REPORT ON THE MBI2 and MBI3 MINERAL CLAIMS
Atlin Mining Division
British Columbia
Latitude 59°35'N, Longitude 133°18'W
NTS 104 N/11W

GEOLOGICAL BRANCH
ASSESSMENT REPORT

13,636

By
G. DAVIDSON of G. MACDONALD AND ASSOCIATES
205 Rogers Street, Whitehorse, Yukon.
Y1A 1X1

May 6, 1985
SUMMARY

The MB12 and MB13 mineral claims owned by Mr. F. Anderson of Vancouver, B.C. are located in the Atlin area of northwestern British Columbia on map sheet NTS 104 N/llW. A preliminary exploration program was undertaken in September 1984 by MBW Surveys Ltd. of Whitehorse, Yukon Territory at the request of Mr. F. Anderson. Field work involved geochemical sampling, geophysical surveys and geological mapping.

To date, no economic mineral occurrences have been delineated on the property. To the west, on the properties of Standard Gold Mines Ltd., showings of auriferous mineralization have been outlined; comparable showings may exist on the MB12 and MB13 property.

In the 1984 exploration program, two strong northwesterly trending geophysical anomalies were outlined. Geochemical response is moderately coincident with the geophysical results. Values of Au in soils reach 28 ppb, Hg up to 70 ppb, Zn up to 128 ppm and Cu up to 186 ppm.

These two anomalous areas should be investigated during a follow-up program of exploration on the property in 1985.
TABLE OF CONTENTS

Summary	Page 1/
Table of Contents | Page 2/
List of Figures | Page 2/
List of Tables | Page 2/
Introduction | Page 3/
Location and Access | Page 3/
Claim Composition | Page 4/
Physiography and Climate | Page 4/
History and Previous Exploration | Page 5/
Regional Geology | Page 6/
Property Geology | Page 6/
Economic Geology | Page 7/
Exploration Program – 1984: Geochemical Survey | Page 7/
VLF-EM Geophysical Survey | Page 8/
Conclusions | Page 8/
Appendix – Geochemical Certificates | /

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Claim Boundaries and Grid Location</td>
<td>In sleeve see fig 2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Geology</td>
<td>In sleeve ✓</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Soil Geochemistry As, Au, Hg</td>
<td>In sleeve ✓</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Soil Geochemistry Cu, Pb, Zn, Ag</td>
<td>In sleeve ✓</td>
</tr>
<tr>
<td>Figure 5</td>
<td>VLF-EM Survey (Seattle 24.8)</td>
<td>In sleeve ✓</td>
</tr>
<tr>
<td>Figure 6</td>
<td>VLF-em Survey (Maine 17.8)</td>
<td>In sleeve ✓</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Claim Information</td>
<td>4 ✓</td>
</tr>
</tbody>
</table>
INTRODUCTION

The MB12 and MB13 mineral claims lie in the active Atlin placer mining camp which has, in recent years, seen a surge of interest in exploration for lode gold deposits. This report outlines the history of exploration, geological setting and physical nature of the property. Mr. Frank Anderson of Vancouver, British Columbia requested this summary of an exploration program conducted by MBW Surveys Ltd. of Whitehorse, Yukon Territory in September 1984. The writer was involved in this exploration program and has undertaken other projects in the area.

LOCATION AND ACCESS

The MB12 and MB13 claims are located in the Atlin area of northwestern British Columbia on N.T.S. map sheet 104 N/11W at latitude 59°35'N by longitude 133°15'W. The town of Atlin lies 23 kilometres due west of the property. The headwaters of Wright Creek and McKinley Creek bound the claims to the west and east respectively. Wright Creek, an active placer mining stream, flows northwesterly towards Surprise Lake. From the well-maintained gravel road between Atlin and Surprise Lake, a secondary road proceeds up Wright Creek to within one kilometre of MB12. This road is generally passable to two-wheel drive vehicles and remains open from late May to early October. A tote trail proceeds from the head of the Wright Creek road in an easterly direction, passing through MB12 and MB13 claims.

The town of Atlin, a stopover for miners during the Klondike Gold Rush, retains its importance as the principal service and supply centre for mineral exploration in northwestern British Columbia. It is connected with the Alaska Highway by a rapidly improving all-weather road extending along the east sides of Atlin and Little Atlin Lakes. Whitehorse, a two-hour drive to the north, receives daily flights from Vancouver and Edmonton. Fuel, lodging, groceries and other necessities are available in Atlin. Charter aircraft and helicopters are stationed in Atlin on a year-round basis.
CLAIM COMPOSITION

The property located in the Atlin Mining Division of northwestern British Columbia consists of two modified grid claims comprising a total of 40 claim units. The claims cover an area of approximately 1,000 hectares and are owned by Mr. F. Anderson of Vancouver, B.C.

Table I - Claim Information

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>No. of Units</th>
<th>Record No.</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBI2</td>
<td>20</td>
<td>2174</td>
<td>08 Feb 85</td>
</tr>
<tr>
<td>MBI3</td>
<td>20</td>
<td>2175</td>
<td>08 Feb 85</td>
</tr>
</tbody>
</table>

To date, claim boundaries have not been surveyed in detail but corner posts have been located and mapped accordingly. The Butterfly claims (two two-post claims) lie within MBI2 along its eastern side.

PHYSIOGRAPHY AND CLIMATE

The Atlin-Surprise Lake area is situated on the eastern side of the Coast Mountain Range in the Teslin Plateau region of the more extensive Yukon Plateau. Topographically the area features well-rounded mountains and hills of moderate relief, and wide, flat-bottomed valleys usually filled with glacial outwash material. The MBI2 and MBI3 claims cover a high saddle (1475 metres) between Wright and McKinley Creeks. Mountain tops occur in MBI2 and MBI3; maximum elevations reach 1800 metres in the northeast corner of MBI2. Total relief on the property is approximately 500 metres.

Glaciation has had a limited effect on the topography of the region. Higher mountains show the scars of alpine glaciers, with cirques on north-facing slopes. Outcrop is restricted to high ridges and mountain peaks.

The moderating influence of the Pacific Coast produces a relatively mild climate.
for the Atlin region. Summers are warm with temperatures averaging 20°C, while winter temperatures are cool, averaging -15°C in January. Precipitation is minimal especially in summer due to the rain shadow effect of the Coast Mountains located west of Atlin. The exploration season extends from May to October, with the most productive period occurring in August and September.

The property is located completely above treeline, consisting of wide open grassy slopes and rounded rocky ridges. Clumps of buckbrush appear at lower elevations but do not impede the exploration process.

HISTORY AND PREVIOUS EXPLORATION

The Atlin placer gold deposits were initially found in 1887 on Pine Creek. Numerous Klondike-bound prospectors remained in the Atlin area on learning of the discovery and proceeded to develop placer occurrences on Pine, Spruce, Wright, Otter, Ruby and Birch Creeks. Placer mining continues seasonally on all the aforementioned creeks, and Spruce Creek alone has produced over 450,000 ounces of gold.

Mineral exploration conducted in the early 1900's outlined several precious metal and sulphide showings. In the early 1940's, these prospects (called the Lakeview and Imperial properties) were explored for their gold, tungsten and base metal potential. Mineralization occurs in quartz veins located by andesitic rocks. After the early 1950's, meaningful exploration on the properties ceased. Yukon Revenue Mines Ltd. optioned the Lakeview prospect in 1981 and proceeded to issue results which produced a major staking rush in the general area. In 1983, Standard Gold Mines Ltd. discovered a gold-bearing structure at the head of Dominion Creek and another round of staking ensued.

The MBI2 and MBI3 claims were staked by MBW Surveys Ltd. of Whitehorse, Yukon Territory in the winter of 1984. Mr. F. Anderson of Vancouver, British Columbia purchased the MBI2 and MBI3 mineral claims in 1984 and initiated an exploration program. The program, conducted by MBW Surveys Ltd. under the direction of Mr. M. Barker of Whitehorse, consisted of grid development, soil sampling, VLF-EM geophysical surveys and reconnaissance level geological mapping.
REGIONAL GEOLOGY

The geology of the Atlin map sheet (NTS 104N) was compiled by J. D. Aitken (G.S.C. Memoir 307) and by J.W.H. Monger (1975) both of the Geological Survey of Canada. Map 1082A (1959) by Aitken depicts the geology of the Atlin region at a scale of 1:250,000.

The Atlin area is composed of three distinct northwesterly-trending belts: the St. Elias and Insular Belt, the Coast and Cascades Belt and the Intermontane Belt. Rocks of the Surprise Lake area belong to the Atlin Terraine which is part of the extensive Intermontane Belt. Radiolarian cherts, pelites, carbonates, volcanics and ultramafics of the Pennsylvanian-Permian Cache Creek Group form the Atlin Terraine. Granite, alaskite and quartz monzonite batholiths of Jurassic-Cretaceous age intrude rocks of the Cache Creek Assemblage. The Cretaceous quartz monzonite Surprise Lake Batholith lies three kilometres north of the MBI2 and MBI3 claim group. In the Otter, Ruby and Pine Creek drainages, Pennsylvanian-Permian ultramafic rocks of the Atlin Intrusions occur. Quaternary glacial debris covers many of the stream valleys.

The Atlin Terraine on a regional scale shows northwest-striking faulting. Strike slip and vertical displacements have been described by Aitken and Monger. Folding in the Cache Creek Group forms anticline and syncline structures in the Spruce Creek and Slate Creek drainages.

PROPERTY GEOLOGY

Geological mapping was conducted at a reconnaissance level by the writer in the fall of 1984. Outcrop of the Pennsylvanian-Permian Cache Creek Group rocks occurs on high ridges and mountain peaks on both MBI2 and MBI3 (Figure 2). Cache Creek Group rocks are the only rocks other than a narrow granitic dyke observed on the property. Chert, argillite, chert pebble conglomerate and chert breccia, and locally derived quartzite and schist outcrop on both mountain tops. Minor occurrences of andesite and limestone within argillitic rocks were noted on the more southerly mountain top. Andesite outcrops along a north-south trending ridge which rises to the higher peak on MBI2. Rocks strike between $75^\circ - 110^\circ$ and dip $20^\circ - 40^\circ$ towards the south.
Quartz float occurs in several locations, especially near the mountain peaks. In situ quartz veins located in the northeastern corner of MBI2 are hosted by andesite, argillite and chert. These quartz veins lie within the two Butterfly claims. Glacial cover is prevalent in the northwest corner of MBI2, consisting of felsenmeer and moraine material.

ECONOMIC GEOLOGY

To date, no known mineral showings have been identified on the MBI2 and MBI3 claims. Gold mineralization on Standard Gold Mines property 10 kilometres to the west occurs in quartz veins found along a contact between ultramafic rock and Cache Creek Group cherts. It is possible that a similar contact may exist on the MB claims; placer deposits near the headwaters of Wright Creeks could be produced from such a source.

EXPLORATION PROGRAM - 1984

MBW Surveys Ltd. undertook a program of grid construction (Figure 2), soil sampling, VLF-EM geophysical surveys and geological mapping from September 20, 1984 to September 25, 1984. A grid was established over a mountain peak in the MBI3 claim with starting point BL0+00S by L0+00W located 600 metres due east of the legal corner post for MBI2 and MBI3. The base line trending due west was flagged for 400 metres and five lines spaced 100 metres apart were run for one kilometre to the south. Intervals of 25 metres were marked using red flagging tape.

SOIL GEOCHEMICAL SURVEY

108 soil samples were taken at intervals of 50 metres from the B soil horizon using sample mattocks. The soil was placed in 3½" x 7" Kraft sample bags labelled with grid co-ordinates. Samples were analysed for Cu, Pb, Zn, Ag, As, Au and Hg by Acme Analytical Laboratories Ltd. of 852 East Hastings Street, Vancouver, B.C. For Cu, Pb,
Zn, Ag and As, a .500 gram sample is digested with 3 ml 3-1-3 HCl-HN03-H20 at 95°C Celsius for one hour and diluted to 10 ml with water for ICP analyses. Gold analysis was by fire assay/atomic absorption from a 10 gram sample, and Hg by flameless atomic absorption.

Soil survey results are illustrated in Figure 3 (As, Au, Hg) and Figure 4 (Cu, Pb, Zn, Ag). Assay reports are in the Appendix.

Results of the geochemical survey are discussed in the conclusion to this report.

VLF-EM GEOPHYSICAL SURVEY

The electromagnetic geophysical survey was conducted by the writer, using a Ronka EM 16 machine. Readings were recorded on the grid at 25 metre stations on lines 100 metres apart. Signals emanating from Seattle, Washington and Cutler, Maine were received with the response from each being recorded.

Figure 5 depicts the results of the VLF-EM survey on the Seattle channel, and Figure 6 depicts the results obtained from the Maine channel.

Results of the VLF-EM survey are discussed in the conclusion to this report.

CONCLUSIONS

The geochemical and geophysical surveys conducted in 1984 outlined two strong northwesterly-trending geophysical anomalies with moderately coincident geochemical response. The northern conductor has several high gold and zinc values and one spot Hg value along its trend. The southern conductor is less responsive, with some anomalous Cu values and one spot gold value.

The strongest geophysical crossover occurs on Line 2+00W at 7+50S; a slightly anomalous Au value of 15 ppb and Cu value of 100 ppm is found at this location. Strong conductors appear on both the Maine and Seattle frequencies. The highest value of Cu
(186 ppm) lies along the conductor to the northwest on Line 4+00W.

The more northern conductor shows strong response over the grid and features gold values of 26 ppb at L 1+00W, 4+50S and of 25 ppb at L 2+00W, 3+50S. To the northwest along the conductor a spot high in Hg of 70 ppb occurs at L 3+00W, 2+50S. Also, anomalous Zn values coincide with this crossover. Geophysical response is strongest on the Maine frequency.

The two geophysical anomalies should be examined during future exploration programs on this property. The grid can be extended to the east and west to fully outline the anomalies and mini-grids should be established over the strongest geophysical and geochemical responses.

Respectfully submitted:

Glen Macdonald, P.Geol.
CERTIFICATE OF QUALIFICATIONS

I, Glen C. Macdonald, with business and residential address in Whitehorse, Yukon, do hereby certify that:

1.- I am a consulting professional geologist.

2.- I am a graduate of the University of British Columbia (B.Sc. Geology, 1973 and B.A. Economics 1971).

3.- I am registered as a Professional Geologist by the Association of Professional Engineers, Geologists and Geophysicists of Alberta (No. 36214).

4.- I am registered as a Professional Geologist by the Association of Professional Engineers, Geologists and Geophysicists of the Northwest Territories (No. L-166).

5.- I am a member in good standing of the Canadian Institute of Mining and Metallurgy.

DATED at Whitehorse, Yukon this 6th day of May 1985

Glen C. Macdonald, P. Geol
OCT 7, 1984

FRANK ANDERSON
2000-609 GRANVILLE ST
BOX 10336 STOCK EXCHANGE TOWER
VANCOUVER, B.C.

ATTN: FRANK ANDERSON
RE: ATTEIN CLAIM GROUP M.B. 12/73

6 km of grid lines soil samples and YLF EM 16 @ $650.00, $3200.00
(includes transportation and accommodation)
GEOLOGIST REPORT AND PLANS $2800.00
TOTAL EXPENDITURE $6400.00

THANK YOU

MORLEY BARKER
APPENDIX

GEOCHEMICAL RESULTS
GEOCHEMICAL ICP ANALYSIS

.500 gram sample is digested with 3M 3-1-3 HCl-HNO3-H2O at 95 deg. C for one hour and is diluted to 10 ml with water.

This leach is partial for Mn, Fe, Ca, P, Cr, Mg, Ba, Ti, B, Al, Na, K, W, Si, Zr, Ce, Sn, Y, Nb and Ta. Au detection limit by ICP is 3 ppm.

Sample Type: Soils Au** analysis by FA+AA from 10 gram sample. Hg analysis by Flameless AA.

ASSAYER: FORK KNOX MINERALS FILE # 84-2873

<table>
<thead>
<tr>
<th>SAMPLE#</th>
<th>CU</th>
<th>PB</th>
<th>ZN</th>
<th>AG</th>
<th>AS</th>
<th>Au**</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
</tr>
<tr>
<td>4W 0+50S</td>
<td>64</td>
<td>11</td>
<td>87</td>
<td>.1</td>
<td>11</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4W 1+00S</td>
<td>38</td>
<td>8</td>
<td>91</td>
<td>.2</td>
<td>10</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>4W 1+50S</td>
<td>60</td>
<td>7</td>
<td>102</td>
<td>.1</td>
<td>10</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>4W 2+00S</td>
<td>67</td>
<td>8</td>
<td>92</td>
<td>.1</td>
<td>12</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4W 2+50S</td>
<td>72</td>
<td>9</td>
<td>93</td>
<td>.2</td>
<td>12</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>4W 3+00S</td>
<td>71</td>
<td>7</td>
<td>92</td>
<td>.1</td>
<td>11</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4W 3+50S</td>
<td>60</td>
<td>8</td>
<td>84</td>
<td>.1</td>
<td>15</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>4W 4+00S</td>
<td>83</td>
<td>9</td>
<td>113</td>
<td>.1</td>
<td></td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>4W 4+50S</td>
<td>81</td>
<td>6</td>
<td>84</td>
<td>.3</td>
<td>12</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>4W 5+00S</td>
<td>67</td>
<td>7</td>
<td>86</td>
<td>.1</td>
<td>11</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>4W 5+50S</td>
<td>89</td>
<td>7</td>
<td>85</td>
<td>.1</td>
<td>8</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>4W 6+00S</td>
<td>79</td>
<td>8</td>
<td>71</td>
<td>.1</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4W 6+50S</td>
<td>67</td>
<td>9</td>
<td>61</td>
<td>.1</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4W 7+00S</td>
<td>186</td>
<td>11</td>
<td>67</td>
<td>.1</td>
<td>8</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>4W 7+50S</td>
<td>115</td>
<td>9</td>
<td>64</td>
<td>.1</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4W 8+00S</td>
<td>76</td>
<td>7</td>
<td>49</td>
<td>.1</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4W 8+50S</td>
<td>59</td>
<td>7</td>
<td>52</td>
<td>.2</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4W 9+00S</td>
<td>82</td>
<td>7</td>
<td>58</td>
<td>.1</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4W 9+50S</td>
<td>64</td>
<td>5</td>
<td>51</td>
<td>.1</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4W 10+00S</td>
<td>72</td>
<td>7</td>
<td>56</td>
<td>.1</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3W 0+50S</td>
<td>72</td>
<td>10</td>
<td>87</td>
<td>.1</td>
<td>8</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>3W 1+00S</td>
<td>121</td>
<td>12</td>
<td>96</td>
<td>.2</td>
<td>20</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>3W 1+50S</td>
<td>93</td>
<td>11</td>
<td>106</td>
<td>.2</td>
<td>11</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>3W 2+00S</td>
<td>88</td>
<td>11</td>
<td>104</td>
<td>.3</td>
<td>10</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>3W 2+50S</td>
<td>45</td>
<td>7</td>
<td>78</td>
<td>.2</td>
<td>9</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>3W 3+00S</td>
<td>42</td>
<td>6</td>
<td>83</td>
<td>.2</td>
<td>6</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>3W 3+50S</td>
<td>69</td>
<td>9</td>
<td>112</td>
<td>.3</td>
<td>18</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>3W 4+00S</td>
<td>62</td>
<td>10</td>
<td>86</td>
<td>.2</td>
<td>8</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>3W 4+50S</td>
<td>85</td>
<td>8</td>
<td>65</td>
<td>.1</td>
<td>5</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>3W 5+00S</td>
<td>58</td>
<td>8</td>
<td>67</td>
<td>.2</td>
<td>9</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>3W 5+50S</td>
<td>38</td>
<td>9</td>
<td>65</td>
<td>.2</td>
<td>9</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>3W 6+00S</td>
<td>98</td>
<td>8</td>
<td>99</td>
<td>.1</td>
<td>3</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>3W 6+50S</td>
<td>91</td>
<td>7</td>
<td>71</td>
<td>.1</td>
<td>4</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3W 7+00S</td>
<td>95</td>
<td>8</td>
<td>78</td>
<td>.2</td>
<td>8</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>3W 7+50S</td>
<td>88</td>
<td>11</td>
<td>65</td>
<td>.1</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3W 8+00S</td>
<td>94</td>
<td>6</td>
<td>61</td>
<td>.2</td>
<td>4</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3W 8+50S</td>
<td>82</td>
<td>8</td>
<td>58</td>
<td>.1</td>
<td>8</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>STD C/FA-AU</td>
<td>60</td>
<td>38</td>
<td>120</td>
<td>6.4</td>
<td>40</td>
<td>54</td>
<td>1400</td>
</tr>
<tr>
<td>SAMPLE#</td>
<td>CU PPM</td>
<td>PB PPM</td>
<td>ZN PPM</td>
<td>AG PPM</td>
<td>AS PPM</td>
<td>AU** PPM</td>
<td>HG PPM</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>3W 9+00S</td>
<td>70</td>
<td>6</td>
<td>60</td>
<td>.1</td>
<td>7</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3W 9+05S</td>
<td>68</td>
<td>8</td>
<td>51</td>
<td>.1</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3W 10+00S</td>
<td>122</td>
<td>10</td>
<td>76</td>
<td>.1</td>
<td>3</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2W 1+00S</td>
<td>85</td>
<td>8</td>
<td>89</td>
<td>.1</td>
<td>13</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>2W 1+05S</td>
<td>60</td>
<td>7</td>
<td>78</td>
<td>.2</td>
<td>7</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>2W 2+00S</td>
<td>54</td>
<td>7</td>
<td>98</td>
<td>.2</td>
<td>9</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>2W 2+05S</td>
<td>69</td>
<td>8</td>
<td>99</td>
<td>.2</td>
<td>14</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>2W 3+00S</td>
<td>71</td>
<td>9</td>
<td>95</td>
<td>.2</td>
<td>13</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>2W 3+05S</td>
<td>68</td>
<td>10</td>
<td>88</td>
<td>.1</td>
<td>13</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>2W 4+00S</td>
<td>73</td>
<td>7</td>
<td>84</td>
<td>.1</td>
<td>20</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>2W 4+05S</td>
<td>46</td>
<td>7</td>
<td>85</td>
<td>.1</td>
<td>8</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>2W 5+00S</td>
<td>54</td>
<td>9</td>
<td>73</td>
<td>.2</td>
<td>7</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>2W 5+05S</td>
<td>41</td>
<td>7</td>
<td>63</td>
<td>.1</td>
<td>5</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2W 6+00S</td>
<td>28</td>
<td>8</td>
<td>55</td>
<td>.1</td>
<td>2</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2W 6+05S</td>
<td>48</td>
<td>8</td>
<td>87</td>
<td>.1</td>
<td>7</td>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td>2W 7+00S</td>
<td>59</td>
<td>7</td>
<td>51</td>
<td>.1</td>
<td>7</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2W 7+05S</td>
<td>100</td>
<td>8</td>
<td>68</td>
<td>.1</td>
<td>5</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>2W 8+00S</td>
<td>79</td>
<td>7</td>
<td>53</td>
<td>.1</td>
<td>5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>2W 8+05S</td>
<td>87</td>
<td>6</td>
<td>60</td>
<td>.1</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2W 9+00S</td>
<td>109</td>
<td>7</td>
<td>65</td>
<td>.1</td>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2W 9+05S</td>
<td>97</td>
<td>5</td>
<td>62</td>
<td>.1</td>
<td>6</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>2W 10+00S</td>
<td>78</td>
<td>9</td>
<td>62</td>
<td>.1</td>
<td>5</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>1W 1+00S</td>
<td>61</td>
<td>9</td>
<td>82</td>
<td>.2</td>
<td>7</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>1W 1+05S</td>
<td>52</td>
<td>6</td>
<td>75</td>
<td>.2</td>
<td>8</td>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td>1W 1+50S</td>
<td>90</td>
<td>10</td>
<td>93</td>
<td>.2</td>
<td>7</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>1W 2+00S</td>
<td>45</td>
<td>7</td>
<td>111</td>
<td>.1</td>
<td>14</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>1W 2+05S</td>
<td>45</td>
<td>10</td>
<td>81</td>
<td>.2</td>
<td>8</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>1W 3+00S</td>
<td>40</td>
<td>5</td>
<td>87</td>
<td>.1</td>
<td>7</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>1W 3+05S</td>
<td>80</td>
<td>9</td>
<td>101</td>
<td>.2</td>
<td>17</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1W 4+00S</td>
<td>60</td>
<td>10</td>
<td>83</td>
<td>.1</td>
<td>8</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>1W 4+05S</td>
<td>50</td>
<td>12</td>
<td>67</td>
<td>.1</td>
<td>13</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>1W 5+00S</td>
<td>70</td>
<td>7</td>
<td>81</td>
<td>.1</td>
<td>5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>1W 5+05S</td>
<td>65</td>
<td>6</td>
<td>79</td>
<td>.2</td>
<td>8</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>1W 6+00S</td>
<td>36</td>
<td>5</td>
<td>61</td>
<td>.1</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1W 6+05S</td>
<td>25</td>
<td>8</td>
<td>80</td>
<td>.2</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1W 7+00S</td>
<td>46</td>
<td>9</td>
<td>80</td>
<td>.1</td>
<td>5</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>1W 7+05S</td>
<td>72</td>
<td>9</td>
<td>69</td>
<td>.1</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>STD C/FA-AU</td>
<td>58</td>
<td>38</td>
<td>120</td>
<td>6.0</td>
<td>39</td>
<td>52</td>
<td>1600</td>
</tr>
<tr>
<td>SAMPLE#</td>
<td>CU FPM</td>
<td>PB FPM</td>
<td>ZN FPM</td>
<td>AG FPM</td>
<td>AS FPM</td>
<td>AU** FPM</td>
<td>HG</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>1W 8+00S</td>
<td>70</td>
<td>6</td>
<td>57</td>
<td>.2</td>
<td>2</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>1W 8+50S</td>
<td>102</td>
<td>4</td>
<td>68</td>
<td>.1</td>
<td>2</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>1W 9+00S</td>
<td>93</td>
<td>2</td>
<td>64</td>
<td>.1</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>1W 9+50S</td>
<td>66</td>
<td>5</td>
<td>52</td>
<td>.1</td>
<td>2</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>1W 10+00S</td>
<td>101</td>
<td>5</td>
<td>68</td>
<td>.1</td>
<td>2</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>OW 0+50S</td>
<td>34</td>
<td>3</td>
<td>78</td>
<td>.1</td>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>OW 1+00S</td>
<td>64</td>
<td>4</td>
<td>86</td>
<td>.1</td>
<td>5</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>OW 1+50S</td>
<td>62</td>
<td>6</td>
<td>78</td>
<td>.2</td>
<td>7</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>OW 2+00S</td>
<td>59</td>
<td>7</td>
<td>83</td>
<td>.2</td>
<td>3</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>OW 2+50S</td>
<td>101</td>
<td>7</td>
<td>106</td>
<td>.3</td>
<td>5</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>OW 3+00S</td>
<td>43</td>
<td>6</td>
<td>86</td>
<td>.2</td>
<td>4</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>OW 3+50S</td>
<td>47</td>
<td>7</td>
<td>98</td>
<td>.3</td>
<td>5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>OW 4+00S</td>
<td>55</td>
<td>7</td>
<td>81</td>
<td>.3</td>
<td>6</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>OW 4+50S</td>
<td>65</td>
<td>13</td>
<td>104</td>
<td>.1</td>
<td>5</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>OW 5+00S</td>
<td>79</td>
<td>8</td>
<td>99</td>
<td>.3</td>
<td>6</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>OW 5+50S</td>
<td>45</td>
<td>10</td>
<td>69</td>
<td>.1</td>
<td>8</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>OW 6+00S</td>
<td>58</td>
<td>7</td>
<td>78</td>
<td>.1</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>OW 6+50S</td>
<td>60</td>
<td>6</td>
<td>67</td>
<td>.1</td>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>OW 7+00S</td>
<td>40</td>
<td>6</td>
<td>56</td>
<td>.1</td>
<td>5</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>OW 7+50S</td>
<td>77</td>
<td>8</td>
<td>70</td>
<td>.1</td>
<td>4</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>OW 8+00S</td>
<td>60</td>
<td>8</td>
<td>68</td>
<td>.2</td>
<td>4</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>OW 8+50S</td>
<td>88</td>
<td>4</td>
<td>66</td>
<td>.2</td>
<td>6</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>OW 9+00S</td>
<td>80</td>
<td>7</td>
<td>67</td>
<td>.2</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>OW 9+50S</td>
<td>85</td>
<td>8</td>
<td>89</td>
<td>.2</td>
<td>5</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>OW 10+00S</td>
<td>62</td>
<td>6</td>
<td>67</td>
<td>.2</td>
<td>3</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>BL 4+00W</td>
<td>71</td>
<td>8</td>
<td>91</td>
<td>.2</td>
<td>6</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>BL 3+50W</td>
<td>87</td>
<td>12</td>
<td>110</td>
<td>.1</td>
<td>28</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>BL 3+00W</td>
<td>84</td>
<td>9</td>
<td>102</td>
<td>.2</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>BL 2+50W</td>
<td>151</td>
<td>11</td>
<td>128</td>
<td>.4</td>
<td>5</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>BL 2+00W</td>
<td>73</td>
<td>11</td>
<td>95</td>
<td>.4</td>
<td>6</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>BL 1+50W</td>
<td>81</td>
<td>10</td>
<td>103</td>
<td>.2</td>
<td>8</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>BL 1+00W</td>
<td>53</td>
<td>8</td>
<td>101</td>
<td>.4</td>
<td>10</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>BL 0+50W</td>
<td>58</td>
<td>8</td>
<td>98</td>
<td>.2</td>
<td>7</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>BL 0+00W</td>
<td>66</td>
<td>9</td>
<td>87</td>
<td>.2</td>
<td>7</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>STD C/FA-AU</td>
<td>59</td>
<td>39</td>
<td>126</td>
<td>6.5</td>
<td>42</td>
<td>51</td>
<td>1300</td>
</tr>
</tbody>
</table>