ARIS SUMMARY SHEET

District Geologist, Smithers

OFF CONFIDENTIAL: 92.09.23

ASSESSMENT REPORT 21856

MINING DIVISION: Omineca

PROPERTY: Park

LOCATION: LAT 56 28 00 LONG 126 35 00
UTM 09 6260425 648889
NTS 094D07E

CLAIM(S): Park 1-3

OPERATOR(S): Skeena Res.

AUTHOR(S): Aussant, C.H.

REPORT YEAR: 1991, 33 Pages

KEYWORDS: Triassic-Jurassic, Takla Group, Dewar Formation, Pillow lavas, Agglomerates, Tuffs

ORK DONE:
Geological, Geochemical

FOTO 1500.0 ha
Map(s) - 1; Scale(s) - 1:5000

GEOL 1500.0 ha
Map(s) - 2; Scale(s) - 1:2500, 1:5000

ROCK 46 sample(s) ; ME
Map(s) - 1; Scale(s) - 1:5000

SILT 17 sample(s) ; ME
Geological and Geochemical Sampling Report on the PARK 1-3 Claims Omineca Mining Division
Latitude 56°28' North
Longitude 126°35' West
N.T.S. 94-D/7 NE
British Columbia

November 5, 1991

on behalf of

SKEENA RESOURCES LIMITED
Vancouver, British Columbia
- and -
BEAUCHAMPS EXPLORATION INC.
Toronto, Ontario

by
Claude H. Aussant, P.Geol., F.GAC

TAIGA CONSULTANTS LTD.
#400, 534 - 17th Avenue S.W.
Calgary, Alberta T2S 0B1

GEOLOGICAL BRANCH ASSESSMENT REPORT
BC-90-8

21,856
ABSTRACT

The PARK claims, located 200 km north of Smithers, are underlain by upper Triassic to lower Jurassic volcanics consisting predominantly of andesites, tuffs, and agglomerates.

During October 1990 and July 1991, 12 man-days were spent exploring the property. All known mineralized occurrences and showings in the area were geochemically sampled; sediment samples were collected from all streams within and adjacent to the claims; and rock sampling, reconnaissance prospecting, and geological mapping were completed.

Copper mineralization in minor shear zones, in calcite or quartz veins, as fracture fillings, or associated with minor felsic dykes is fairly widespread throughout the claims area. Samples yielded significant values, up to 8.7% Cu and 10.5 oz/ton Ag, but low associated gold values.
TABLE OF CONTENTS

INTRODUCTION ... 1
 Location and Access
 Claim Status
 Physiography

GEOLOGY ... 5

HISTORY OF EXPLORATION .. 8

1990-91 EXPLORATION PROGRAM .. 9

SUMMARY AND RECOMMENDATIONS 12

CERTIFICATE ... 13

BIBLIOGRAPHY ... 14

APPENDIX:
 Summary of Personnel
 Summary of Expenditures
 Rock Sample Descriptions
 Certificates of Analysis
 Analytical Techniques

TABLES
 1 - Claims Status .. 4
 2 - Table of Formations ... 7

FIGURES
 1 - Regional Location Map .. 2
 2 - Claim Location Map .. 3
 3 - Regional Geology Map ... 6

MAPS
 1 - Airphoto Interpretation
 2 - Compilation Map
 3 - Compilation Map - 'A' Showing
 4 - 1991 Sample Location Map
INTRODUCTION

Taiga Consultants Ltd. was contracted by the Skeena Resources Limited / Beauchamps Exploration Inc. joint venture to conduct an exploration program on the PARK 1 to 3 mineral claims, located in the Sustut River area of northwestern British Columbia (Figure 1). The exploration program consisted of reconnaissance prospecting combined with geological mapping, lithogeochemical sampling, and stream silt sampling.

Location and Access

The PARK claims (Figure 2) are located on N.T.S. map-sheet 94-D/7 NE in the Omineca Mining Division. The centre of the claims lies at 56°28' North latitude and 126°35' West longitude, 200 km north of Smithers, B.C.

Access to the area is by helicopter from Smithers, or by fixed-wing aircraft to the Bear Lake airstrip and then via helicopter 33 km northwest to the claims. The Omineca Resource Road comes to within approximately 20 km north of the property, and logging roads originating in New Hazelton come within 50 km. The area is located 30 km northeast of B.C.Railway tracks in the Driftwood River valley.

Claim Status

The PARK claims consist of three contiguous modified-grid mineral claims totalling 60 units, as summarized in Table 1. The property is currently registered in the name of Skeena Resources Limited of Vancouver, operator of the 50:50 joint venture with Beauchamps Exploration Inc.

Assessment requirements are $100/unit/year plus an assessment filing fee of $5 per $100 of work filed. These claims have been grouped for assessment purposes.
LOCATION MAP

FIGURE 1
PARK CLAIMS LOCATION MAP
TABLE 1 - Claims Status

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Record Number</th>
<th>No. of Units</th>
<th>Date of Record</th>
<th>Assessment Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARK 1</td>
<td>12604</td>
<td>20</td>
<td>Sep. 27, 1990</td>
<td>Sep. 27, 1993 *</td>
</tr>
<tr>
<td>PARK 2</td>
<td>12605</td>
<td>20</td>
<td>Sep. 28, 1990</td>
<td>Sep. 28, 1994 *</td>
</tr>
<tr>
<td>PARK 3</td>
<td>12606</td>
<td>20</td>
<td>Sep. 28, 1990</td>
<td>Sep. 28, 1994 *</td>
</tr>
</tbody>
</table>

* upon acceptance of this report by the Mining Recorder

Physiography

Topography on the property is rugged with a maximum relief of 816 m, ranging from 1150 m ASL in the valleys to a maximum of 1966 m ASL on the peaks.

Most of the property is above tree line (1450 m), the exceptions being the steep-sided creek valleys which are covered with coniferous forest. Local relief on the southeast-facing slopes is extremely rugged, whereas the north-facing slopes and the broad U-shaped valleys have more subdued relief. Outcrop is abundant due to the steep slopes.
The PARK claims are underlain by upper Triassic rocks of the Dewar Formation (Takla Group) and by lower Jurassic rocks of the Telkwa Formation (Hazelton Group). The Dewar Formation, comprised of augite porphyry, pillow lavas, agglomerate, and andesitic tuffs, underlies the southern end of the property. The remaining property area is underlain by the Telkwa Formation comprised of calc-alkaline basalt, andesite/dacite/rhyolite flows, and a variety of agglomerates, in fault contact with the underlying Dewar Formation. A 5- to 50-foot arkose-argillite horizon marks the base of the Telkwa Formation.

Copper mineralization in minor shear zones, in calcite or quartz veins, as fracture fillings, or associated with minor felsic dykes is fairly widespread throughout the claims area.
Table 2

TABLE OF FORMATIONS

Stratified Rocks

UPPER TERTIARY and/or QUATERNARY

TOvB Basalt: flow, breccia, plugs, dykes

UPPER CRETAEOUS to Eocene

SUSTUT GROUP

ITB Brothers Peak Formation: conglomerate, sandstone, siltstone, acid tuff; minor coal

Tm Tango Creek Formation: conglomerate, sandstone, siltstone, minor coal

MIDDLE and UPPER JURASSIC

BOWSER LAKE GROUP

uB Volcanics: basalt and andesite flow; breccia, tuff, lahars

uv Sediments; sandstone, siltstone, argillite, conglomerate; minor coal

mu Ashman Formation: argillite and siltstone; minor sandstone and tuff

LOWER and MIDDLE JURASSIC

HAZELTON GROUP

uH Miiikita Formation: argillite, siltstone, greywacke, tuff; minor sandstone and limestone

uT Telkwa Formation: calc-alkaline basalt, andesite, dacite, rhyolite flow, breccia, tuff, and lahars; intravolcanic fanglomerate, conglomerate, sandstone, siltstone; polygenetic conglomerate with Asitka, Takla, and granitic clasts

UPPER TRIASSIC

TAKLA GROUP

uB Moosevale Formation: andesitic and basaltic volcanic conglomerate, breccia, sandstone, tuff, argillite

uBm Savage Mountain Formation: basic augite porphyry basalt flow, breccia, pillow breccia, tuff, interbedded plagioclase feldspar porphyry

uT Dewar Formation: tuff, sandstone, argillite; minor limestone, breccia

PERMIAN

PA Asitka Group: basalt, rhyolite, tuff, chert, argillite, carbonate

Intrusives

EK EARLY CRETAEOUS and ? LATER

Johanson Creek Stock: (EKq) quartz diorite

EJ EARLY JURASSIC

Oar Lake Stock: (EJq) quartz diorite

Asitka Peak Stock: (EJq) quartz diorite

plugs adjacent to the Sustut River: (EJp) leucocratic porphyry plugs

LATE TRIASSIC

Lq Gabbro, diabase, hypabyssal augite porphyry intrusions

Map Symbols

geologic boundary; known, approximate, inferred ____________,
limit of mapping and exposure ____________
fault; known, approximate, inferred ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
high-angle reverse fault; known, approximate, inferred ~ ~ ~ ~ ~
thrust fault; known, approximate, inferred ~ ~ ~ ~ ~ ~ ~ ~
bedding: upright, vertical, overturned ____________
foliation or schistosity: inclined, vertical ____________
folds: anticline, syncline ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
metamorphic isograd ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
K/Ar Age determination ____________
HISTORY OF EXPLORATION

The first reconnaissance geological survey in the area was completed by Lord in 1948. In his description, numerous small mineral showings were identified in the volcanic members of the Mesozoic Takla Group.

Detailed exploration of the volcanic rocks in this area began in 1966 on the New Wellington (Marmot) property in the McConnell Range (28 km north of the property) and on the Northstar (Fred) property northeast of Kaza Lake (61 km south). Falconbridge’s Sustut copper discovery late in 1971 culminated several years of intensive exploration in the region.

Exploration programs by Falconbridge, McIntyre Porcupine Mines Ltd., Rio Tinto Canadian Exploration Limited, Wesfrob Mines Limited, and Vestor Explorations Ltd. encompassed parts of the current property area. These programs included prospecting, geological mapping, contour soil sampling, silt sampling, lithogeochemical sampling, photogeological studies, airborne geophysical surveys, and diamond drilling.

The exploration programs completed by Rio Tinto in 1973 located fairly widespread copper mineralization as minor disseminations within calcite and quartz fracture fillings and in minor shear zones on the property. In addition, one acidic dyke 30 feet wide was located (MINFILE occurrence #038). A detailed sampling and mapping program, supported by trenching and diamond drilling, led to the conclusion that the copper mineralization was located in large fractures cutting across the volcanic units.

In the same year, Wesfrob Mines Limited completed geochemical surveys on their PLUTO claims. Copper mineralization occurring in 3-foot wide shear zones was located (MINFILE #075). Disseminated chalcocite, bornite, and chalcopyrite and rarely lenses of massive sulphides were observed.

In late September 1990, the PARK 1 to 3 mineral claims were staked by Skeena Resources Limited, and an initial reconnaissance prospecting program was completed on the property.
1990-91 EXPLORATION PROGRAM

A photogeologic interpretation of the area was completed. Structural, lithological, and alteration trends were defined from this study. Regional lineaments were picked from the 1:50,000 scale photos and the detailed interpretation was obtained from 1:15,000 scale photo coverage. Map 1 depicts the airphoto interpretation for the area.

The airphoto interpretation identified several areas warranting exploration attention. One of these areas, located in the northern part of the PARK 1 claim, bears a striking resemblance to the geology of Rio Tinto's "A" copper/silver showing located approximately 450 m west of Post 4E3S of the PARK 3 claim. In several other target areas, doming and fracturing of the Telkwa volcanics indicate that prospecting or geochemical sampling should be undertaken.

A compilation map depicting the results from previously reported exploration on the claims was completed. Map 2 depicts this information, along with the sample locations of the 1990 exploration. Map 3 depicts the geology and significant analytical results reported by Rio Tinto on the "A" showing. Map 4 depicts the sample locations and analytical results from the 1991 portion of the exploration program.

The 1990-1991 exploration program consisted of twelve man-days on the property by three geologists and two prospectors between September 30, 1990 and August 1, 1991. All known mineralized occurrences and showings were geochemically sampled; sediment samples were collected from all streams within and adjacent to the claims; and rock sampling, reconnaissance prospecting, and geological mapping were completed. A total of 46 rock and 17 silt samples were collected and sent to TerraMin Research Labs Ltd. in Calgary, Alberta for Au, Ag, Cu, Pb, and Zn analyses. Sample locations are shown on the accompanying maps; rock sample descriptions, analytical results, and laboratory procedures are presented in the Appendix.
Prospecting and geochemical sampling were completed on Rio Tinto's "A" copper/silver showing, with the objective of determining the tenor of gold values associated with the known copper mineralization. The following excerpt, from GEM 1974, summarizes this occurrence:

The principal showing consists of mineralized Hazelton(?) volcanic rocks. These are reddish dacitic tuffs and tuff breccias which are locally impregnated with copper sulphides.

The largest mineralized bed is a dark maroon, brittle, partly welded ash flow deposit striking 130° and dipping 80°SW. The bed attains a maximum thickness of about 20 feet and apparently can be traced for several hundred feet with a few offsets more or less along strike following the crest of a ridge. The offsets are due to small faults intercepting the beds almost at right angles.

A polished section of a well-mineralized sample shows an abundance of chalcocite occurring as tiny disseminated grains and as fillings in hairlines cracks in the rock. An assay of this sample ran 5.6% copper.

A total of 12 rock samples were collected from the showing. All of these samples yielded anomalous values up to 8.7% Cu and 5.5 oz/ton Ag, but failed to demonstrate a copper/gold association.

Mineralization observed consisted of chalcocite, bornite, chalcopyrite, azurite, and malachite. Most of the mineralization is associated with fractures cross-cutting the volcanic units. Given the nature of the mineralization, this showing has limited potential significance.

Reconnaissance prospecting, geological mapping, and lithogeochemical sampling were conducted over parts of the remaining property area.

A number of calcite and quartz stockworks 50 to 100 m wide in agglomerate and lithic tuffs were located in the PARK 1 claim. However, samples yielded only background values for all the elements analyzed.

A 2 to 3 m wide malachite-stained east-west trending shear was located in the southwestern part of the PARK 1 claim. This corresponds to the approximate location of Wesfrob Mines' Pluto occurrence. A grab sample yielded significant
values of 2.8% Cu and 2.3 oz/ton Ag, but low gold values. The precipitous topography prevented channel sampling on the showing.

Grab samples from mineralized talus boulders and fracture zones on the PARK 2 claim, as with the "A" showing, yielded anomalous values up to 5.4% Cu and 10.5 oz/ton Ag, but low gold values. Silt samples from the area yielded background values for all the elements.

The occurrences discovered during this program are generally too narrow to be of further interest. However, several stockwork systems were identified in which the density of these fractures may be sufficient to comprise a mineralized zone. One such stockwork zone, 9 m wide, was identified with a grab sample of a calcite vein yielding values of 66 ppm Ag and 1.38% Cu. Only trenching and detailed mapping/sampling will determine the potential economic significance of such showings.
The 1990-91 property exploration program consisted of stream silt sampling, rock geochemical sampling, reconnaissance prospecting, and geological mapping, focusing on the investigation of reported Cu/Ag occurrence and to determine the tenor of gold values associated with the copper mineralization.

Rio Tinto's "A" copper/silver showing was re-located and grab samples were collected, all of which yielded anomalous Cu and Ag results but low gold values. The mineralization observed consisted of chalcocite, bornite, chalcopyrite, azurite, and malachite mostly associated with fractures cross-cutting the volcanic units.

Exploration on the PARK 1 claim located a number of calcite and quartz stockworks; however, samples yielded only background values for all of the elements analyzed.

The Wesfrob Mines' Pluto occurrence was re-located, from which a grab sample yielded anomalous Cu and Ag values. The mineralization observed consisted of a 2 to 3 m wide malachite-stained east-west trending shear; however, due to the precipitous nature of the occurrence, channel sampling was not possible. Again, there were no gold values associated with the mineralization.

A 9 m wide stockwork system was located. A grab sample of a calcite vein from the stockwork yielded values of 66 ppm Ag and 1.38% Cu. Only trenching and detailed mapping/sampling will determine the potential economic significance of such showings.

Samples collected from mineralized talus boulders and fracture zones from the PARK 2 claim also yielded significant Cu and Ag values, but no gold. Silt samples yielded background values for all the elements analyzed.

The occurrences discovered during this program have limited potential significance, given the nature of the mineralization located. No further work is recommended.
I, Claude Henry Aussant, of 31 Templebow Way N.E. in the City of Calgary in the Province of Alberta, do hereby certify that:

1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd. with offices at Suite 400, 534 - 17th Avenue S.W., Calgary, Alberta.

2. I am a graduate of the University of Calgary, B.Sc. Geology (1976), and I have practised my profession continuously since graduation.

3. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.

5. I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of Skeena Resources Limited or Beauchamps Exploration Inc. in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 5th day of November, A.D. 1991.

Respectfully submitted,

[Signature]

C. H. Aussant, B.Sc., P.Geol., F.GAC
BIBLIOGRAPHY

British Columbia Ministry of Energy Mines and Petroleum Resources:
- Assessment Reports: 4564, 4784, 4854, 4855, 4892, 4921, 5402
- Mineral Inventory 94D: 016 (Willow Creek), 038 ("A"), 074, 075 (Pluto), 089 (Tie/Jan)

Geological Survey of Canada:
- Map 962A : McConnell Creek Map-Area

-------- (1976b): The Triassic Takla Group in McConnell Creek Map-Area, North-Central British Columbia; Geol.Surv.Cda., Paper 76-29

--------- (1976b): McConnell Creek Map-Area (94-D/E) Geology; Geol.Surv. Cda., Open File 342

APPENDIX

Summary of Personnel
Summary of Expenditures
Rock Sample Descriptions
Certificates of Analysis
Analytical Techniques
<table>
<thead>
<tr>
<th>Name / Address</th>
<th>Position</th>
<th>Dates Worked</th>
<th>Man-Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. H. Aussant, P.Geol.</td>
<td>Project Geologist</td>
<td>Sep.30, Oct.01 /90</td>
<td>1</td>
</tr>
<tr>
<td>Calgary, Alberta</td>
<td></td>
<td>Jul.31, Aug.01 /91</td>
<td>2</td>
</tr>
<tr>
<td>M. W. Bowles, P.Geol.</td>
<td>Assistant Geologist</td>
<td>Oct.01 /90</td>
<td>.5</td>
</tr>
<tr>
<td>Calgary, Alberta</td>
<td></td>
<td>Jul.31, Aug.01 /91</td>
<td>2</td>
</tr>
<tr>
<td>M. D. Jamieson, P.Geol.</td>
<td>Junior Geologist</td>
<td>Jul.31, Aug.01 /91</td>
<td>2</td>
</tr>
<tr>
<td>Calgary, Alberta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. M. Hislop</td>
<td>Prospector</td>
<td>Oct.01 /90</td>
<td>1</td>
</tr>
<tr>
<td>Edmonton, Alberta</td>
<td></td>
<td>Jul.31, Aug.01 /91</td>
<td>2</td>
</tr>
<tr>
<td>D. D. Dancer</td>
<td>Prospector</td>
<td>Oct.01 /90</td>
<td>.5</td>
</tr>
<tr>
<td>Calgary, Alberta</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL MAN-DAYS 12.0
SUMMARY OF EXPENDITURES

Pre-Field
- Data Compilation pro rata $3,000.00
- Airphoto Interpretation pro rata $2,000.00
- Logistics pro rata $150.00
- Mob and demob pro rata $305.00

Field Personnel
- Project Geologist 3 days @ $400/day $1,200.00
- Assistant Geologist 3 days @ $350/day $1,050.00
- Prospectors 2 x 3 days @ $285/day $1,710.00

Camp Support
- Food and Accommodation 15 man days @ $60/day including helicopter pilot $900.00
- Chainsaw rental 3 days @ $9/day $27.00
- FM radio rental 3 days @ $9/day $27.00
- Disposable supplies, telephone, fuel, expediting pro rata $150.00

Aircraft Support
- Helicopter pro rata $3,271.78
- Fixed-Wing pro rata $480.00

Geochemical Analyses
- Rocks (Au/Ag/Cu/Pb/Zn) 46 @ $16.00/each $736.00
- Silts (Au/Ag/Cu/Pb.Zn) 17 @ $13.50/each $229.50

Post-Field
- TOTAL $1,200.00

TOTAL $16,436.28
ROCK SAMPLE DESCRIPTIONS

1990 Samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-1</td>
<td>Park 1; grab, angular talus boulder, agglomerate, extensively malachite stained, pockets of tetrahedrite, calcite fracture filling, contains rounded pebbles of basalt, tuff matrix; 4.2 oz/ton Ag, 5.4% Cu</td>
</tr>
<tr>
<td>CR-19</td>
<td>Park 2; grab, fractured tuff with calcite fracture filling, maroon coloured, spotty malachite staining, tuff; with weak disseminations of pyrite, minor chalcopyrite, fracture zone up to 20 cm wide; talus boulder; 3.4 oz/ton Ag, 3% Cu</td>
</tr>
<tr>
<td>CR-20</td>
<td>Park 2; 2 cm felsic veinlet in maroon tuff, veinlet is malachite stained, with 5% disseminated tetrahedrite; talus boulder</td>
</tr>
<tr>
<td>DR-08</td>
<td>Park 3, 'Main' Cu showing; 1.0 m chip, maroon tuff, 5-7% disseminated pyrite, malachite stained; 1.2 oz/ton Ag, 1.8% Cu</td>
</tr>
<tr>
<td>DR-09</td>
<td>Park 3, 'Main' Cu showing; grab from between MR-20 and MR-21 from an irregular plagioclase-feldspar vein 10-15 cm wide traceable for 2 m in maroon tuff, malachite stained; 0.89 oz/ton Ag, 2.2% Cu</td>
</tr>
<tr>
<td>HR-5</td>
<td>Park 2; grab, boulder, maroon tuff with angular (up to 1 cm) tuff fragments, spotty malachite staining; chalcopyrite, pyrite, and pyrrhotite disseminated along fracture planes; 1.03 oz/ton Ag</td>
</tr>
<tr>
<td>HR-7</td>
<td>Park 2; talus boulder, maroon tuff with angular (up to 1 cm) tuff fragments, spotty malachite staining, <1% chalcopyrite and pyrite; 3.5 oz/ton Ag, 2.2% Cu</td>
</tr>
<tr>
<td>HR-18</td>
<td>Park 2; grab outcrop, 2 m wide shear, strike 245°/vertical, malachite stained, maroon tuff, 1% disseminated pyrite and chalcopyrite; 1.0 oz/ton Ag, 1.4% Cu</td>
</tr>
<tr>
<td>HR-19</td>
<td>Park 2; grab outcrop, same as HR-18; 1.3 oz/ton Ag, 1.7% Cu</td>
</tr>
<tr>
<td>HR-20</td>
<td>Park 2; grab outcrop, malachite stained, maroon tuff, calcite fracture filling, fractured zone 1.5 m wide, strike 240°; 1.9 oz/ton Ag, 3.2% Cu</td>
</tr>
<tr>
<td>HR-21</td>
<td>Park 2; grab outcrop, maroon tuff, malachite stained, contains a 2 cm felsic veinlet with disseminated tetrahedrite; 1.5 oz/ton Ag, 0.83% Cu</td>
</tr>
<tr>
<td>HR-22</td>
<td>Park 2; grab outcrop, rusty weathered, felsic volcanic, fractured, malachite stained, 1% disseminated pyrite and chalcopyrite, unit 5-6 m wide, strike 235°/60°S</td>
</tr>
</tbody>
</table>
MR-19 Park 3, 'Main' Cu showing; 1.0 m chip across the strongest Cu mineralization, maroon tuff (rhyodacite?), trace chalcopyrite, 5-7% disseminated pyrite, malachite stained; 2.77 oz/ton Ag, 2.2% Cu

MR-20 Park 3, 'Main' Cu showing; high-grade grab of strongest malachite stained tuff; 3.06 oz/ton Ag, 2.4% Cu

MR-21 Park 3, 'Main' Cu showing; outcrop grab, maroon tuff, malachite stained, 2-4% pyrite; 3.7 oz/ton Ag, 1.8% Cu

MR-22 Park 3, 'Main' Cu showing; outcrop grab, malachite stained maroon tuff, mineralized north-south fracture system; 1.7 oz/ton Ag, 1.9% Cu
1991 Samples

XR-100 outcrop, "Main Copper" showing; andesite tuff, purple, adjacent to the rhyolite dyke; extensive malachite staining, 3% chalcocite as disseminations and stringers; area of mineralization 2 m wide; intermittently bleached; extent of mineralization? 10 / 88.0 / 51000 / 9 / 5

XR-101 talus, "Main Copper" showing; andesite tuff, purple; 3% disseminated chalcocite, malachite staining fractures, minor calcite stringers and veinlets 1.8 / 189.0 / 87000 / 24 / 9

XR-102 outcrop, "Main Copper" showing; felsic dyke, greyish pink; disseminated malachite staining, malachite lining fractures <1% chalcocite, trace pyrite 8 / 13.6 / 27000 / 36 / 5

XR-103 outcrop; lithic tuff, purple, brecciated; extensive calcite fracture filling/stringers/veinlets/veins, trace malachite staining; unit 50 m wide 88°/70°N; with narrow beds of mottled grey-green tuff with slickensides and chlorite along planes 8 / 0.47 / 112 / 6 / 55

XR-104 outcrop; felsic dyke, 30 cm wide, exposed for 1 m, mottled beige-white-pink; quartz flooded, minor malachite along calcareous fracture planes; pinches out in purple andesite tuff and disappears into talus 18 / 0.62 / 2400 / 19 / 21

ZR-115 outcrop; andesite tuff, dark green; minor malachite staining along fracture planes 8 / 4.50 / 2400 / 16 / 480

ZR-116 outcrop; andesite tuff, purple; calcite stockwork; malachite staining associated with some of the calcite stringers 26 / 28.0 / 1300 / 11 / 117

ZR-117 outcrop; crystalline calcite invading dark green andesite tuff; calcite contains inclusions of andesite and irregular concentrations of chalcocite and galena; 9 m wide 28 / 66.0 / 13800 / 4 / 95

ZR-118 outcrop; dacite tuff, light grey, rusty weathered; 1% disseminated pyrite 4 / 0.41 / 37 / 13 / 63

ZR-119 outcrop; andesite tuff, light grey to dark green, rusty weathered; 3% pyrite as disseminations and stringers and lining fractures 12 / 0.82 / 52 / 87 / 100

ZR-120 outcrop; andesite tuff, mottled purple; trace malachite 2 / 4.40 / 340 / 5 / 270

Au ppb / Ag ppm / Cu ppm / Pb ppm / Zn ppm
ZR-121 outcrop; andesite, dark green, massive, rusty weathered; minor disseminated pyrite
 2 / 0.53 / 42 / 11 / 103

ZR-122 float; andesite, dark grey-green; 1% disseminated chalcocite, malachite staining fracture planes
 12 / 290.0 / 3800 / 136 / 920

ZR-123 andesite, dark grey-green; calcite flooding, chalcocite as disseminations and blebs, 3% spotty malachite staining
 26 / 360.0 / 34000 / 180 / 630

ZR-124 andesite tuff, dark grey; calcite fracture filling, malachite staining fracture surfaces
 16 / 230.0 / 36000 / 37 / 1020

ZR-125 float; tuff, light brownish-grey; calcite fracture filling, malachite staining fracture surfaces
 490 / 115.0 / 24000 / 6 / 109

ZR-126 grab of brecciated quartz veining from quartz/calcite stockwork in purple tuff
 10 / 0.48 / 65 / 6 / 310

WR-100 outcrop, "Main Copper" showing; felsic dyke in andesite, very fine-grained; malachite staining, 1-2% disseminated chalcocite
 10 / 86.0 / 55000 / 24 / 8

WR-101 outcrop, "Main Copper" showing; felsic dyke in andesite, pale grey, very fine-grained; abundant calcite fracture and vug filling, malachite as extensive staining on fractures and as disseminations, trace disseminated pyrite and very fine disseminated chalcocite (small calcite-rich area ~0.5m²)
 12 / 89.0 / 53000 / 10 / 16

WR-102 outcrop, "Main Copper" showing; felsic dyke in andesite, orange and black, very fine-grained; malachite and azurite staining, trace fine disseminated pyrite, 2-3% chalcocite as disseminations and stringers, trace bornite (old sample location #13287)
 10 15.2 / 14500 / 5 / 5

WR-103 float; andesite tuff, intensely fractured; carbonate fracture filling and flooding, 1% pyrite as disseminations and very fine stringers
 12 / 0.38 / 145 / 2 / 72

YR-102 3 m grab chip; intense epidote > chlorite >> calcite alteration zone; irregular very fine stockwork of epidote/chlorite veining ~40% of the rock
 2 / 0.46 / 99 / 8 / 108

YR-103 grab of float from YR-102 area; similar to YR-102 except contains minor malachite > azurite > chalcopryte
 10 / 22.0 / 6500 / 8 / 109

Au ppb / Ag ppm / Cu ppm / Pb ppm / Zn ppm
Sustut / Park claims

YR-104 outcrop; 1 m wide gossan/calcite vein system in maroon tuff, 120°/88°S, traceable for 30 m
 10 / 0.45 / 77 / 32 / 59

YR-105 grab; malachite stained talus from a 2-3 m wide inaccessible zone, 30°/vertical; most of the gully covered with a stockwork of veins, irregular but generally trending east-west; host rocks are very fine-grained red (maroon) tuff and green andesite
 10 / 80.0 / 28000 / 49 / 670

YR-106 grab chip across 1 m of stockwork; intermediate red tuff and green andesite, veins up to 0.5 cm, major orientation north dipping steeply west
 6 / 0.35 / 109 / 3 / 31

YR-107 grab; quartz- and calcite-rich stockwork in red agglomerate; stockwork seems to trend generally northwest and varies from all calcite to all quartz; traceable over at least 400 m with a width of at least 100 m
 6 / 0.15 / 35 / 6 / 65

YR-108 outcrop grab; calcite stockwork 30%, veins 0.5 to 5 cm wide in red tuff, traceable over 20 to 30 m
 6 / 0.16 / 117 / 4 / 22

YR-109 grab; good exposure of the south end of the calcite stockwork at YR-108; at least two vein generations cut through red fine-grained volcanics and green diabase (basalt) dykes
 8 / 0.14 / 26 / 4 / 41

YR-110 float, sub-rounded; intense malachite/calcite alteration with seams of chalcosite 3%, minor azurite
 10 / 60.0 / 67000 / 32 / 380

Au ppb / Ag ppm / Cu ppm / Pb ppm / Zn ppm
Taiga Consultants Ltd.
Claude Aussant

Date: October 15, 1990
Job No: 30-254

Project: BC-90-8
F.D. No:

44 Rock
30 Silt

Signed: [Signature]

14-2235 30th Avenue N.E., Calgary, Alberta, T2E 7C7
Phone (403) 250-9460 Fax (403) 291-7064
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS-1</td>
<td>4</td>
<td>0.14</td>
<td>58</td>
<td>9</td>
<td>141</td>
</tr>
<tr>
<td>CS-14</td>
<td>4</td>
<td>0.46</td>
<td>178</td>
<td>17</td>
<td>119</td>
</tr>
<tr>
<td>CS-15</td>
<td>2</td>
<td>0.11</td>
<td>63</td>
<td>9</td>
<td>125</td>
</tr>
<tr>
<td>CS-16</td>
<td>8</td>
<td>0.15</td>
<td>80</td>
<td>11</td>
<td>153</td>
</tr>
<tr>
<td>HS-4</td>
<td>4</td>
<td>0.22</td>
<td>79</td>
<td>11</td>
<td>148</td>
</tr>
<tr>
<td>HS-6</td>
<td>2</td>
<td>0.27</td>
<td>100</td>
<td>9</td>
<td>139</td>
</tr>
<tr>
<td>HS-8</td>
<td>2</td>
<td>0.15</td>
<td>64</td>
<td>18</td>
<td>171</td>
</tr>
<tr>
<td>HS-9</td>
<td>2</td>
<td>0.12</td>
<td>75</td>
<td>8</td>
<td>126</td>
</tr>
<tr>
<td>HS-12</td>
<td>2</td>
<td>0.29</td>
<td>106</td>
<td>27</td>
<td>183</td>
</tr>
<tr>
<td>HS-13</td>
<td>2</td>
<td>0.10</td>
<td>109</td>
<td>7</td>
<td>178</td>
</tr>
<tr>
<td>HS-14</td>
<td>2</td>
<td>0.08</td>
<td>55</td>
<td>6</td>
<td>140</td>
</tr>
<tr>
<td>HS-15</td>
<td>2</td>
<td>0.10</td>
<td>98</td>
<td>5</td>
<td>141</td>
</tr>
<tr>
<td>HS-16</td>
<td>4</td>
<td>0.12</td>
<td>130</td>
<td>9</td>
<td>136</td>
</tr>
<tr>
<td>HS-17</td>
<td>4</td>
<td>0.21</td>
<td>147</td>
<td>12</td>
<td>151</td>
</tr>
<tr>
<td>MS-5</td>
<td>2</td>
<td>0.20</td>
<td>157</td>
<td>11</td>
<td>300</td>
</tr>
<tr>
<td>MS-6</td>
<td>2</td>
<td>0.18</td>
<td>104</td>
<td>13</td>
<td>191</td>
</tr>
<tr>
<td>MS-7</td>
<td>4</td>
<td>0.14</td>
<td>91</td>
<td>10</td>
<td>162</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Au (ppb)</td>
<td>Ag (ppm)</td>
<td>Cu (ppm)</td>
<td>Pb (ppm)</td>
<td>Zn (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>WR-100</td>
<td>10</td>
<td>86.0</td>
<td>55000</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>101</td>
<td>12</td>
<td>89.0</td>
<td>53000</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>102</td>
<td>10</td>
<td>15.2</td>
<td>14500</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>103</td>
<td>12</td>
<td>0.38</td>
<td>145</td>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>100'</td>
<td>10</td>
<td>88.0</td>
<td>51000</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>XR-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101'</td>
<td>18</td>
<td>182.0</td>
<td>87000</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>102'</td>
<td>8</td>
<td>13.6</td>
<td>27000</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>103'</td>
<td>8</td>
<td>0.47</td>
<td>112</td>
<td>6</td>
<td>55</td>
</tr>
<tr>
<td>104'</td>
<td>18</td>
<td>0.62</td>
<td>2400</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>YA-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>2</td>
<td>0.46</td>
<td>99</td>
<td>8</td>
<td>108</td>
</tr>
<tr>
<td>103</td>
<td>10</td>
<td>22.0</td>
<td>6500</td>
<td>8</td>
<td>109</td>
</tr>
<tr>
<td>104</td>
<td>10</td>
<td>0.45</td>
<td>77</td>
<td>32</td>
<td>59</td>
</tr>
<tr>
<td>105</td>
<td>10</td>
<td>80.0</td>
<td>28000</td>
<td>49</td>
<td>670</td>
</tr>
<tr>
<td>106</td>
<td>6</td>
<td>0.35</td>
<td>109</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>ZR-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>6</td>
<td>0.15</td>
<td>35</td>
<td>6</td>
<td>65</td>
</tr>
<tr>
<td>108</td>
<td>6</td>
<td>0.16</td>
<td>117</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>109</td>
<td>8</td>
<td>0.14</td>
<td>26</td>
<td>4</td>
<td>41</td>
</tr>
<tr>
<td>110</td>
<td>10</td>
<td>60.0</td>
<td>67000</td>
<td>32</td>
<td>380</td>
</tr>
<tr>
<td>ZR-115</td>
<td>8</td>
<td>4.50</td>
<td>2400</td>
<td>16</td>
<td>480</td>
</tr>
<tr>
<td>116</td>
<td>26</td>
<td>28.0</td>
<td>1300</td>
<td>11</td>
<td>117</td>
</tr>
<tr>
<td>117</td>
<td>28</td>
<td>66.0</td>
<td>13800</td>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td>118</td>
<td>4</td>
<td>0.41</td>
<td>37</td>
<td>13</td>
<td>63</td>
</tr>
<tr>
<td>119</td>
<td>12</td>
<td>0.82</td>
<td>52</td>
<td>87</td>
<td>100</td>
</tr>
<tr>
<td>120</td>
<td>2</td>
<td>4.40</td>
<td>340</td>
<td>5</td>
<td>270</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Au</td>
<td>Ag</td>
<td>Cu</td>
<td>Pb</td>
<td>Zn</td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>ZR-121</td>
<td>2</td>
<td>0.53</td>
<td>42</td>
<td>11</td>
<td>103</td>
</tr>
<tr>
<td>122</td>
<td>12</td>
<td>290.0</td>
<td>38000</td>
<td>136</td>
<td>920</td>
</tr>
<tr>
<td>123</td>
<td>26</td>
<td>360.0</td>
<td>34000</td>
<td>180</td>
<td>630</td>
</tr>
<tr>
<td>124</td>
<td>16</td>
<td>230.0</td>
<td>36000</td>
<td>37</td>
<td>1020</td>
</tr>
<tr>
<td>125</td>
<td>490</td>
<td>115.0</td>
<td>24000</td>
<td>6</td>
<td>109</td>
</tr>
<tr>
<td>126</td>
<td>10</td>
<td>0.48</td>
<td>65</td>
<td>6</td>
<td>310</td>
</tr>
</tbody>
</table>
FIRE ASSAY/AA METHOD FOR GOLD AND SILVER
PLATINUM AND PALLADIUM

Approximately 1 assay ton of prepared sample is fused with a litharge flux charge to obtain a lead button. The button is cupelled down to a precious metal prill which is then dissolved in aqua regia. The resulting solution is analysed by atomic absorption spectrophotometry to determine the precious metals.
SAMPLE PREPARATION

Soil and sediment samples are dried and sieved through 80 mesh nylon screen (maximum particle size 200 microns).

Rock or drill core samples are crushed to approximately 1/8" in a jaw crusher, riffled to obtain a representative sample, and pulverized to 150 mesh (100 micron particle size).
ANALYTICAL METHODS FOR BASE METALS

Cd, Cr, Co, Cu, Fe (soluble), Pb, Mn (soluble), Mo, Ni, Ag, Zn

A portion of the prepared sample is digested in hot nitric/perchloric acid mixture, or hot aqua regia (nitric/hydrochloric acids).

Elements are determined by atomic absorption spectrophotometry.