REPORT ON THE

MET II PROJECT

FOR

CORE VENTURES LTD. (operator)

ATLIN MINING DIVISION

NTS 104K/7E

Latitude: 58° 23' N
Longitude: 132° 35' W

owner: Silver Talon Mines

T.K.

Paul Daigle, B.Sc.

January 15th, 1992

GEOLOGICAL BRANCH
ASSESSMENT REPORT

22,128
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Location and Access</td>
<td>2</td>
</tr>
<tr>
<td>Physiography and Vegetation</td>
<td>2</td>
</tr>
<tr>
<td>Claim Status</td>
<td>3</td>
</tr>
<tr>
<td>History & Previous Work</td>
<td>3</td>
</tr>
<tr>
<td>Regional Geology</td>
<td>5</td>
</tr>
<tr>
<td>Property Geology and Geochemistry</td>
<td>8</td>
</tr>
<tr>
<td>Conclusions</td>
<td>10</td>
</tr>
</tbody>
</table>

List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix I</td>
<td>Statement of Costs</td>
</tr>
<tr>
<td>Appendix II</td>
<td>Authors Statement of Qualifications</td>
</tr>
<tr>
<td>Appendix III</td>
<td>Analytical Data</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>General Location Map</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Claim Map</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Regional Geology</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>Rock Geochemistry and Soil</td>
</tr>
<tr>
<td>Figure 4b.</td>
<td>Soil Geochemistry</td>
</tr>
</tbody>
</table>
INTRODUCTION

This report, prepared on behalf of Core Ventures Ltd. at the request of Prime Explorations (a division of Prime Equities Inc.), summarizes exploration work carried out during the period of August 13 to 21, 1991. A total of 15 man days were spent on the Golden Glory 5-9 and the Golden Child 1-3 claims.

The crew was based in an established exploration camp on Trapper Lake run by Azimuth Geological. Access to the property was by helicopter which was based at the camp. The crew was made up of D. Carstens, D. Hebditch, E. Mckie, and P. Daigle.
LOCATION AND ACCESS

The Met II Project is situated in northwestern British Columbia (Figure 1), on NTS mapsheet 104K/7E. Its reference coordinates are 58° 23′N latitude and 132° 35′W longitude.

The towns of Atlin and Dease Lake, from which charter float planes can transport supplies and personnel to Trapper Lake, are situated approximately 150 km north and east respectively of the project area. The Golden Bear Mine, which is located 19 km to the southeast, is accessible by an all weather road, however, final access to the Upper Tats property is by helicopter. The Polaris-Taku and Tulsequah Chief Mines, both former producers, are situated 75 km to the northwest.

PHYSIOGRAPHY AND VEGETATION

The property encompasses the fairly broad, glaciated valley of Tatsatua Creek in the southeast corner, which is flanked by moderate to steep slopes of the Chechidla Range (Coast Mountains). Elevations range from approximately 1400 m above sea level in the southeastern corner of the claim block, in Tatsatua Creek, to 2096 m on a ridge in the northeast corner of the property. The highest portions of the property in the northeast and northwest are covered by ice which is known to be receding at a rapid rate. Treeline occurs variably between 1000 and 1200 m, below which, mixed
fir, spruce and cottonwoods, with some undergrowth, are found. The summer field season extends from mid June to late October.

CLAIM STATUS

The Met II Project is comprised of Golden Glory 5-8, 9 and Golden Child 1-3 mineral claims. These total 87 units and they all lie within the Atlin Mining Division.

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>No. of Units</th>
<th>Record Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden Glory 5</td>
<td>15</td>
<td>4518</td>
</tr>
<tr>
<td>Golden Glory 6</td>
<td>20</td>
<td>4519</td>
</tr>
<tr>
<td>Golden Glory 7</td>
<td>9</td>
<td>4520</td>
</tr>
<tr>
<td>Golden Glory 8</td>
<td>12</td>
<td>4521</td>
</tr>
<tr>
<td>Golden Glory 9</td>
<td>16</td>
<td>4522</td>
</tr>
<tr>
<td>Golden Child 1</td>
<td>15</td>
<td>4550</td>
</tr>
<tr>
<td>Golden Child 2</td>
<td>15</td>
<td>4551</td>
</tr>
<tr>
<td>Golden Child 3</td>
<td>15</td>
<td>4552</td>
</tr>
</tbody>
</table>

The Golden Child mineral claims are overlapping the pre-existing Golden Met and Golden Met II to make Golden Glory 9 contiguous. Out of the 42 units of the Golden Child claims, 27 units belong to the Golden Met claims. Hence only 15 units of the Golden Child claims are valid.

HISTORY AND PREVIOUS WORK

The Tulsequah area of northwestern B.C. is an area that is currently being reevaluated by a number of companies for both base and precious metal occurrences. At the Tulsequah Chief Mine, a former producer located 72 km northwest of the
Met II Project, Redfern Resources and Cominco Ltd. have developed reserves, which now stand at 8.0 million tons grading 1.55% copper, 1.23% lead, 6.81% zinc, 0.08 oz/ton gold and 2.19 oz/ton silver. At Polaris-Taku Mine, also located 72 km northwest of the property, Suntac Minerals completed a drill program in early 1990 and have announced reserves of 520,000 tons grading 0.45 oz/ton gold in the "Y" vein and 366,000 tons of 0.49 oz/ton in the "C" vein.

The only operating mine in the region is the Golden Bear Mine, located 19 km southeast of the Met II property. This mine, a joint venture between Chevron Minerals and North American Metals, a division of Homestake Mining, began production in late 1989. Initial reserves stood at 300,830 tonnes grading 296,235 tonnes grading 20.97 g/t to be mined by underground methods. The mine is currently operating at a rate of 315 tonnes per day. The property contains a number of important exploration targets that will be tested by the joint venture partners as a part of ongoing property development.

Renewed interest in the area was generated in 1991 as a result of Galico Resources Inc.'s optioning of the Metla property from Cominco Ltd. The Metla property, located 1.0 km west of the property, was first discovered in 1957 by Cominco prospectors. The original discovery consisted of a sample taken at the edge of the glacier which contained 0.32 oz/ton gold, 1.46 oz/ton silver, 1.0% copper and 1.0% zinc.
Cominco returned to the property in 1988 and discovered an extensive area of mineralized float that was now exposed as a result of the ice receding. During 1989 and 1990, Cominco assayed 155 rock samples from six target areas that together average 0.28 oz/ton gold. The primary targets were hydrothermal breccias hosting massive sulphide and precious metal mineralization, a new exploration target for this area.

In 1981 Noranda Exploration carried out an evaluation of a property located 7 km west of the Upper Tats Project (minFile #26). The Fool #1 Claim was staked to cover a molybdenite occurrence in intrusive rocks with values of 0.116% molybdenum, 0.01% tungsten, 0.12 oz/ton silver and 0.001 oz/ton gold. No areas of higher grade mineralization were discovered and the claim was dropped.

REGIONAL GEOLOGY

The most recent regional geological mapping available for this area dates back to Souther (1971) who conducted his fieldwork during 1958-1960. The Tulsequah map area, a portion of which is reproduced in Figure 3, features the rocks originally defined as Stikine Arch and now referred to by the terrane assemblage term "Stikinia". Stikinia includes four tectonostratigraphic assemblages, namely the Paleozoic-ages Stikine assemblage, several Triassic to Jurassic volcanic-plutonic arc complexes, the Middle to
Late Jurassic Bowser overlap assemblage, and the Tertiary Coast Plutonic Complex. All are well represented in the Tulsequah map area except for the Bowser assemblage, which is thought to be represented by an equivalent unit called the Laberge Group.

The significance of Stikinia lies in the fact that it hosts mines and mineral deposits throughout northwestern British Columbia including the Premier and Big Missouri gold deposits and the Granduc copper massive sulphide deposits (Stewart area), the Johnny Mountain and Snip gold mines and the Eskay Creek gold-rich polymetallic massive sulphide deposits (Iskut River and Unuk River areas), and bulk tonnage copper-gold deposits (Galore Creek area). Closer to the project are the Golden Bear Mine (gold) and former producers Polaris Taku (gold), Tulsequah Chief, and Big Bull Mines (copper).

The following summary of the geology in the general project area is taken directly from Blackwell’s (1991) report on Galico’s Metla Property, which is located 1.5 km west of the Met II Project area, and provides the best description of the regional geology:

"Within the immediate project area, regional mapping (Figure 3) has indicated a complex distribution of upper Paleozoic to Tertiary-aged volcanic, sedimentary, and plutonic rocks. All units are poorly age-constrained and revisions to the stratigraphic ordering will likely be made as a result of future mapping programmes."
Figure 3

REGIONAL GEOLOGY

Atlin Mining Division
British Columbia
NTS 104K7E

See following page for LEGEND

after Souther (1971)
LEGEND

QUATERNARY
PLEISTOCENE AND RECENT

19
Fumarole gravel, sand, and gravelly overwash. Hea stone matrix and
unidentified organic content. 18a. landslides

CRETACEOUS AND TERTIARY
LATE CRETAceous AND EARLY TERTIARY
BLAST GROUP
14
Light gray, purple and white, phylitic, slate, and shale; lenticular bands of
talcose, slate and serpentine. 15. Blasta breccia. 16. Blasta breccia
compactus. 17. Blasta breccia, compactus. 18. Blasta breccia, compactus
Breccia-compactus, sandy quartz sandstone

13
CENTRAL PLUTONIC COMPLEX. granite, quartz diorite, minor diorite
sandy-grained, megacrysts and augen. Age and relationship are uncertain

JURASSIC AND/or CRETACEOUS
POST-MIDDLE JURASSIC
12
12a. hornblende-biotite granite. 12b. hornblende-biotite quartz diorite
12c. hornblende diorite. 12d. argillite. Age and relationship are uncertain

JURASSIC
LOWER AND MIDDLE JURASSIC
LAVAS GROUP (No. 11)
11
TAYLOR'S FORMATION: gray to gray-violet, fine- to medium-grained,
alterable-granite, graywacke, quartz sandstone, conglomerate, sandstone.

10
Nevada FORMATION: well bedded graywacke, graded sandstone and silt
sandstone, poorly developed, sandstone, fine-grained conglomerate. 10a. immature

TRASSIC
UPPER TRASSIC
9
SINUS FORMATION: breccia, minor sandstone, arkose, chert

PETOS GROUP (No. 8)
7
8
1. Many volcanic rocks, pumice and andesite flows, basalt flows, volcanic breccia
and agglomerate, lapilli tuff, minor volcanic sandstone, quartz sandstone, and tuff
2. KINCH FORMATION: dark gray to gray, graywacke, quartz sandstone, and arkose; minor
granite, andesite, and tuff; minor volcanic rock, volcanic breccia, tuff, breccia, many
tuff beds. Locally enclosed in 1

LOWER OR MIDDLE TRASSIC (11)
6
Fine to medium-grained, arenaceous breccia, quartz sandstone, and minor
granodiorite; age uncertain

TRASSIC AND EARLIER
PREE-TRASSIC
4
Fine-grained, clastic arenite and yellowish volcanic rocks, tuff, and
dark-gray volcanic rocks. Tuff in places altered to granulite and phyllite
chert, jasper, graywacke, basalt; 4a, medium to coarse gravel, arkose, phyllite
4b, minor sandstone, arkose, phyllite

PERMIAN
Clarion lime-stone and arenaceous lime-stone; minor chert, argillite,
sandy lime-stone

12
May not all be of the same age
1. Phosmites, spherulite, small irregular bodies of pale gray and
pale green quartz
2. Fine to medium-grained, pale gray and green quartz druse

PERMIAN (?) 12
Clarion quartz, sandstones, and conglomerate; age unknown

Geological boundary (defined, approximate, assumed) ...
Faulting, trace known (horizontal, vertical) ...
Faulting, trace unknown (predicted) ...
Primary flow structure in granite rocks (horizontal, vertical) ...
Sedimentary, granite (inclined, vertical) ...
Laminated (inclined) ...
Trend of approximately horizontal beds ...
Flow (inferred, apparent, assumed) ...
Thrust fault (defined, assumed) ...
Major dyke zones ...
Anticlines (arrow indicates plunge) ...
Synclines ...

1.11
The oldest map units (including legend symbols 1, 2, and 3) in the area are Permian or older limestone, mudstone, and chert, probably equivalent to the Stikine assemblage, exposed to the southeast in the Golden Bear Mine area. These units are complexly folded and faulted, and are also cut by numerous intrusive (?) bodies of peridotite, serpentinite, gabbro, and pyroxenite.

Lower Triassic units (legend symbol 4) include mudstone, cherts, subordinate limestone and mafic to intermediate volcanic rocks (greenstone). Small bodies of peridotite, serpentinite and other mafic to ultramafic intrusive rocks may be locally abundant.

Large stocks and batholiths of diorite, quartz diorite, and granodiorite (legend symbol 6), of probable Lower or Middle Triassic age have been observed to intrude the older rock units.

The Upper Triassic Stuhini Group (legend symbols 7 and 8) comprises a monotonous sequence of greenstones, either basalt or andesite flows and pyroclastic breccias, tuff plus minor interbedded mudstone, wacke and chert. Stuhini Group units are thought to be the major unit underlying the Metla Property.

Northeast of the Metla is an isolated klippe (?) of Upper Triassic Sinwa Formation (legend symbol 9). This unit is a valuable regional marker, being distinct in its appearance and composed of thin-bedded limestone, chert and sandstone.

Lower and Middle Jurassic Laberge Group, Takwahoni Formation (legend symbol 11) is present north of Trapper Lake, part of a regionally extensive unit trending both to the northwest and southeast. The Takwahoni comprises conglomerate, sandstone, and greywacke.

Upper Jurassic to Early Cretaceous Augite Diorite is noted south of the property, near Tatsamenie Lake (legend symbol 12d).

The youngest rocks in the area are Late Cretaceous to Early Tertiary-aged units of the Sloko Group (legend symbol 14). This unit comprises an extensive unit of subaerial rhyolite, dacite and trachyte pyroclastic breccia, tuff and subordinate flows. Possibly co-magmatic quartz-feldspar porphyry plugs and dykes (legend symbol 15) and stocks of quartz monzonite (legend symbol
16) are also present, notably east and southeast of the Metla Property.

The regional structure is dominated by a broad open fold trending southerly from Tatsamenie Lake, affecting Lower Triassic and Paleozoic units in the south, and a strongly developed northwest trending fold sequence affecting Cretaceous and older units. The older north-trending pattern of folding is thought to be the result of the Tahltanian Orogeny, which left a marked hiatus or unconformity at the base of the Upper Triassic Stuhini Group. The younger northwest-trending pattern of deformation is possibly related to a major period of southeast-directed thrust faulting along the King Salmon Fault. This latter period of deformation occurred at the close of the Jurassic."

PROPERTY GEOLOGY AND GEOCHEMISTRY

In the northern part of the Met II property, the Golden Glory 5 and 6 are predominantly andesites and andesitic tuffs with minor shear and breccia zones and minor diorite intrusions. Just south, in the Golden Glory 7 and 8 claims, there seems to be a more gradual contact between andesite and diorite. This area, however, is pre-dominantly silicified and brecciated volcanic and sedimentary rocks. This area is on strike with the Metla discovery, only 2 km west. The hydrothermal alteration and slightly higher occurrence of sulfides (up to 10% pyrite, 2% chalcopyrite, 2% sphalerite and 2% hematite) seems to be part of the same system as the Metla ground. In the southwestern part of the property there is a large intrusive unit of massive diorite and granodiorite with only trace mineralization.
A total of 34 rock, 83 soil and 1 silt sample were taken from the Golden Glory 5-9 claims. No samples were taken on the Golden Child 1-3 claims.

Soil samples were taken at shallow depths still within the 'A' horizon. The samples were placed in Kraft paper bags and analyzed for Au by fire assay prep with A.A. finish and were tested for 31 elements by the I.C.P. method. Rock samples were analyzed for the same.

The results returned from the soil samples were generally low with only a few exceptions: (see figure 4)

L2 6+00E 340 ppm Cu
L3 0+00E 230 ppm Cu
L3 7+50E 250 ppm Cu

The results for the rock samples were lower than expected although some noted exceptions were present

26806 Mineralized quartz lens 2300 ppm Cu within hydrothermal altered zone
26836 10 cm wide chear 5825 ppm Cu, 9.5 ppm Ag,
 60 ppm Mo
26861 silicified breccia 407 ppm Cu, 2.0 ppm Ag
26863 silicified tuff 447 ppm Cu
26851 silicified breccia 993 ppm As
CONCLUSIONS

The Met II Property partly surrounds the Metla Prospect at 1 km to the east and 3 km to the south. To the north, on Golden Glory 5 and 6 claims, andesites and andesitic tuffs pre-dominate. On Golden Glory 7 and 8 andesites and diorites give way to silicified and brecciated volcanic and sedimentary rocks. This unit appears to be an extension from the Metla Property 4 km west. This seems to be an area of more intense hydrothermal alteration and mineralization.
Company: Core Ventures Ltd.
STATEMENT OF COSTS

REVISED DATE: Nov. 22/91

Claims:
Golden Glory 5-9, Gdn Child 1-3
Hi-Tec #: CYRMZ
Prime #: CYRMZ
Total Budget: $25,072.22

Project: Met 11
Work Period: August 13 - August 20/91

PROJECT PREPARATION

<table>
<thead>
<tr>
<th>Name</th>
<th>Designation</th>
<th>Chargeout Rate</th>
<th>Rate</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daigle</td>
<td>Pr. Geologist</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butler</td>
<td>Pr. Geologist</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V.Kuran</td>
<td>Expl. Manager</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maps (7900)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOBILIZATION/DEMOBILIZATION

<table>
<thead>
<tr>
<th>Name</th>
<th>Designation</th>
<th>Chargeout Rate</th>
<th>Rate</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daigle</td>
<td>Pr. Geologist</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carstins</td>
<td>Prospector</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hebditch</td>
<td>Technician</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mackie</td>
<td>Technician</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Trav</td>
<td>Van-Smith-Van</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Wing</td>
<td>Saithers-Metl</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Fares</td>
<td></td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domicile</td>
<td></td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicopter</td>
<td></td>
<td></td>
<td>$345.00/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Mob/Deobb
$4,459.25

FIELD SALARIES

<table>
<thead>
<tr>
<th>Name</th>
<th>Designation</th>
<th>Chargeout Rate</th>
<th>Rate</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daigle</td>
<td>Pr. Geologist</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carstins</td>
<td>Prospector</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hebditch</td>
<td>Technician</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mackie</td>
<td>Technician</td>
<td></td>
<td>$345.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Field
$2,755.00

GEOCHEMISTRY AND LABORATORY SERVICE

<table>
<thead>
<tr>
<th>Service</th>
<th>Quantity</th>
<th>Chargeout Rate</th>
<th>Rate</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>76 samples</td>
<td></td>
<td>$16.4/ICAP, Au geochem</td>
<td>$1,246.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocks</td>
<td>6 samples</td>
<td></td>
<td>$13.25/ICP, gold FA/AA</td>
<td>$106.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Geoche
$1,352.40

<table>
<thead>
<tr>
<th>Service</th>
<th>Quantity</th>
<th>Chargeout Rate</th>
<th>Rate</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freight to lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Lab
$2,036.80

RENTALS:

<table>
<thead>
<tr>
<th>Service</th>
<th>Quantity</th>
<th>Chargeout Rate</th>
<th>Rate</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Rental</td>
<td></td>
<td></td>
<td>$22.00/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Eq Ren
$396.00

FIELD SUPPLIES

<table>
<thead>
<tr>
<th>Service</th>
<th>Quantity</th>
<th>Chargeout Rate</th>
<th>Rate</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposables/Photocopies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Photocopies
$231.02

Expenditing - Vancouver

<table>
<thead>
<tr>
<th>Service</th>
<th>Quantity</th>
<th>Chargeout Rate</th>
<th>Rate</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
<th>Amount Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Transportation
$575.00

Chargeout rate:

- **$345.00/day**
- **$295.00/day**
- **$225.00/day**
- **$153.00/day**
- **$13.25/sample preparation**
- **$22.00/day**
- **$540.00**
- **$1,363.95**
- **$66.85/day**
- **$545.00/hr**
- **$1,380.00**
- **$76.00**
<table>
<thead>
<tr>
<th>Description</th>
<th>15.00%</th>
<th>7.00%</th>
<th>Sub-Total</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td></td>
<td></td>
<td>$204.75</td>
<td>$204.75</td>
</tr>
<tr>
<td>Data Compilation</td>
<td></td>
<td></td>
<td>$776.25</td>
<td>$776.25</td>
</tr>
<tr>
<td>Project Management</td>
<td>15.00%</td>
<td></td>
<td>$3,178.25</td>
<td>$3,178.25</td>
</tr>
</tbody>
</table>

| 6ST @ | | | $24,366.56 | $24,366.56 |
| GST @ 7.00% | | | $1,705.66 | $1,705.66 |

| TOTAL | | | $26,072.22 | $26,072.22 |
I, Paul Daigle, currently of 5041 Woodland Drive, Pierrefonds, Quebec, hereby declare that:

1. I am a graduate of Concordia University (1989) and hold a B.Sc. degree in Geology Specialization.

2. I have been employed by various mineral exploration companies since 1988.

3. I have assisted in the work program on the MET II project described in this report.

4. I do not have any interest in the MET II project nor do I expect to receive any.

[Signature]

Paul J. Daigle, B.Sc.
CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM
Prime Exploration Ltd.
10th Floor-Box 10
808 West Hastings Street
Vancouver, B.C. V6C 2X6

REPORT No.
S3082

SAMPLE(S) OF
Soils/Silt

INVOICE #:
17989
P.O.:
1S-0478-SG1

REMARKS: Hi-Tec Resource Management Ltd.

<table>
<thead>
<tr>
<th>Au</th>
<th>ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>26802</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 11+50W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 11+00W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 10+50W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 10+00W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 09+50W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 09+00W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 08+50W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 08+00W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 07+50W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 07+00W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 06+50W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 05+50W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 05+00W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 04+50W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 04+00W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 03+50W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 03+00W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 02+50W</td>
<td><5</td>
</tr>
<tr>
<td>L1 1+00N 02+00W</td>
<td><5</td>
</tr>
</tbody>
</table>

COPIES TO: J. Foster
INVOICE TO: Prime Exploration - Vancouver

Aug 22/91

SIGNED

For enquiries on this report, please contact Customer Service Department.
Samples, Pulps and Rejects discarded two months from the date of this report.
CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM
Prime Exploration Ltd.
10th Floor-Box 10
808 West Hastings Street
Vancouver, B.C. V6C 2X6

SAMPLE(S) OF
Soils/Silt

Project: CYRMZ Hi-Tec

REMARKS: Hi-Tec Resource Management Ltd.

Au
ppb

L1 1+00N 01+50W 5
L1 1+00N 01+00W <5
L1 1+00N 00+50W <5
L2 0+00E <5
L2 0+50E <5
L2 1+00E <5
L2 1+50E <5
L2 2+00E <5
L2 2+50E <5
L2 3+00E <5
L2 3+50E <5
L2 4+00E <5
L2 4+50E <5
L2 5+00E <5
L2 5+50E <5
L2 6+00E 5
L2 6+50E <5
L2 7+00E <5
L2 7+50E <5
L2 8+00E <5

COPIES TO: J. Foster
INVOICE TO: Prime Exploration - Vancouver

Aug 22/91

SIGNED

For enquiries on this report, please contact Customer Service Department.
Samples, Pulps and Rejects discarded two months from the date of this report.
CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Exploration Ltd.
10th Floor-Box 10
808 West Hastings Street
Vancouver, B.C. V6C 2X6

SAMPLE(S) OF Soils/Silt

Project: CYRMZ Hi-Tec

REMARKS: Hi-Tec Resource Management Ltd.

Au
ppb

L2 8+50E <5
L2 9+00E <5
L2 9+50E <5
L2 10+00E <5
L2 10+50E <5
L2 11+00E <5
L2 11+50E <5
L2 12+00E <5
L2 12+50E <5
L2 13+00E <5
L3 00+00E <5
L3 00+50E <5
L3 01+00E <5
L3 01+50E <5
L3 02+00E <5
L3 02+50E <5
L3 03+00E <5
L3 03+50E <5
L3 04+00E <5
L3 04+50E <5

COPIES TO: J. Foster
INVOICE TO: Prime Exploration - Vancouver

Aug 22/91

SIGNED

For enquiries on this report, please contact Customer Service Department.
Samples, Pulps and Rejects discarded two months from the date of this report.
CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Exploration Ltd.
10th Floor-Box 10
808 West Hastings Street
Vancouver, B.C. V6C 2X6

SAMPLE(S) OF Soils/Silt

Project: CYRMZ Hi-Tec

REMARKS: Hi-Tec Resource Management Ltd.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 05+00E</td>
<td><5</td>
</tr>
<tr>
<td>L3 05+50E</td>
<td><5</td>
</tr>
<tr>
<td>L3 06+00E</td>
<td>5</td>
</tr>
<tr>
<td>L3 06+50E</td>
<td><5</td>
</tr>
<tr>
<td>L3 07+00E</td>
<td><5</td>
</tr>
<tr>
<td>L3 07+50E</td>
<td><5</td>
</tr>
<tr>
<td>L3 08+00E</td>
<td><5</td>
</tr>
<tr>
<td>L3 08+50E</td>
<td><5</td>
</tr>
<tr>
<td>L3 09+00E</td>
<td><5</td>
</tr>
<tr>
<td>L3 09+50E</td>
<td>15</td>
</tr>
<tr>
<td>L3 10+00E</td>
<td>15</td>
</tr>
<tr>
<td>L3 10+50E</td>
<td>5</td>
</tr>
<tr>
<td>L3 11+00E</td>
<td>15</td>
</tr>
<tr>
<td>L3 11+50E</td>
<td><5</td>
</tr>
<tr>
<td>L3 12+00E</td>
<td>5</td>
</tr>
<tr>
<td>L3 12+50E</td>
<td><5</td>
</tr>
</tbody>
</table>

COPIES TO: J. Foster
INVOICE TO: Prime Exploration - Vancouver

Aug 22/91

SIGNED

For enquiries on this report, please contact Customer Service Department.
Samples, Pulps and Rejects discarded two months from the date of this report.
CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM Prime Exploration Ltd.
10th Floor-Box 10
808 West Hastings Street
Vancouver, B.C. V6C 2X6

REPORT No. S3099

INVOICE #: 18020
P.O.: R3423

SAMPLE(S) OF Rock

P. Daigle
Project: CYRMZ Hi-Tec

REMARKS: Hi-Tec Resource Management Ltd.

Au ppb

26801 <5
26803 <5
26804 <5
26805 <5
26806 5
26807 <5

COPIES TO: J. Foster
INVOICE TO: Prime Exploration - Vancouver

Aug 22/91

SIGNED

For enquiries on this report, please contact Customer Service Department.
Samples, Pulps and Rejects discarded two months from the date of this report.
I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

Report No.: M9608
Page No.: 1 of 3
File No.: AX26A
Date: AUG-27-1991

SAMPLE

Sample #	Ag	Al	As	B	Ba	Be	Bi	Ca	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Se	Sn	Sr	Tl	V	W	Y	Zr	I	Rr	Er	Th	Pa	Fm	Md	No	Lr	Rf	Db	Es	Fm					
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47

REPORT:
A 5 gms sample is digested with 2 ml of 3:1 HCl/HNO3
at 95°C for 90 min and diluted to 10 ml with deionized H2O.
This method is partial for many oxide elements.

SIGNED: [Signature]
I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

Sample No.	Ag (ppm)	Al (ppm)	As (ppm)	B (ppm)	Be (ppm)	Bi (ppm)	Ca (ppm)	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Fe (ppm)	K (ppm)	Mg (ppm)	Mn (ppm)	Mo (ppm)	Na (ppm)	Ni (ppm)	P (ppm)	Pb (ppm)	Sb (ppm)	Se (ppm)	Sn (ppm)	Sr (ppm)	Ti (ppm)	V (ppm)	W (ppm)	Y (ppm)	Zn (ppm)	Zr (ppm)		
L2 6+00 E	< 1.8	25	30	< 1.5	< 1.5	< 1.5	27	30	150	4.5	0.17	0.84	0.17	0.84	0.65	2	0.03	69	1500	6	5	14	10	37	560	140	10	23	58	7	2	4
L2 6+50 E	< 2.2	15	35	< 1.5	< 1.5	< 1.5	20	25	50	8.3	0.41	0.94	3.20	0.94	0.65	2	0.03	150	1500	5	5	4	10	19	690	95	9	66	34	9	8	4
L2 7+00 E	< 1.5	25	30	< 1.5	< 1.5	< 1.5	27	30	170	4.2	0.23	0.93	680	0.93	680	0.24	0.02	140	1100	5	5	4	10	25	1100	130	10	7	50	5	2	4
L2 7+50 E	< 2.1	25	10	< 1.5	< 1.5	< 1.5	26	27	85	3.5	0.55	0.97	520	0.97	520	0.25	0.03	150	1100	5	5	10	10	25	970	195	10	8	49	6	2	4
L2 8+00 E	< 2.7	15	20	< 1.5	< 1.5	< 1.5	30	280	110	4.0	0.56	0.97	600	0.97	600	0.24	0.04	170	1100	5	7	10	7	29	1100	110	10	5	44	6	2	4

Notes
- 0.5 g sample is digested with 2 ml of 3:1 HCl/HNO3 at 95°C for 90 min and diluted to 10 ml with DI H2O.
- This method is partial for many oxide materials.

Signed:

TSI/91
A 0.5 gm sample is digested with 2 ml of 3:1 HCl/HNO₃ at 95°C for 90 min and diluted to 10 ml with DI H₂O. This method is partial for many oxide materials.
I.C.A.P. PLASMA SCAN

Aqua-Regia Digestion

| SAMPLE # | Ag | Al | As | B | Ba | Be | Bi | Ca | Cd | Co | Cr | Cu | Fe | K | Mg | Mn | Mo | Na | Ni | P | Pb | Sb | Sc | Sn | Sr | Ti | V | W | Y | Zn | Ir |
|----------|----|----|----|---|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| L3 10+00 E | <1 | 3.0 | 110 | <10 | 88 | <1 | <5 | 0.89 | <1 | 28 | 220 | 120 | 5.0 | 0.46 | 0.95 | 700 | <2 | 0.01 | 150 | 1200 | <5 | 14 | <10 | 36 | 920 | 130 | <10 | 9 | 56 | 7 |
| L3 10+50 E | <1 | 3.0 | 88 | <10 | 100 | <1 | <5 | 0.86 | <1 | 28 | 200 | 130 | 5.0 | 0.51 | 0.96 | 780 | <2 | 0.01 | 140 | 1200 | <5 | 13 | <10 | 37 | 990 | 130 | <10 | 10 | 56 | 7 |
| L3 11+00 E | <1 | 2.8 | 70 | <10 | 88 | <1 | <5 | 0.96 | <1 | 28 | 210 | 110 | 4.8 | 0.39 | 0.94 | 750 | <2 | 0.02 | 140 | 1200 | <5 | 18 | <10 | 43 | 1000 | 130 | <10 | 6 | 91 | 5 |
| L3 11+50 E | <1 | 3.1 | 40 | <10 | 77 | <1 | <5 | 1.0 | <1 | 31 | 350 | 120 | 6.7 | 0.34 | 1.0 | 690 | <2 | 0.02 | 190 | 1000 | <5 | 12 | <10 | 38 | 1100 | 140 | <10 | 8 | 67 | 6 |
| L3 12+00 E | <1 | 2.9 | 60 | <10 | 90 | <1 | <5 | 1.1 | <1 | 33 | 290 | 150 | 4.7 | 0.53 | 1.0 | 870 | <2 | 0.02 | 200 | 1000 | <5 | 13 | <10 | 39 | 1200 | 130 | <10 | 11 | 60 | 9 |
| L3 12+50 E | <1 | 2.9 | 60 | <10 | 79 | <1 | 10 | 1.1 | <1 | 39 | 490 | 110 | 4.7 | 0.64 | 1.1 | 670 | <2 | 0.02 | 360 | 840 | <5 | 10 | <10 | 39 | 920 | 120 | <10 | 9 | 55 | 7 |

A 5 gm sample is digested with 2 ml of 3:1 HCL/HNO3 at 95 C for 90 min and diluted to 10 ml with DI H2O. This method is partial for many oxide materials.

Signed:

TSI/91