GEOPHYSICAL
ASSESSMENT REPORT ON THE
LEO CLAIM GROUP GRAHAM ISLAND,
QUEEN CHARLOTTE ISLANDS,
BRITISH COLUMBIA

Latitude 53° 36' North
Longitude 132° 22' West
NTS 103 F/9W

For

Noramex Minerals Inc.
1201 - 675 W. Hastings St.
Vancouver, British Columbia
V6B 1N2

Prepared by:

Reg Faulkner, B.Sc., M.A.Sc., F.G.A.C.
Fairbank Engineering Ltd.
Vancouver, B.C.
September 21, 1989
(Work Dates: June 29 to July 20, 1989)
TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. LOCATION, ACCESS AND PHYSIOGRAPHY 1
3. CLAIMS AND OWNERSHIP 4
4. PREVIOUS WORK .. 4
5. REGIONAL GEOLOGY 6
 5.1 Lithologic Units 7
 5.2 Regional Structure 10
 5.3 Regional Mineralization 12
6. GEOPHYSICS .. 13
 6.1 Magnetic Survey 13
 6.2 Base Level and Corrections 13
 6.3 Magnetics Interpretation 13
7. CONCLUSIONS AND RECOMMENDATIONS 14
8. REFERENCES ... 15
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. LOCATION, ACCESS AND PHYSIOGRAPHY</td>
<td>1</td>
</tr>
<tr>
<td>3. CLAIMS AND OWNERSHIP</td>
<td>4</td>
</tr>
<tr>
<td>4. PREVIOUS WORK</td>
<td>4</td>
</tr>
<tr>
<td>5. REGIONAL GEOLOGY</td>
<td>6</td>
</tr>
<tr>
<td>5.1 Lithologic Units</td>
<td>7</td>
</tr>
<tr>
<td>5.2 Regional Structure</td>
<td>10</td>
</tr>
<tr>
<td>5.3 Regional Mineralization</td>
<td>12</td>
</tr>
<tr>
<td>6. GEOPHYSICS</td>
<td>13</td>
</tr>
<tr>
<td>6.1 Magnetic Survey</td>
<td>13</td>
</tr>
<tr>
<td>6.2 Base Level and Corrections</td>
<td>13</td>
</tr>
<tr>
<td>6.3 Magnetics Interpretation</td>
<td>13</td>
</tr>
<tr>
<td>7. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>14</td>
</tr>
<tr>
<td>8. REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>General Location Map</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Claim Map</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Composite Stratigraphy</td>
<td>8</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Regional Geology Map</td>
<td>11</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Magnetometer Survey</td>
<td>in pocket</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1:</td>
<td>Claim Summary</td>
<td>4</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Geophysical Equipment</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Statements of Qualifications</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Itemized Cost Statement</td>
</tr>
</tbody>
</table>
1. **INTRODUCTION**

The Leo Group, totalling 99 units, was staked in the Juskatla Lowlands of Graham Island of northwestern British Columbia (Figure 1) to cover the projected northwestern extension of the Sandspit Fault splay which controls the mineralization of the Cinola gold deposit. The Cinola deposit of City Resources (Canada) Limited, which contains mineable ore reserves of 24.8 million tonnes grading 2.2 grams gold per tonne, is located twelve kilometers southeast of the claim block.

This report summarizes results obtained from work performed during the period June 29 to July 20, 1989. The work was conducted by a two man crew at a total cost of $4387.00. The largest portion of the work consisted of line cutting and a magnetic survey.

Field work on the Leo claim group implemented by Fairbank Engineering Ltd. included the following:

1) Line cutting: 4.0 line kilometres and
2) Magnetometer Survey: 4.0 line kilometres

2. **LOCATION, ACCESS AND PHYSIOGRAPHY**

The Leo property is located fifteen kilometers southwest of Port Clements on central Graham Island in the Queen Charlotte archipelago (Figure 1). It lies within the Skeena Mining Division at 53° 36' North latitude and 132° 22' West longitude.

The claim area is well served by MacMillan Bloedel's Datlamen and Rennie Main logging roads from Port Clements. Limited supplies and accommodations are available in Port Clements with most supplies necessary for an exploration.
program available in Queen Charlotte City or Masset approximately one hour drive via public highway from Port Clements.

Additional supplies and accommodations plus daily jet service to Vancouver is available in Sandspit on Moresby Island, one hour drive and ferry ride from Queen Charlotte City. Water is available on site, but electricity will require diesel generation on site.

Branch roads provide good access to large portions of the claim block. These roads are generally in very good condition with closures only on older portions. MacMillan Bloedel should be contacted in Juskatla or Queen Charlotte City for permission to use the active haul roads and for information on local traffic conditions.

The local climate is often rainy with 124 cm of total precipitation per year with about 40 cm of snow in the winter. Rainfall is highest in November, but measurable precipitation occurs on one-third of the days in the drier months of July and August. Average temperatures are rarely below freezing. High temperatures above 20° C are uncommon.

The area comprising the claim group is of generally low to moderate topographic relief with elevations ranging from 0 - 460 meters ASL (0 to 1500 feet). The northeastern portion of Juskatla Mountain covers most of the Leo claim and abuts the southern portion of the Lynx claim. The remaining portion of the claim block is located in low rolling hills with local swampy area. The area is part of the coastal western hemlock bio-geoclimatic zone. Tree cover ranges from recent slash to virgin timber, with the majority of the ground covered by dense 15-20 year old
second growth of alder, cedar, hemlock and spruce. Outcrops are sparse and limited to local cliffs, roadcuts and borrow pits.

3. **CLAIMS AND OWNERSHIP**

Records of the British Columbia Ministry of Energy, Mines and Petroleum indicate that the following claims (Figure 2) are registered to B.D. Fairbank for the benefit of Noramex Minerals Inc..

<table>
<thead>
<tr>
<th>Claim</th>
<th>Record No.</th>
<th>No. of Units</th>
<th>Record Date</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyra</td>
<td>6566</td>
<td>20</td>
<td>Dec 18/87</td>
<td>Dec 18/90</td>
</tr>
<tr>
<td>Leo</td>
<td>6567</td>
<td>20</td>
<td>Dec 18/87</td>
<td>Dec 18/90</td>
</tr>
<tr>
<td>Lynx</td>
<td>6568</td>
<td>20</td>
<td>Dec 18/87</td>
<td>Dec 18/90</td>
</tr>
<tr>
<td>Volvo 1</td>
<td>6762</td>
<td>6</td>
<td>Jul 20/88</td>
<td>Jul 20/89</td>
</tr>
<tr>
<td>Volvo 2</td>
<td>6763</td>
<td>3</td>
<td>Jul 20/88</td>
<td>Jul 20/89</td>
</tr>
<tr>
<td>Volvo 3</td>
<td>6764</td>
<td>18</td>
<td>Jul 20/88</td>
<td>Jul 20/89</td>
</tr>
<tr>
<td>Aquila</td>
<td>6921</td>
<td>12</td>
<td>Oct 6/88</td>
<td>Oct 6/89</td>
</tr>
</tbody>
</table>

The Leo claim partially overlaps prior claims on its boundaries resulting in loss of approximately eight units.

4. **PREVIOUS WORK**

The Cinola gold deposit of City Resources (Canada) Limited, situated twelve kilometers southeast of the Leo property, has been explored intensively by several companies since the early 1970's, leading to a favorable feasibility study in December 1987. This study recommends construction
of a 6,600 tpd mine and mill capable of producing an average of 126,000 ounces of gold annually over a 12-year mine life (City Resources, 1987).

The Leo property has been staked repeatedly due to its proximity to the Cinola gold deposit, but only limited assessment work has been filed for the ground currently covered by the claims. Tully (1981, a and b) conducted a large grid soil geochemical (Au, Ag, As, Sb & Hg) survey by Odessa Explorations Inc. and Graham Investments Ltd.'s on the Bird 3, Spec, View and Shore Claims which covered the present Leo claim and an area between the Lynx and Lyra claims. A large mercury anomaly (>0.6 ppm) was found coincident with rhyolitic rocks in the area between the Lynx and Lyra claims and open on to the Lynx Claim. A follow-up magnetometer survey on the Bird 3 and Spec claims (Taylor, 1984) showed a magnetic low trending to the northwest across the northern portion of the Leo claim. Hepp (1988) did a regional magnetic survey along the roads within the Leo Claim Group, local rock and heavy mineral geochemistry and orientation soil sampling. He confirmed the magnetic low just east of Bird Lake as defined by the G.S.C. airborne magnetic survey and his geochemical sampling indicated local mercury, arsenic and gold anomalies in the same area. Grid controlled soil geochemistry (Au, Ag, Hg), magnetic and VLF-EM surveys were recommended.

5. **REGIONAL GEOLOGY**

The geology of the Queen Charlotte Islands is described in British Columbia Department of Mines and Petroleum Resources Bulletin No. 54, Geology of the Queen Charlotte Islands, British Columbia by A. Sutherland Brown (1968). More detailed work is included in Cameron and Tipper (1985) and Haggart (1986) with an update of current work by the
Geological Survey of Canada found in Frontier Geoscience Program, Queen Charlotte Islands, British Columbia in GSC paper 88-1E.

The Queen Charlotte Islands occur on the western edge of the allochthonous Wrangellia terrane. Lithologic units present can be correlated to others within Wrangellia terrane on Vancouver Island and the lower mainland of British Columbia.

5.1 Lithologic Units

The following section summarizes the lithologic units (Figure 3) found in the Queen Charlotte Islands from Sutherland Brown (1968) and the more recent works.

Oceanic derived basaltic rocks from the Upper Triassic Karmutsen Formation are the oldest units that have been found on the Queen Charlotte Islands. Locally petroliferous, Upper Triassic through early Jurassic carbonate, sandstone and shale from the Kunga and Maude Groups were deposited on a broad shelf underlain by the Karmutsen volcanics.

Calc-alkalic volcanics and volcanoclastics of Middle Jurassic age Yakoun Group represent the next major volcanic event. Syntectic quartz dioritic plutons occur as plutonic equivalents and successors to the Yakoun volcanics.

Clastic sediment sequences are dominant from mid-Jurassic on. The Moresby Group of middle Jurassic age occurs as a transgressive conglomerate, sandstone and shale sequence above the Yakoun Group. An unnamed clastic sediment unit of upper Jurassic age is also found locally. Distribution of both of the units is limited as a result of erosion and uplift of the syntectonic plutons.
Composite Triassic and Jurassic stratigraphy of the Queen Charlotte Islands (modified after Cameron and Tipper, 1985).

Composite Cretaceous stratigraphy of the Queen Charlotte Islands.

LEGEND

- **Conglomerate**
- **Basalts & undifferentiated volcanics**
- **Sandstone, pebbly**
- **Limestone lenticular massive**
- **Sandstone calcareous**
- **Shale, mudstone calcareous**
- **Siltstone**
- **not to scale**
- **Por. observed porosity**
- **Bt. observed bitumen**
- **Rhyolites (Tertiary only)**

From Cameron & Hamilton, 1988

NORAMEX MINERALS INC.

LEO CLAIM GROUP
SKEENA M.D., B.C.

COMPOSITE STRATIGRAPHY

NTS 103 F/9

Scale: N/A
Date: AUG/89

FAIRBANK ENGINEERING LTD

Proj. No. 183 Fig. No. 3
The Lower Cretaceous Longarm Formation was formed as widespread (now less common) shallow water sandstone and conglomerate to deeper water shales. A mid-Cretaceous block faulting tectonic event allowed for erosion down as far as the Karmutsen prior to deposition of clastic sediments of the overlying Queen Charlotte Group. Erosion of Yakoun volcanics and sediments formed from Yakoun volcanics was the primary source of the later clastic sediments.

The mid- to Upper Cretaceous Queen Charlotte Group is composed of Haida Formation basal sandstone and shale which give way upward to deeper water Skidegate Formation shale and fine grained sandstone and, in turn overlain by shallow water (?) Honna Formation sandstone and conglomerate. Deposition of the Honna Formation was followed by a late Cretaceous to early Tertiary compressive tectonic episode. Basaltic rocks of both pre-and post Queen Charlotte Group age have been encountered in deep oil wells. Poorly recognized volcanic events of both late Cretaceous and early Tertiary age occur also.

The mid-Tertiary Masset Formation is composed of generally mafic flows with local felsic pyroclastics and volcanoclastic sediments. Post-tectonic plutons of dioritic to quartz monzonitic composition are intrusive into rocks as young as the Masset Formation. Its possible, however, that some of the post-tectonic plutons are as old as late Cretaceous age.

The Miocene and Pliocene age Skonun Formation occurs as a poorly lithified locally carbonaceous sandstone and is time equivalent in part to the Masset Formation. Unconsolidated Quarternary glacial, interglacial and post glacial sediments complete the lithologic units found in the Queen Charlotte Islands.
5.2 **Regional Structure**

Tectonic events in the Queen Charlotte Islands occurred as dextral drag and rebound in response to interaction of the northward moving Wrangellia terrane with other terrains and the main North American Plate. Structural episodes recognized include mid-Jurassic, (post-Maude), early Tertiary (post-Honna) and late-Tertiary (Skonun) folding and mid-Cretaceous (pre-Haida) faulting.

The oldest structural trend is northeast-southwest and can be seen in the trend of Juskatla Inlet. Major present day structure is dominated by the northwest-southeast trending Queen Charlotte and Sandspit Faults and the Rennell Sound "fold belt" (Figure 4). The Sandspit Fault trace trends 145° southeast of Sandspit across the center of Graham Island, and dips steeply northeast. It separates hills and mountains of the Skidegate Plateau on the southwest from the swampy Queen Charlotte Lowlands on the northeast. Poorly consolidated Skonun sediments underlie much of the lowlands while Masset Formation volcanics and older units occur in the highlands. Most recent movement on the Sandspit fault has down to northeast although some dextral strike slip movement has also occurred.

The Rennell Sound "fold belt" consists of a series of chevron folds and crushed zones in Kunga and Maude strata trending 120° through Skidegate Narrows between Graham and Moresby Islands. This fold belt is likely the result of early dextral movement on structure parallel to the present Sandspit and Queen Charlotte Faults. Younger faults and lineaments trending 000° to 030° are common as normal faults with east side down movement (Hickson, pers. comm.).
LEGEND

QUATERNARY
QS Quaternary overlying Skonun Fm

TERTIARY
PALEOCENE-EOCENE
TM MASSET FORMATION: subaerial basalt flows and breccias, rhyolite ash flows, lesser dacite
TMc Undivided Masset Formation
Divided Turtu Facies
TMc Basalt Member
TMb Rhyolite member
TMA Mixed member

CRETACEOUS
QUEEN CHARLOTTE GROUP
KHo HONNA FORMATION: conglomerate with granitic cobbles, arkosis grits, minor shale

KHA HAIDA FORMATION: green glauconite and grey sandstone, grey silty shale and siltstone, buff calcareous siltstone

VANCOUVER GROUP
JURASSIC
JY YAKOUN FORMATION: porphyritic andesite agglomerate and flows, calcareous scoraceous lapilli tuff, volcanic sandstone and conglomerate, minor tuffaceous shale, coal

From A. Sutherland Brown, 1958-63

NORAMEX MINERALS INC.
LEO CLAIM GROUP
REGIONAL GEOLOGY
SKEENA M.D., B.C.
Scale: 1:125,000 Date: AUG/89
5.3 **Regional Mineralization**

The largest gold deposit in the region is the Cinola Deposit of City Resources located 16 km south-southeast of Port Clements. Announced open pit ore reserves are 27.3 million tons of 0.062 ounces per ton gold, using a 0.032 cutoff (City Resources, News Release, December 4, 1987). Structure and lithology are important ore controls. The Sandspit Fault is adjacent to the deposit on the east side. A secondary splay structure known as the Specogna Faults was a major control or channel for the movement of mineralizing fluids. The Specogna Fault runs immediately west of the deposit dipping 45-50° E.

Mineralization occurs in quartz veins, siliceous breccia and replacement zones within silicified conglomerate of the Skonun Formation. Haida Formations shales form the footwall of the Specogna Fault and may have been a secondary control on the localization of mineralization by creating an impermeable boundary on the west side of the deposit. The gold is very fine grained and occurs in association with widespread disseminated sulphides. Champigny and Sinclair (1980) report a 14 Ma age for the Cinola mineralization.

Other gold showings in similar structural environments include the Miller creek property north of Skidegate, the Snow prospect south of Sandspit and possibly the Southeaster Deposit also north of Skidegate.
6. **GEOPHYSICS**

6.1 **Magnetic Survey**

A magnetic survey using a Geometric Model G-816 proton magnetometer was performed on 4.0 line kilometres of cut grid on the Lynx claim between June 29 and July 20, 1988. The survey was designed to test the regional magnetic low to determine whether detailed grid surveys were an appropriate methodology. The grid consisted of 5 lines spaced 100 metres apart and 800 metres long with 25 metre stations (Figure 5).

6.2 **Base Level and Corrections**

The magnetic values obtained during the survey vary from 53,511 to 57,725 gammas. A base level of 50,000 gammas was chosen to give four digit positive values for presentation. The standard looping method was used to correct for diurnal variations. Diurnal variations were linearly correct to local base reading taken a few hours previously.

6.3 **Magnetics Interpretation**

The ground survey reported here shows a large variation (4,214 gammas) in magnetic values related to both local and regional features. Higher values can be interpreted as being related to mafic units or thinner bedrock cover with lower values related to hydrothermal alteration. A significant magnetic low is located on line 11+00 E between stations 5+75 N and 8+25 N. This low may be interpreted as a possible zone of hydrothermal alteration and in conjunction with other contiguous zones of high and low values may indicate a North Northwest - South Southeast trending fault.
7. **CONCLUSIONS AND RECOMMENDATIONS**

Silicified and argillic altered felsic volcanic rocks with associated pyrite mineralization containing anomalous mercury and arsenic have been found on the Leo claim group. A large magnetic low coincident with disseminated pyrite mineralization and anomalous mercury and arsenic geochemistry located east of Bird Lake is an excellent target for epithermal gold mineralization.

This magnetic grid survey has shown that detailed grid surveys are an appropriate exploration method. Therefore, it is recommended that the southern half of the Lynx claim be explored using grid controlled soil geochemistry (Au, Ag, Hg), magnetic and VLF-EM surveys. Anomalous areas located in these surveys would be evaluated with I.P. and resistivity surveys and drilling.
8. REFERENCES

Champigny, N. and Sinclair, A.J., 1982: Cinola Gold Deposit, Queen Charlotte Islands, British Columbia: A Canadian Carlin-Type Deposit; Geology of Canadian Gold Deposits; CIM Special Volume 24.

Hepp, M.A., 1988 Geology, Geochemical and Geophysical Assessment Report on the Leo Claim Group Graham Island, Queen Charlotte Islands, British Columbia, BCDMPR AR 18,143

REFERENCES cont'd

APPENDIX A

GEOPHYSICAL EQUIPMENT
The Model G-816 is a complete portable magnetometer for all man-carry field applications. As an accurate yet simple to operate instrument, it features an outstanding combination of one gamma sensitivity and repeatability, compact size and weight, operation on standard universally available flashlight batteries, ruggedized packaging and very low price.

The G-816 magnetometer allows precise mapping of very small or large amplitude anomalies for ground geophysical surveys, or for detail follow-up to aeromagnetic reconnaissance surveys. It is a rugged, lightweight, and versatile instrument, equally well suited for field studies in geophysics, research programs or other magnetic mapping application where low cost, dependable operation and accurate measurements are required.

For marine, airborne or ground recording systems consider GeoMetrics Models G-801, G-803, and G-826.
Based upon the principle of nuclear precession (proton) the G-816 offers absolute drift-free measurements of the total field directly in gammas. (The proton precession method is the officially recognized standard for measurement of the earth's magnetic field.) Operation is worldwide with one gamma sensitivity and repeatability maintained throughout the range. There is no temperature drift, no set-up or leveling required, and no adjustment for orientation, field polarity, or arbitrary reference levels. Operation is very simple with no prior training required. Only 6 seconds are required to obtain a measurement which is always correct to one gamma, regardless of operator experience. Only the Proton Magnetometer offers such repeatability—an important consideration even for 10 gamma survey resolution.

Complete Field Portable System

Axtel G-816 comes complete, ready for portable field operations and consists of:

1. Electronics console with internally mounted and easily replaced "D" cell battery pack.
2. Proton sensor and signal cable for attachment to carrying harness or staff.
3. Adjustable carrying harness.
4. 8 foot collapsible aluminum staff.
5. Instruction manual, complete set of spare batteries, applications manual, and rugged field suitcase.

Price and lease rates on the G-816 magnetometer are available upon request.

SPECIFICATIONS

Sensitivity: ±1 gamma throughout range
Range: 20,000 to 90,000 gammas (worldwide)
Tuning: Multi-position switch with signal amplitude indicator light on display
Gradient Tolerance: Exceeds 300 gammas/inch (increased gradient tolerance to 800 gammas/inch upon request)
Sampling Rate: Manual push-button, one reading each 6 seconds
Output: 5 digit numeric display with readout directly in gammas
Power Requirements: Twelve self-contained 1.5 volt "D" cell, universally available flashlight-type batteries. Charge state or replacement signified by flashing indicator light on display.

Battery Type: Number of Readings
Alkaline: over 10,000
Premium Carbon Zinc: over 4,000
Standard Flashlight: over 1,500

NOTE: Battery life decreases with low temperature operation.

Temperature Range:

Console and sensor: -40° to +85°C
Battery Pack: 0° to +50°C (limited use to -15°C; lower temperature battery belt operation—optional)

Accuracy (Total Field): ±1 gamma through 0° to +10° temperature range

Sensor: High signal, noise cancelling, interchangesably mounted on separate staff or attached to carrying harness.

Size:

Console: 3.5 x 7 x 10.5 inches (9 x 18 x 27 cm)
Sensor: 4.5 x 6 inches (11 x 15 cm)
Staff: 1 inch diameter x 8 ft length (3 cm x 2.44 m)

Weight:

Lbs. Kgs.
Console (w/batteries): 5.5 2.4
Sensor & signal cable: 4 1.8
Aluminum staff: 2 0.9
Total: 11.5 5.1

All magnetometers and parts are covered by a one year warranty beginning with the date of receipt but not to exceed fifteen months from the shipping date.
APPENDIX B

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Reginald L. Faulkner of #102 - 1255 West 12th Avenue, Vancouver, British Columbia hereby certify that:

1. I am an exploration geologist and a graduate of the University of British Columbia, with a B.Sc. in Physical Geography/Geology in 1974 with additional course work in Geology in 1977-79 and 1982-83.

2. I obtained a M.A.Sc. from the University of British Columbia in Mining and Mineral Process Engineering in 1988, emphasizing mineral economics.

3. I am a Fellow of the Geological Association of Canada.

5. The details of this report are based on work done by Fairbank Engineering from June 29 to July 20, 1989.

Reginald L. Faulkner, B.Sc. M.A.Sc.

September 1989
APPENDIX C

ITEMIZED COST STATEMENT
ITEMIZED COST STATEMENT

Labour

<table>
<thead>
<tr>
<th>Name</th>
<th>Days</th>
<th>Rate/day</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Pratt</td>
<td>4.5</td>
<td>240.00</td>
<td>1080</td>
</tr>
<tr>
<td>J. Perry</td>
<td>4.5</td>
<td>200.00</td>
<td>900</td>
</tr>
</tbody>
</table>

Disbursements

<table>
<thead>
<tr>
<th>Description</th>
<th>Days</th>
<th>Rate/day</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room</td>
<td>9</td>
<td>18.00</td>
<td>162</td>
</tr>
<tr>
<td>Board</td>
<td>9</td>
<td>25.00</td>
<td>225</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Truck</td>
<td>4.5</td>
<td>70.00</td>
<td>310</td>
</tr>
<tr>
<td>- Air fares</td>
<td></td>
<td></td>
<td>290</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>4.5</td>
<td>220/wk min.</td>
<td>220</td>
</tr>
<tr>
<td>Chainsaw</td>
<td>4.5</td>
<td>75/wk min.</td>
<td>75</td>
</tr>
<tr>
<td>Consumables</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Freight/Communication</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Engineering, Supervision, Reports</td>
<td></td>
<td></td>
<td>1000</td>
</tr>
</tbody>
</table>

| Total | | | 2407 |

| Total | | | 4387 |