GEOLOGICAL SUMMARY REPORT

VALENTINE PROPERTY

Duncan Lake Area
Slocan Mining Division B.C.

Latitude: 50° 25' Longitude: 117° 57'

E.A. Lawrence, P.Eng.,
Consulting Geologist

S13 C17 RR1
WESTBANK, B.C.,
V0H 2A0

5 April 1959
Table of Contents

- Introduction .. 1
- Summary ... 2
- Property Description 3
- Physiography .. 3
- Regional Geology 4
- Geology of the Valentine Property 4
- Access .. 5
- Previous Work ... 5
- Object of Present Work 5
- Scope of Present Work 7
- Procedures ... 7
- Results .. 9
- Discussion .. 10
- Conclusion .. 11
- Statement of Costs 12
- Statement of Qualifications 13
- References ... 14

Appendices

Analytical Reports
- Whole Rock ICP
- 27 Element ICP
- Au Atomic Adsorption
- Microscopic Work
LIST OF FIGURES

FIGURE

1. LOCATION MAP

2. PROPERTY MAP

3. REGIONAL GEOLOGY

4. PROPERTY GEOLOGY PLAN

5. GEOLOGY SECTION, UPPER AREA, MAIN ZONE.
INTRODUCTION

The following report is based on personal observations made on the Valentine claims located at Duncan Lake B.C. The purpose of this work was to obtain samples of rock to be analyzed for possible contaminants, to obtain fresher samples for evaluation as carving stone, and to sample a highly oxidized zone for possible precious metal content.

To achieve the above it was necessary to drill and blast a small area of the "Bluff" area, Main zone. Samples of drill cuttings and chip samples were then analyzed, using whole rock ICP, 27 element ICP, and polarized light and dispersion staining microscopy to detect asbestos. No harmful contaminants were found. The oxidized sample returned 5ppb of gold.

This work was carried out in the fall of 1989.
LOCATION MAP

SCALE: 1" = 140 MILES APPROX.

100 200 300 MILES
SUMMARY

The Valentine property near Duncan Lake, B.C., in the Slocan Mining Division, consists of one 20-unit mineral claim and one two-post claim. This property has three near vertical talcose zones, one of which—the Main zone—has been traced by surface outcrops along a strike length of 900 meters and a vertical range of 200 meters. The thickness of the zone varies from 15 to 30 meters in this distance.

The mineral of principal interest on this property is talc. Two possible uses exist for this talc. One is industrial talc and the other is carving stone (soapstone). Previous work on the claims was primarily to establish the carvability and extent of the deposit. Work done in 1989 continued evaluation with respect to the carving market, and also initiated work to determine if potential exists for industrial quality talc. As well as visual examination of samples for colour characteristics, grittiness and uniformity; whole rock analyses, 27 element ICP analyses and microscopic analyses were carried out. Results thus far reveal no problem with unwanted elements, or minerals such as asbestos. A program of more detailed surface geology and a preliminary stage of diamond drilling has been proposed to provide a broader data base for evaluation of this deposit.
PROPERTY OWNERSHIP

The property consists of a 20 unit mineral claim, the Valentine, staked by modified grid system, and one claim staked by the two-post system, the TED#1.

Figure 2 shows the location of the claim.

The status of the claims at time of writing is as follows:

<table>
<thead>
<tr>
<th>Claim</th>
<th>Type</th>
<th>Units</th>
<th>Record #</th>
<th>Expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valentine</td>
<td>MGS</td>
<td>20</td>
<td>#5580</td>
<td>7 Dec 90</td>
</tr>
<tr>
<td>TED #1</td>
<td>2-post</td>
<td>1</td>
<td>#5694</td>
<td>19 May 97</td>
</tr>
</tbody>
</table>

PHYSIOGRAPHY

Duncan Lake is located in the north-south trending Purcell trench. The Purcell mountains rise steeply to the east, some peaks reaching elevations of 10,000 feet. The Valentine property is located on the steep slope of the valley, commencing at the shore of Duncan Lake. Approximately 200 meters south of the lake, a bench area of lower slope with some narrow flat sections, extends to about 900 meters from the lake. From this point, the slope steepens somewhat but is still easily traversed on foot.

Vegetation consists mainly of thick young evergreens. Logging has removed most of the mature timber. No creeks flow through the claim area. North Creek is the closest stream, located approximately 5 kilometers to the south-east.
REGIONAL GEOLOGY
The Duncan Lake area contains complexly folded sedimentary and volcanic rocks in a low to medium grade of regional metamorphism. These rocks belong to the Hamill Group, Badshot Formation, and the Lardeau Group. Rare mafic dykes and amphibolitic sills occur in the area. No plutonic rocks are found in the area near the talcose zones.

GEOLOGY OF THE VALENTINE TALC DEPOSIT
The talcose zones of interest occur on the eastern limb of the Howser syncline, within schists of the Lower Index formation. Dips of the schistose rocks vary from vertical to steeply west in the map area. Three talcose zones were observed along the roadcut of the Bluff area. With the data presently available, they all appear nearly parallel to the regional trend, however crosscutting features have been reported. It is possible that these zones are altered mafic sills. Present data is insufficient to clarify this uncertainty.

Referring to Figure 4, showing the topographic features and the geology as available to date, a reasonable degree of continuity exists as far as the mapping was carried out to the south. Sufficient outcrops exist to confirm the general outline of the Main zone.

No petrographic work has been done with a microscope to this time. Examination by hand-lens suggests that talc is the main mineral in the 'talcose' zones, with chlorite as a minor constituent. A nearly solid band of green chlorite with scattered magnetite was observed in one area of the Bluff showing (eastern margin). The low content of aluminum rules out pyrophyllite as the soft mineral in the deposit.
Figure 3
GEOLOGICAL MAP
OF THE
DUNCAN LAKE AREA
Geology by James T. Fyler, 1960-1963

LEGEND

- GEOLOGICAL CONTACT
 - defined, approximately, assumed
 - fault
 - determined, approximately, assumed
- ATTITUDES OF FORMATIONS
 - prominent formation planes undifferentiated
 - attitude of beds
 - attitude of joints
 - attitude of cleavage and schistosity
- PLANE OF FOLIATION
 - plunge of foliations and axes of minor folds

S - Arches
W - Probasin
R - Rock quarry
M - Mine road
T - Trail
B - Building

Legend:

- Areas of little or no outcrop.
- Broadview Formation
 - fine-grained green chlorite schist.
- Trujene, Ajax, and Sharon Creek Formations
 - mixtures of slate, graphite, chlorite schist.
 - fine-grained green chlorite schist.
- Index Formation
 - interlayered fine-grained green and gray schist, minor limestone and quartzite.
- Upper Index: mainly fine-grained green schist.
 - chlorite schist.
 - green mica schist and paralastic mica slates.
- Lower Index: mainly fine-grained gray schist.
 - grey and white limestone, brownish quartzites.
 - minor green and gray schist.
- Badshot and Mohican Formations
 - fine-grained gray mica schist and granitic mica schist.
- Badshot and Mohican Formations
 - gray and white micaeous schist and phyllite.
- Marsh Amiss Formation
 - gray and brown micaeous schist, mica schist and white quartzite.

LOCATION AND ACCESS

The property is accessible by good all weather logging road. This road branches east off Highway 31 immediately south of the Cooper Creek bridge, then carries on along the east shore of Duncan Lake. The property is located near the 35 kilometer post.

PREVIOUS WORK

It is apparent that some geological work has been done on the property in the past. Collars of two near vertical holes (diamond drill holes?) about two inches in diameter, but of unconfirmed depth, were found on the 'Upper' area. According to M. MacLean (Talc and Pyrophyllite in B.C., 1987) a magnetometer survey was carried out on the showings. However, no file could be located on this property during a check with Mineral Resources Division office in Nelson. Personal communication with the late Ted Savage of Nelson indicated that one hole was cored to a depth of 500 feet (152 meters), in talc to that depth. One small pit (approximately 1m by 1m) where carving quality talc had been cut out with a chain saw was found in the 'Upper' area near station X8. In 1983, RPW Holdings, under the direction of Mr. Savage, removed a small tonnage of talc from the 'Bluff' area on the Duncan Lake logging road. Selected samples were sent to soapstone carvers in the Northwest Territories for their evaluation. The dense black variety was well received. Much of the material, however, was weathered and fractured, making it less suitable for carving.
In early 1982, a chain and compass reconnaissance line was run to tie in the showings at the 'Bluff' area with those in the 'Upper' area. Vertical angles were taken in order to determine rough elevation differences. Geologic mapping followed at a scale of 1:1200 in the immediate area of the reconnaissance line. (see Figure 4)

11 short - 0.30 meter- holes were drilled throughout the mapped area to test for hardness beyond surface weathering. With the light gas drill used, it was not possible to penetrate unless the rock had a hardness near that of talc, thereby providing a simple means of differentiating between talc and schist.

Detailed mapping at a scale of 1:120 was done on the Bluff area exposures from station A to station C.

The exposures along the road in the vicinity of stations A and B were cleaned up utilizing a back-hoe/ front-end loader and a dump truck. Two loads were taken to Nelson sorting, cleaning and sampling.

Hand-trenching on the Mainzone at the Bluff area near station B was done to further expose a section of higher grade material. A few hundred pounds were removed for specimens, samples and test-work.

OBJECT OF THE PRESENT WORK

When it was recognized that the deposit had potential for development as an industrial talc producer, it was necessary to determine if contaminants might be a problem. The purpose of the work carried out in the fall of 1989 was:

1) to obtain samples from the Main zone in the 'Bluff' area for analyses for possible impurities that could reduce the potential of the property as an industrial talc producer.
OBJECT OF PRESENT WORK (CONTINUED)

ii) to obtain samples of material from the Bluff area and the Upper area of the Main zone for carving, that were less weathered than previous samples.

iii) to sample a 0.4 meter wide band of highly oxidized sulphide located in the Upper area of the Main zone near station X-10.

SCOPE OF THE PRESENT WORK

Following an examination of the property in mid-1989 in the company of an associate of a consulting firm that has had experience with industrial talc, it was decided to obtain samples to determine if any serious contaminants exist that could cause marketing problems. The Main zone was targeted for this study in that it is better known at this time. Future work will be carried out on the Middle and West zones as more geological data is available on them.

PROCEDURES

To carry out the objectives of the program, it was decided to test sections of the Bluff area and the 'old pit' near station X8 by collecting cuttings from a percussion drill, and while the drill and compressor were on the property, to drill and blast so as to expose fresher material.

The west edge of the Main zone was tested in the Bluff area by drilling holes easterly, across the banding, from the western edge. This resulted in a sample that covered 3 to 4 meters of the west limit of the zone. Cuttings were composited into one sample.

At a point 2.5 meters east of the west edge of the zone, a vertical row of nine 2 meter long holes were drilled at a spacing of 0.3 meters. Cuttings from these holes
were included in the composited sample. The purpose of these holes was to blast and loosen and expose fresher rock, and not shatter it into small fragments. To achieve this end, only four holes were loaded, the remaining holes serving only as guide or pre-shear holes. A total of nine sticks of 5/3" by 24" Xactex, stemmed with paper, and initiated with B-line, were used. The blast resulted in a broken area extending from the west edge to a vertical shear located about 4.5 meters from the west edge. An estimated 30 to 40 tons of material in the 0.3 to 0.6 meter size was broken. The substantial overbreak from this small amount of explosive is attributed to the weathered nature of the outcrop here. A representative muck sample was then taken across the broken rock, as well as specimens of the various types of carving stone. One 15-18 ton load of rock was removed and stored in a site at Meadow Creek for future use. Five hundred pounds of specimens representing most of the varieties of carving stone was taken back to the authors office in Westbank.

Because this work was done in a rock cut along a main logging road, it was necessary to clean out the ditch so that snow removal would not be hindered. This was done with the back-hoe.

Also in the Bluff area, at a point about 10 meters east of the west edge of the Main zone, is an irregular mass of dense green rock (locally referred to as serpentine). Four 2 meter holes were drilled into this, the cuttings were collected and composited into one sample.

The work required to test the Upper area of the Main zone was carried out by drilling and blasting a portion of the old pit near station X8. This work consisted of
five 1.5 to 2.0 meter holes, drilled flat, in a horizontal row about 0.5 meters below the surface of a nearly flat outcrop. One and a half sticks of Xactex were used for this blast. In this case the rock was much more competent than in the Bluff area, and little overbreak occurred. About 500 pounds of broken material resulted. A representative sample was collected, and several hundred pounds of carving stone specimens were gathered.

A very rusty band of sulphide, approximately 0.4 meters wide, striking parallel to the banding, and with a steep dip, was observed along the road near station X10. A chip sample was taken over a 9 meter length of this exposure and subsequently analyzed for gold.

RESULTS
See the appendices for analytical reports.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MgO</th>
<th>CaO</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>P₂O₅</th>
<th>Cl</th>
<th>SO₂</th>
<th>H₂O</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLM 1</td>
<td>Bluff area</td>
<td>Various Talches</td>
<td>37.74</td>
<td>6.76</td>
<td>6.32</td>
<td>32.72</td>
<td>1.99</td>
<td>0.04</td>
<td>0.05</td>
<td>0.07</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>100.15</td>
</tr>
<tr>
<td>DLM 2</td>
<td>Bluff area</td>
<td>"Serpentine"</td>
<td>31.14</td>
<td>8.01</td>
<td>7.03</td>
<td>34.72</td>
<td>1.11</td>
<td>0.03</td>
<td>0.06</td>
<td>0.07</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>100.47</td>
</tr>
</tbody>
</table>

27 ELEMENT ICP

Sample DLM 4 was taken from the rusty band located near station 10, and returned a value of 5 ppb as determined by Atomic Adsorption methods.
DISCUSSION

Referring to the Whole Rock analysis, it is seen that all samples are close in composition, with the 'serpentine', slightly higher in Fe2O3 and MgO.

Low aluminum content confirms that the soft mineral is talc, rather than pyrophyllite.

Comparison of the whole rock analyses with typical talc and chlorite suggests that this material is a mixture of talc and chlorite, with talc as the major constituent. This agrees with visual examination with a hand-lens.

More detailed examination with a microscope would be needed to fully identify mineral constituents and their proportions. The chlorite content is not considered a problem in that the physical characteristics of the rock are not impaired.

Since asbestos could be a possible problem in this type of rock, it was decided to test for its presence. The technique used is a microscopic method utilizing refractive index liquids, polarized light and dispersion staining objectives. In the report it is stated that chrysotile content is less than 1%. On inquiring further, the technician advised that his visual estimate was in the order of 0.01%, but it was their practice to rank everything with less than 1% content as 'less than 1%', rather than reporting more specifically. In this case he advised that it was difficult to find fibres, so it is apparent that asbestos content is not significant. It would be advisable to carry out additional analyses as more samples are gathered from various parts of the deposit.
DISCUSSION (CONTINUED)

One other result of this work was the information obtained on blasting this type of rock. Of particular concern was how much damage would be incurred on the carving stone. While some losses are unavoidable with this method, it was apparent that with careful planning this could be kept to a minimum. Of importance is the spacing and direction of holes, and of course the amount of explosives used. More experimentation would likely improve results. Blasting for carving rock is to be considered primarily as an alternative when other less disruptive techniques aren't available.

CONCLUSIONS

With the data gathered in 1988 and 1989, it is concluded that talcose material suitable for carving and/or industrial talc exists in the Main zone of the Valéentine deposit. The potential tonnage is large, but the percentage that is actually suitable for carving and/or industrial talc cannot be estimated yet. More evaluation is needed before accurate tonnages can be calculated.

The other two zones—the Middle and the West—also have significant potential, and deserve more study.

In summary, there is sufficient potential indicated here to justify further work such as trenching and follow-up diamond drilling, to gather more information on all three zones. The Main zone as first priority at this time, but with concurrent prospecting of the Middle and West zones as other work is in progress.
ITEMIZED COST STATEMENT

SAMPLING OF OUTCROPS (perc. drilling and blasting)

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor rental</td>
<td>$53.00</td>
</tr>
<tr>
<td>Drill rental</td>
<td>35.00</td>
</tr>
<tr>
<td>Fuel, explosives</td>
<td>104.24</td>
</tr>
<tr>
<td>Drilling, blasting labour 18Oct-19Oct/89</td>
<td>250.00</td>
</tr>
<tr>
<td>Sampling, supervision 17Oct-18Oct 3days</td>
<td>750.00</td>
</tr>
<tr>
<td>Loader and truck 13Nov 3 hours</td>
<td>195.00</td>
</tr>
<tr>
<td>Accommodation 17Oct 18Oct 2 men</td>
<td>38.88</td>
</tr>
<tr>
<td>Meals 17Oct-18Oct 5 man-days</td>
<td>80.00</td>
</tr>
<tr>
<td>Transportation 4x4 17Oct 935 miles @0.25</td>
<td>245.25</td>
</tr>
<tr>
<td>23Nov 596 miles @0.25</td>
<td>149.00</td>
</tr>
</tbody>
</table>

ANALYSIS AND EVALUATION

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyses sample prep</td>
<td>$1.50</td>
</tr>
<tr>
<td>ICP 27 element</td>
<td>$21.00</td>
</tr>
<tr>
<td>ICP whole rock</td>
<td>$60.00</td>
</tr>
<tr>
<td>Au geochem</td>
<td>$4.75</td>
</tr>
<tr>
<td>Microscopic</td>
<td>$80.00</td>
</tr>
<tr>
<td>Telephone</td>
<td>$80.76</td>
</tr>
<tr>
<td>Geologist (field and office) 3 @ 250/da</td>
<td>750.00</td>
</tr>
<tr>
<td>Report supplies, copying, postage</td>
<td>13.00</td>
</tr>
<tr>
<td>Report typing</td>
<td>60.00</td>
</tr>
</tbody>
</table>

TOTAL $2958.92
STATEMENT OF QUALIFICATIONS

I, E.A. Lawrence, of RRL S13 C17, WESTBANK, B.C.,

DO HEREBY CERTIFY

1) That I am a graduate of the University of British Columbia with a degree of B.A.Sc. in Geological Engineering (1959)

2) That all the technical work carried out in 1988 and included in this report, was done by me.

3) That I personally supervised all the non-technical work such as test-drilling, rock blasting, backhoe work.

4) That I am a registered Professional Engineer in the Province of British Columbia.

Dated at WESTBANK in the Province of B.C., this 6th day of April 1990.
REFERENCES

FYLES, J.T. (1964) Geology of the Duncan Lake Area, B.C.
Department of Mines, Bulletin # 49

B.C. Mineral Resources Division, open 1988-19

Valentine Property, Duncan Lake, B.C.
| PRE | SAMPLE NAME | NO | CO | PB | ZN | AG | NI | CO | RH | FE | AS | HA | SR | CD | SB | BI | V | CA | P | LA | CR | MG | BA | TI | B | AL | W | BE | Au | AA |
|-----|-------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|----|---|----|----|----|----|----|----|---|----|---|----|----|
| P | DLM 1 | 1 | 16 | 24 | 78 | 0.1| 1066| 66 | 648| 5.40| 140| 36 | 1 | 8 | 2 | 8 | 1.54| 0.01| 1 | 340| 10.34| 12 | 0.01| 5 | 0.14| 4 | 1 |
| P | DLM 2 | 1 | 12 | 14 | 14 | 0.1| 1622| 80 | 716| 4.18| 26 | 16 | 1 | 10 | 2 | 26 | 0.86| 0.01| 1 | 1610| 12.32| 8 | 0.01| 8 | 0.26| 2 | 2 |
| P | DLM 3 | 1 | 10 | 14 | 8 | 0.1| 1200| 55 | 624| 3.04| 14 | 14 | 1 | 4 | 2 | 10 | 0.50| 0.01| 1 | 412 | 8.12 | 6 | 0.01| 5 | 0.16| 1 | 1 |
| A | DLM 4 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

CERTIFIED BY: [Signature]

ROSSBACHER LABORATORY LTD.

2225 S. Spruce Ave., Burnaby,
British Columbia, Can. V5B 3W1
Ph: (604) 299-6910 Fax: 299-6252

CERTIFICATE OF ANALYSIS

TO: MR ED LAWRENCE,
RR 1 S13 C17.
WESTBANK, B.C.

PROJECT: ICP

FILE NAME: VAR90107.EL

CERTIFICATE #: 90107
INVOICE #: 10224
DATE ENTERED: 90-01-18

PAGE #: 1

INVOICE #: 10224

CERTIFICATE #: 90107

FILE NAME: VAR90107.EL
ROSSBAKER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

TO: MR ED LAWRENCE
PR 1 S13 C17
WESTBANK, B.C.

PROJECT: WHOLE ROCK
TYPE OF ANALYSIS: ICP
CERTIFICATE #: 90107
INVOICE #: 10224
DATE ENTERED: 90-01-18
FILE NAME: VAR90107.BEL
PAGE #: 1

<table>
<thead>
<tr>
<th>PR</th>
<th>SAMPLE NAME</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>MgO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>P2O5</th>
<th>TiO2</th>
<th>MnO</th>
<th>FeO</th>
<th>Cr2O3</th>
<th>SrO</th>
<th>LOI</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DLM 1</td>
<td>33.74</td>
<td>0.76</td>
<td>6.52</td>
<td>32.72</td>
<td>1.99</td>
<td>0.04</td>
<td>0.06</td>
<td>0.077</td>
<td>0.024</td>
<td>0.076</td>
<td>0.004</td>
<td>0.272</td>
<td>0.004</td>
<td>24.4</td>
<td>100.18</td>
</tr>
<tr>
<td>A</td>
<td>DLM 2</td>
<td>33.54</td>
<td>0.81</td>
<td>7.82</td>
<td>34.72</td>
<td>1.11</td>
<td>0.03</td>
<td>0.06</td>
<td>0.071</td>
<td>0.033</td>
<td>0.085</td>
<td>0.004</td>
<td>0.324</td>
<td>0.002</td>
<td>21.6</td>
<td>100.20</td>
</tr>
<tr>
<td>A</td>
<td>DLM 3</td>
<td>37.87</td>
<td>1.06</td>
<td>6.43</td>
<td>32.82</td>
<td>0.72</td>
<td>0.03</td>
<td>0.02</td>
<td>0.064</td>
<td>0.029</td>
<td>0.082</td>
<td>0.003</td>
<td>0.266</td>
<td>0.002</td>
<td>21.1</td>
<td>100.49</td>
</tr>
</tbody>
</table>

CERTIFIED BY:

[Signature]

ROSSBAKER LABORATORY LTD.

2225 S. Sprigger Ave., Burnaby,
British Columbia, Can. V5B 3B1
Ph:(604)290-6910
Fax:290-6252
March 8, 1990

Mr. Ed Lawrence

FILE NO: 90021BS

PROJECT: ?

In February 1990 2 samples of MATERIAL were received at Greystokes Systems Ltd. for analysis to determine if asbestos was present, type of asbestos and concentration levels.

The W.C.B. analytical method 0205 was followed. Representative fibres from the samples were removed and mounted in refractive index liquids. These fibres were then examined using Polarized Light Microscopy and Dispersion Staining Objectives. The results as reported to your office are listed below:

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Approximate % Fibrous Asbestos and Most Similar Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLM 1 Whole Rock</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td><1 % CHRYSOTILE ASBESTOS</td>
</tr>
<tr>
<td>DLM 2 Whole Rock</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td><1 % CHRYSOTILE ASBESTOS</td>
</tr>
</tbody>
</table>

Thank you for having Greystokes Ltd. carry out this work.

Yours truly,

Peter Leenhouts
GREYSTOKES SYSTEMS LTD.