTIFICATE</td>
<td>17</td>
</tr>
<tr>
<td>AFFIDAVIT OF EXPENSES</td>
<td>18</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Back of Report</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION MAP</td>
<td>1</td>
</tr>
<tr>
<td>CLAIM MAP</td>
<td>2:50,000</td>
</tr>
</tbody>
</table>

CUMULATIVE FREQUENCY GRAPH

- SOIL GEOCHEMISTRY
 - COPPER, ZINC, COBALT, NICKEL

CUMULATIVE FREQUENCY GRAPH

- SOIL GEOCHEMISTRY
 - MANGANESE, IRON

<table>
<thead>
<tr>
<th>In Pocket</th>
<th>Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLF-EM SURVEY</td>
<td></td>
</tr>
<tr>
<td>FRASER FILTER</td>
<td></td>
</tr>
<tr>
<td>DATA AND CONTOURS 1:5,000</td>
<td>1</td>
</tr>
</tbody>
</table>

- SOIL GEOCHEMISTRY - COPPER
 - DATA AND CONTOURS 1:5,000

- SOIL GEOCHEMISTRY - MOLYBDENUM
 - DATA AND CONTOURS 1:5,000

- SOIL GEOCHEMISTRY - SILVER
 - DATA AND CONTOURS 1:5,000

- SOIL GEOCHEMISTRY - LEAD
 - DATA AND CONTOURS 1:5,000

- SOIL GEOCHEMISTRY - ZINC
 - DATA AND CONTOURS 1:5,000

- SOIL GEOCHEMISTRY - NICKEL
 - DATA AND CONTOURS 1:5,000

- SOIL GEOCHEMISTRY - MANGANESE
 - DATA AND CONTOURS 1:5,000

- SOIL GEOCHEMISTRY - IRON
 - DATA AND CONTOURS 1:5,000

- SOIL GEOCHEMISTRY - COBALT
 - DATA AND CONTOURS 1:5,000
SUMMARY

During the latter part of March and the beginning of April, 1980, a combined soil sampling and VLF-EM survey was carried out on the Sam Claim Group. The property is located 10 km S20W of Kamloops between Edith Lake and Jacko Lake. Access to much of the property is easily gained by a two-wheel drive vehicle. The terrain consists of mainly moderate slopes forested with lightly spaced coniferous trees and grasslands. The purpose of the surveys was to extend the known zones of sulphide mineralization.

Previous work on the property consists of several trenches and shafts dug out some years ago. Geophysical and geochemical work has been done over parts of the property.

The property is mainly underlain by Upper Triassic Nicola Group volcanics and the Iron Mask Batholith. Faulting on the property is predominantly north-westerly. Mineralization occurs as chalcopyrite, pyrite and galena with gold values and associated alteration.
The VLF-EM readings and the soil samples were taken every 30 meters on 120-meter separated N22E-S22W lines. The VLF-EM readings were Fraser-filtered, plotted and contoured. The soil samples were tested for 9 elements and the results statistically analyzed, plotted and contoured.

CONCLUSIONS

1. The VLF-EM anomalies probably have reflected mainly faults and possibly lithologic contacts. Many of these are related to soil anomalies.

Some of the most interesting parts of the VLF-EM anomalies are those that appear to indicate cross-structure since these would be prime areas to look for sulphide mineralization.

2. The soil geochemistry survey revealed several anomalies of different metals throughout the whole property. Some of the more interesting anomalies are as follows:

 a) copper anomaly B because of its correlation with VLF-EM, molybdenum, lead, cobalt, and iron. Copper anomalies A and C are also interesting.

 b) Zinc anomalies D, E, F, G and H because of their correlations with VLF-EM, lead and manganese.
c) nickel anomalies I and K because of their correlations with VLF-EM, cobalt, lead, and iron.

RECOMMENDATIONS

The correlation of complex-type VLF-EM anomalies together with the soil geochemistry anomalies provide favourable exploration targets on the Sam Claim Group and, therefore, certainly warrant further work.

The writer recommends the following:

1. A magnetic survey over the entire property to delineate the Iron Mask-Nicola contact as well as to map other contacts, if they exist, and faults.

2. An induced polarization survey over the entire property to help determine the probability of the soil geochemistry anomalies being caused by sulphide zones. If there are budget restrictions, then the I.P. survey can be restricted to favourable areas.

3. Diamond drilling of the anomalies. This, of course, should not be undertaken until the I.P. survey is completed.
GEOPHYSICAL-GEOCHEMICAL REPORT

on

VLF-EM AND SOIL SAMPLE SURVEYS

SAM CLAIM GROUP

EDITH LAKE AREA, KAMLOOPS M.D., B.C.

INTRODUCTION AND GENERAL REMARKS

This report discusses the survey procedure, compilation of data, and the interpretation of a soil sampling survey and a very low frequency electromagnetic (VLF-EM) survey carried out on the Sam Claim Group over the latter part of March and the beginning of April, 1980.

The surveys were done under the supervision of the writer and under the field supervision of S. G. Diakov with the aid of a helper. A total of 915 soil samples were picked up and 27 line km of VLF-EM were done. The samples were tested for copper, lead, zinc, silver, molybdenum, nickel, cobalt, manganese and iron.

The primary purpose of the VLF-EM and soil geochemistry surveys was to extend the known zones of sulphide mineralization found
on the property as well as locate new ones. A secondary object of the VLF-EM survey was to delineate faults and/or shear zones.

PROPERTY AND OWNERSHIP

The property is called the Sam Claim Group and consists of seven contiguous claims as shown on Figure 2 and as described below:

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>No. Units</th>
<th>Record No.</th>
<th>Tag No.</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edith 100</td>
<td>15</td>
<td>1802</td>
<td></td>
<td>April 9, 1983</td>
</tr>
<tr>
<td>Hump 100</td>
<td>6</td>
<td>1799</td>
<td></td>
<td>April 9, 1984</td>
</tr>
<tr>
<td>Tyler 1-4</td>
<td>4</td>
<td></td>
<td>503907M-910M</td>
<td>Nov 29, 1984</td>
</tr>
<tr>
<td>Sam 1 fr.</td>
<td>1</td>
<td></td>
<td>49670</td>
<td>Nov 29, 1984</td>
</tr>
</tbody>
</table>

The expiry dates are subject to the acceptance of this report by the Chief Gold Commissioner for assessment work.

The property is owned by Argenta Resources Ltd. of Vancouver, British Columbia.

LOCATION AND ACCESS

The Sam Claim Group is located about 9 km S20W of the City of Kamloops, British Columbia, between Edith Lake to the southeast and Jacko Lake to the northwest.

The geographical coordinates are 50° 35'N latitude and 120° 22'W longitude.

Access to the property is quite good and can be gained by a passenger car providing the road is dry (see Figure 2). One travels along Highway 5 for 4 km south of Kamloops and the junction of Highway 5 with Highway 1. At Knutsford, one then takes a gravel road which leaves Highway 5 in a southerly direction. The property can then be reached by taking one of the first two westerly turnoffs. The property is only a few km from Knutsford.
PHYSIOGRAPHY
The Sam Claim Group lies in the central part of the physiographic division known as the Thompson Plateau which is part of the Interior Plateau System. The terrain is generally that of flat or rolling hills over most of the property. The general trend of the topography runs northwest-southeast. Elevations vary from 880 meters a.s.l. in the northern part to 1,100 meters a.s.l. on Edith Hill to give a relief of only 220 meters.

The main water sources are Humphrey Creek which flows northerly through the Hump 100 claim, a small lake located within the center of the Edith 100 claim, as well as Edith Lake which is located only a few hundred meters to the southeast.

Vegetation on the property is mainly a lightly dense forest with much grassland. The trees consist mainly of pine, fir and spruce.

HISTORY OF PREVIOUS WORK
The property was staked in 1979 and during that year a minor amount of VLF-EM surveying was carried out.

Prior to the staking, geochemistry and geophysical surveys have been done in the area, some of which cover parts of the Sam Claim Group.

GEOLOGY
The following is quoted from Chisholm's engineering report of the property.

"The property lies along the eastern boundary of a north-south arcuate band of Nicola rocks extending from Princeton in the south through Merritt and beyond Kamloops Lake to the north. Peripheral rocks are predominantly intrusives in addition
to cappings of younger sediments and volcanics. Stocks and plugs of intrusives occur throughout the Nicola Band.

"Numerous copper-gold-silver occurrences have been located within the Nicola rocks which have been explored to various degrees. The deposits of the producing Similkameen mine in Princeton and the Craigmont deposit at Merritt occur within Nicola rocks and are associated with intrusives.

"The Iron Mask Intrusive has been of greater interest because it contains numerous mineral occurrences. The Afton deposit is associated with early exploratory workings situated at the northwest end of the Iron Mask Intrusive. The Iron Mask Mine is also associated with the Intrusive.

"Three major northwesterly trending fault zones within and peripheral to the Intrusive, in addition to secondary north-south and east-west structures, appear to control mineralization.

"A zone of alteration on the Edith claim within greenstones of the Nicola volcanics, trends westerly from the eastern shaft zone. The zone is within westerly trending fault structures, which contain quartz-calcite flooding to variable degrees. The zone where trenched at location "A", shows thin bedded argillites intercalated with altered volcanics. The argillites are locally brecciated fissile and were healed with a quartz-calcite matrix. An altered fine grained diorite with xenoliths of dark volcanics is intimately associated with the Nicola rocks. The zone contains intermittent alteration up to 50 meters wide. A similar altered zone occurs 175 meters south of Zone A. Westward extensions of these zones occur along Line 200E.

"Alteration is similar to that occurring at the shaft zone where three shafts explore quartz veins containing copper mineralization.
"On the Hump claim a northerly trending Nicola-Iron Mask contact, is indicated on a regional geological map of the area. A major northerly trending inferred fault zone is associated with the contact zone. A copper showing occurs on the Fargo group between the Hump claim and Edith Lake within the Iron Mask diorite.

"Mineralization on the shaft zone of the old Chance Group consists of "veins and stringers of quartz mineralized with pyrite, chalcopyrite and galena. Low values in gold are reported, with occasional "high assays".

"In the old Fargo group, south of the Hump claim and north of Edith Lake, trenches, pits and shafts explore veins mineralized with chalcopyrite within the Iron Mask diorite. "A shipment of one carload of ore running about two per cent copper and 0.06 ounces of gold a ton is reported to have been made.

"On the Edith property, trenches on easterly-trending altered zones expose localized pyrite with occasional chalcopyrite mineralization.

"A grab sample from the shaft zone assayed .094 oz Au/ton, .13 oz Ag/ton and .31% Cu.

"Rock chip samples along the base line showed higher than normal spot values of copper in ppm."
VLF-EM SURVEY

1. Instrumentation and Theory:
A VLF-EM Receiver, Model 27, manufactured by Sabre Electronic Instruments Ltd. of Burnaby, B.C. was used for the survey. This instrument is designed to measure the magnetic component of a very low frequency (VLF) electromagnetic field. The U.S. Navy submarine transmitter located at Annapolis, Maryland and transmitting at 21.4 KHz was used.

In all electromagnetic prospecting, a transmitter produces an alternating magnetic field (primary) by a strong alternating current usually through a coil of wire. If a conductive mass such as a sulphide body is within this magnetic field, a secondary alternating current is induced within it which in turn induces a secondary magnetic field that distorts the primary magnetic field. It is this distortion that the EM receiver measures. The VLF-EM uses a frequency range from 16 to 24 KHz, whereas most EM instruments use frequencies ranging from a few hundred to a few thousand Hz. Because of its relatively high frequency, the VLF-EM can pick up bodies of a much lower conductivity and therefore is more susceptible to clay beds, electrolyte-filling fault or shear zones and porous horizons, graphite, carbonaceous sediments, lithological contacts as well as sulphide bodies of too low a conductivity for other EM methods to pick up.

Consequently, the VLF-EM has additional uses in mapping structure and in picking up sulphide bodies of too low a conductivity for conventional methods and too small for induced polarization (in places it can be used instead of IP). However, its susceptibility to lower conductive bodies results in a number of anomalies, many of them difficult to explain and, thus, VLF-EM preferably should not be interpreted without a good geological knowledge of the property and/or other geophysical and geochemical surveys.
2. **Survey Procedure:**
The VLF-EM survey was run on a grid in which the lines run N22E-S22W at 120-meter intervals from 2 baselines each running S68E as shown on Sheet 1. Dip angle readings were taken every 30 meters with the instrument facing towards the transmitter at Annapolis. Fluorescent orange flagging was placed at each 30-meter station with the grid coordinates marked thereon.

3. **Compilation of Data:**
The readings were reduced by applying the Fraser Filter. Filtered data, as shown on Sheet 1, are plotted between the reading stations. The positive filtered values were contoured at intervals of 4° starting at 4°.

The Fraser filter is essentially a 4-point difference operator which transforms zero crossings into peaks, and a low pass smoothing operator which reduces the inherent high frequency noise in the data. Therefore, the noisy, non-contourable data are transformed into less noisy, contourable data. Another advantage of this filter is that a conductor that does not show up as a cross-over on the unfiltered data quite often will show up on the filtered data.

SOIL GEOCHEMISTRY SURVEY

1. **Survey Procedure:**
The soil samples were picked up at the 30-meter stations. The samples were picked up with a D-handled shovel at about a 15-centimeter depth. The horizon sampled was B except where it could not be obtained, then horizon C was sampled. Samples were placed in brown wet-strength paper bags with grid coordinates marked thereon.
2. **Testing Procedure:**
All samples were tested by Acme Analytical Laboratories Ltd. of Burnaby, B.C. The sample is first thoroughly dried and then sifted through a -80 mesh screen. A measured amount of the sifted material is then put into a test tube with subsequent measured additions of aqua regia. This mixture is next heated for a certain length of time. The parts per million (ppm) metal is then measured by atomic absorption. Nine metals were tested for, which were, copper, lead, zinc, silver, molybdenum, nickel, cobalt, manganese and iron. This many were tested because of a package price offered by the laboratory.

3. **Treatment of Data:**
The values in ppm copper, zinc, cobalt and nickel were grouped into equal logarithmic intervals, and manganese and iron, into equal arithmetic intervals. The cumulative frequency for each interval was then calculated and then plotted against the correlating interval to obtain the logarithmic cumulative frequency graph as shown on Figure 3 and the arithmetic cumulative frequency graph as shown on Figure 4.

The coefficient of deviation, indicative of the range or spread of values is shown on all graphs to be quite low. Therefore, the range of values is somewhat narrow. This statistical parameter is indicative of how well the element has been mechanically or chemically dispersed. Considering the lower than average value, one could then say the dispersion rate for the various metals is somewhat low.

The mean background value for each metal is taken at the 50% level. The sub-anomalous threshold value, (a term used by the writer to denote the minimum value that is not considered anomalous but still important as an indicator of mineralization) is taken at one standard deviation from the mean background value which is at the 16% level. The anomalous threshold value is two standard deviations away at the 24% level.
The molybdenum, lead, and silver geochemistry data was not analyzed with a cumulative frequency graph due to the way the data was distributed. Rather, the statistical parameters for these metals were "eye-balled".

As a result of the above, the statistical parameters for each metal are as shown in the following table with the sheet number that the geochemistry values for each of the metals were plotted on.

<table>
<thead>
<tr>
<th>Sheet No.</th>
<th>Cu</th>
<th>Mo</th>
<th>Ag</th>
<th>Pb</th>
<th>Zn</th>
<th>Ni</th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Background Value</td>
<td>88</td>
<td>2</td>
<td>0.2</td>
<td>9</td>
<td>58</td>
<td>62</td>
<td>620</td>
<td>3.3</td>
<td>14.5</td>
</tr>
<tr>
<td>Sub-anomalous threshold value</td>
<td>120</td>
<td>3</td>
<td>0.3</td>
<td>13</td>
<td>70</td>
<td>84</td>
<td>720</td>
<td>3.7</td>
<td>18</td>
</tr>
<tr>
<td>Anomalous threshold values</td>
<td>165</td>
<td>4</td>
<td>0.5</td>
<td>15</td>
<td>90</td>
<td>110</td>
<td>920</td>
<td>4.1</td>
<td>21</td>
</tr>
</tbody>
</table>

All values are in ppm, except for iron which is in %.

The contouring was done with an interval of one standard deviation, except for manganese which was two. The sub-anomalous threshold contour was dashed in and the anomalous contours were drawn in solid.
DISCUSSION OF RESULTS

1. VLF-EM Survey:
The major cause of VLF-EM anomalies, as a rule, are geologic structures such as fault, shear and breccia zones. It is, therefore, logical to interpret VLF-EM anomalies to likely be caused by these structural zones. Of course, sulphides may also be a causitive source. But in the writer's experience, when VLF-EM anomalies correlate with sulphide mineralization, the anomalies are usually reflecting the structure associated with the mineralization rather than the mineralization itself.

The major trend of the VLF-EM anomalies, as seen on Sheet 1, is northwesterly. Considering the VLF-EM anomalies are likely reflecting structure, the major strike of structure on this property is concluded to be in this direction. This is in agreement with the G.S.C. geology map of the area, which shows contacts in the general area to be northwesterly. Chisholm also reports a few major faults trending in this same direction.

Other secondary directions noted are westerly and northeasterly.

What is immediate obvious from examining the VLF-EM anomalies on Sheet 1 is their complexity. Each anomaly appears to reflect structure striking in several directions. This is favourable for the occurrence of sulphides since mineralization often occurs at or near the intersection of faults, shears, fracture zones, or contacts.

The anomalies have been labelled by the lower case letters a to n. The anomalies will be further discussed with the soil geochemistry results.
2. **Soil Geochemistry Survey:**
With the results of nine different maps to discuss, it would become rather difficult to keep track of the different anomalies and how one anomaly of one metal correlates with that of another. The writer, therefore, will group the metals into four different categories. The anomalies of the first category will then be correlated with anomalies of any metal not previously discussed.

a) **Copper-Molybdenum:**
The mean background value for copper on this property is quite high at 88 ppm. This value would be anomalous in most areas of the Cordillera, regardless of rock type. In other areas of the Nicola Volcanics the writer has observed mean background values in the range of 20 to 40 ppm. The high value on this property could be a result of a high copper content within the Iron Mask Batholith and/or copper ion mobility from nearby copper mineralized zones.

The writer has labelled four anomalies by the higher case letters A to D. All correlate with VLF-EM anomalies indicating the causitive source is probably structurally controlled. The three most interesting anomalies are found on the Hump 100 claim and are the ones labelled A to C. The causitive sources of these anomalies appear to be several narrow zones. D is only a one-value high that is located within the SE corner of the Edith 100 claim. All anomalies are striking in a direction varying from west-northwest to northwest.

The description of the anomalies are as follows:
Anomaly B is so far the most interesting copper anomaly because of its correlation with a number of other metals and its strong correlation with molybdenum, cobalt, and iron. In general, copper and cobalt on this property correlate quite well together. A trench is shown to correlate with B.

The molybdenum results are fairly flat but there is some correlation with other metals. Molybdenum anomaly B is very interesting indicating fairly strongly that molybdenum sulphides probably occur with copper sulphides in this area.

b) Zinc, lead, silver:
Whereas the copper anomalies occur almost entirely within the Hump 100 claim, the zinc anomalies occur almost entirely within the Edith 100 claim.
Five separate zinc anomalies have been noted though the causitive sources may be more than five. They have been labelled by the letters D to H. The main strike direction is westerly.

There is also correlation with VLF-EM anomalies though the correlation is not as good as the copper with the VLF-EM.

The anomalies are described in the following table.

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Minimum Length</th>
<th>VLF-EM Correlation</th>
<th>Other Metals Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>300 m open to NE</td>
<td>b</td>
<td>Cu, Pb, Co, minor Fe, *Mn</td>
</tr>
<tr>
<td>E</td>
<td>700 m open to E</td>
<td>c</td>
<td>*Pb, minor Fe, *Mn</td>
</tr>
<tr>
<td>F</td>
<td>400 m open to E</td>
<td>d</td>
<td>Minor Fe, *Mn</td>
</tr>
<tr>
<td>G</td>
<td>1000 m open to E</td>
<td>d</td>
<td>*Pb, minor Fe, *Mn</td>
</tr>
<tr>
<td>H</td>
<td>350 by 400 m</td>
<td>-</td>
<td>Pb, *Mn</td>
</tr>
</tbody>
</table>

*Denotes major correlation.

The lead correlation is fairly good but rather spotty. This is probably a reflection of the slower lead ion mobility.

A strong complex manganese anomaly correlates quite well with all five zinc anomalies. Quite possibly the manganese anomaly may be reflecting a generalized zone of mineralization and/or alteration. Or, it may be reflecting a different rock type.
One lead anomaly, labelled I, has no zinc correlation but an excellent correlation with nickel and cobalt. In fact, it appears to be primarily a nickel anomaly.

The silver was quite flat except for one small anomaly in the northwest corner of the Hump 100 claim.

c) Nickel, cobalt:
It was not expected to find nickel and cobalt mineralization in the area, but several strong anomalies of these metals seem to indicate otherwise.

The cobalt and nickel anomalies correlate moderately well together but cobalt's best correlation is with copper. Cobalt's anomalies A to D have, therefore, previously been discussed with the copper results.

The nickel results have fairly good correlation with the VLF-EM anomalies indicating structural control.

The nickel anomalies are described in the following table:

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Minimum Length</th>
<th>VLF-EM Correlation</th>
<th>Other Metals Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>500 m, open to NW</td>
<td>k</td>
<td>Cu, Fe</td>
</tr>
<tr>
<td>C</td>
<td>Spotty</td>
<td>l</td>
<td>Cu, Co, *Fe, minor Mn</td>
</tr>
<tr>
<td>G</td>
<td>320 m open to E</td>
<td>d</td>
<td>Zn, Co, Fe</td>
</tr>
<tr>
<td>I</td>
<td>900 by 400m open to NW, SE and N</td>
<td>e,f</td>
<td>Co, minor Cu, *Pb</td>
</tr>
<tr>
<td>J</td>
<td>300 m</td>
<td>j</td>
<td>*Co, Fe</td>
</tr>
<tr>
<td>K</td>
<td>120m open to E,W and N</td>
<td>-</td>
<td>*Co, *Fe, minor Mn</td>
</tr>
</tbody>
</table>

*Denotes major correlation
Anomalies I and K are the most interesting nickel anomalies. Anomaly I is fairly complex.

d) **Iron, manganese:**
The principle value of the iron results is its correlation with the other metals discussed above. Anomalous iron results would indicate pyritization.

The value of manganese is similar though its results can be used more for the mapping of geology. It has one large anomalous zone within the center of the Edith 100 claim that correlates very well with the zinc anomalies as well as a few of the other metals.

Respectfully submitted,
GEOTRONICS SURVEYS LTD.,

[Signature]
David G. Mark
Geophysicist

June 6, 1980
SELECTED BIBLIOGRAPHY

Fraser, D.C., Contouring of VLF-EM Data, Geophysicis, Vol. 34, No. 6, (Dec.), 1969.

GEOPHYSICIST'S CERTIFICATE

I, DAVID G. MARK, of the City of Vancouver, in the Province of British Columbia, do hereby certify:

THAT I am a Consulting Geophysicist of Geotronics Surveys Ltd., with offices at 420-890 West Pender Street, Vancouver, British Columbia.

I further certify:

1. I am a graduate of the University of British Columbia (1968) and hold a B.Sc., degree in Geophysics.

2. I have been practising my profession for the past twelve years and have been active in the mining industry for the past fifteen years.

3. I am an active member of the Society of Exploration Geophysicists and a member of the European Association of Exploration Geophysicists.

4. This report is compiled from data obtained from VLF-EM and soil sampling surveys carried out under the supervision of myself and the field supervision of S. G. Diakow during the last part of March and the first part of April, 1980.

5. I have no interest in Argenta Resources Ltd., nor any of its properties, nor do I expect to receive any interest.

[Signature]
David G. Mark
Geophysicist

June 6, 1980
AFFIDAVIT OF EXPENSES

The soil geochemistry and VLF-EM surveys were carried out on the Sam Claim Group, Edith Lake, Kamloops M.D., B.C. to the value of the following:

FIELD
- Geophysical technician and helper, 118 hours at $35/hour $4,130.00
- Vehicle rental, 14 days at $60/day 840.00
- Room and board, 2 men at $30/man day, 14 days 840.00
- Survey supplies 170.00
- VLF-EM instrument rental, 2 weeks, $75/week 150.00

\[6,130.00 \]

LAB
- Soil testing, 915 samples at $3.50/sample say 3,200.00

REPORT
- Geophysicist, 15 hours at $35/hour 525.00
- Office Assistant, 30 hours at $20/hour 600.00
- Drafting and printing 895.00
- Typing, xeroxing and compilation 150.00

\[2,170.00 \]

TOTAL......... $11,500.00

Respectfully submitted,

GEOTRONICS SURVEYS LTD.,

David G. Mark, Geophysicist
CUMULATIVE FREQUENCY GRAPH
SOIL GEOCHEMISTRY
MANGANESE & IRON

METAL CONTENT (PPM)
0 100 200 300 400 500 600 700 800 900 1000

METAL CONTENT (%)
0 100 200 300 400 500 600

MEAN BACKGROUND LEVEL
SUB-ANOMALOUS THRESHOLD VALUE
ANOMALOUS THRESHOLD VALUE

FIG. 4
GEOTRONICS SURVEYS LTD.
ARGENTA RESOURCES LTD.
EDITH LAKE AREA, KAMLOOPS M.D., B.C.