PROSPECTING ASSESSMENT REPORT
ON THE
EAGLE RIDGE CLAIM

NEW WESTMINSTER MINING DIVISION
North Kwoiek Creek Area, British Columbia

Location:

NTS : 92 1/4E
Latitude : 50°08'30"N
Longitude : 121°43'W

Claims:

EAGLE RIDGE (Tenure No. 303561)

Consultant:

A. Ismay Associates, Inc.
1620 - 1140 West Pender Street
Vancouver, BC
V6E 4G1
(604 689-9554

Owned By:

Pacific Talc Ltd.
408 - 1755 W Broadway
Vancouver, BC
V6J 4S5
(604) 731-1097

Prepared By:

Neil V. Froc, P.Eng.

September, 1992

A. ISMAY ASSOCIATES INC.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>2.0</td>
<td>DETAILED TECHNICAL DATA AND INTERPRETATION</td>
<td>4</td>
</tr>
<tr>
<td>3.0</td>
<td>ITEMIZED COST STATEMENT</td>
<td>5</td>
</tr>
<tr>
<td>4.0</td>
<td>AUTHORIZED QUALIFICATIONS</td>
<td>6</td>
</tr>
</tbody>
</table>

Figures

- **Figure 1** Location Map
- **Figure 2** Claim Map
- **Figure 3** Traverse/Geology Map

Appendices

- **Appendix I** XRD Analytical Procedures

A. ISMAY ASSOCIATES INC.
1.0 INTRODUCTION

The Eagle Ridge claim is situated approximately 165 km northeast of Vancouver, BC near the junction of North Kwoiek Creek and Kwoiek Creek 35 km northwest of North Bend, BC (see Figure 1).

The mineral claim is located within the New Westminster Mining Division on NTS map sheet 921/4E, centered on geographic coordinates 50°08'30"N latitude and 121°43'W longitude (see Figure 2). The claim is 100% owned by Pacific Talc Ltd of 408 - 1755 West Broadway, Vancouver, BC.

Pertinent claim data is summarized as follows:

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Units</th>
<th>Record No.</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle Ridge</td>
<td>6</td>
<td>303561</td>
<td>August 29/92</td>
</tr>
</tbody>
</table>

Assessment credit is applied for under this report.

Four wheel drive access to the claims is gained from North Bend via 36 km of Fletcher Challenge maintained gravel road north along the west bank of the Fraser River to Kwoiek Creek and 10 km of unmaintained gravel road west to North Kwoiek Creek.

The claim was first staked in 1991 when talc exposures were identified in road cuts adjacent to North Kwoiek Creek. The work completed in this report, by A. Ismay Associates, Inc. of #1620 - 1140 West Pender Street, Vancouver, BC, is the first known exploration work carried out on the claim. The property was staked on the basis of its potential to host an economic talc orebody.

The central portion of the claim was prospected from August 12 - 14, 1992 near the access road to determine the extent of the talc mineralization exposed along the main road cut. Three samples were taken and submitted for XRD analysis of talc, tremolite, serpentine and chlorite, and a detailed traverse/map was completed along the road cut (see Figure 3).
2.0 DETAILED TECHNICAL DATA AND INTERPRETATION

The traverse completed along the road cut has been included as Figure 3. The figure indicates the location of the road surveyed by compass/chain method, rock outcrops, area prospected and location of samples.

The main rock type in the claim area is a medium to dark green-grey phyllite which strikes northwest and dips near vertical to the southwest. The phyllite hosts the talc mineralization discovered on the claim. The talc is platy and light to dark greyish green weathering buff to brown. Serpentinite is also associated with the talc mineralization.

The talc zones identified in outcrop are very narrow ranging in width from several centimetres up to 5 metres.

The only talc exposures identified were along the main road cut.

The locations of the three samples are indicated on Figure 3 with descriptions and analytical results as follows. The XRD analysis was done by Kathy Willmer, B.Sc., XRD technician, of A. Ismay Associates, Inc using equipment owned by Pacific Talc Ltd. All analytical work was completed at the laboratory facilities of Bacon, Donaldson and Associates Ltd., 12271 Horseshoe Way, Richmond, BC.

SAMPLE DESCRIPTIONS

<table>
<thead>
<tr>
<th>Sample #</th>
<th>% Talc</th>
<th>% Tremolite</th>
<th>% Serpentine</th>
<th>% Chlorite</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>87701</td>
<td>65</td>
<td>18</td>
<td>0</td>
<td>17</td>
<td>Grab Sample (greenish-grey talc)</td>
</tr>
<tr>
<td>87702</td>
<td>7</td>
<td>0</td>
<td>93</td>
<td>0</td>
<td>Grab Sample (light green, hard serpentine)</td>
</tr>
<tr>
<td>87703</td>
<td>26</td>
<td>24</td>
<td>0</td>
<td>50</td>
<td>Grab Sample (greenish-grey talc)</td>
</tr>
</tbody>
</table>

The XRD analytical procedure has been included in Appendix 1.

The initial prospecting on the claims has not identified any significant zones of talc mineralization. The zones are very narrow in width and are exposed only along the road cut. Only limited prospecting in areas not traversed during this program is warranted.
3.0 ITEMIZED COST STATEMENT

Salaries:

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. Froc (Geologic Engineer)</td>
<td>3</td>
<td>$400</td>
<td>$1,200.00</td>
</tr>
<tr>
<td>J. Veldhuis (Assistant)</td>
<td>2</td>
<td>$200</td>
<td>$400.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>364.50</td>
</tr>
<tr>
<td>Meals</td>
<td>126.47</td>
</tr>
<tr>
<td>Samples Analysis</td>
<td>200.00</td>
</tr>
<tr>
<td>Report Writing</td>
<td>525.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtotal</td>
<td>2,815.97</td>
</tr>
<tr>
<td>Administration Fee (10%)</td>
<td>281.60</td>
</tr>
<tr>
<td>Total</td>
<td>3,097.57</td>
</tr>
<tr>
<td>GST (7%)</td>
<td>216.83</td>
</tr>
</tbody>
</table>

PROGRAM TOTAL: $3,314.40
I, NEIL VICTOR FROC, of 45170 Redwood Avenue, Sardis, British Columbia, do hereby certify that:

I am a graduate of the University of Saskatchewan with a Bachelor of Engineering Degree in Geology, 1986.

I am a graduate of the Northern Alberta Institute of Technology, Edmonton, Alberta with a diploma in Mineral Resources, 1981.

Prior to 1986, I was actively employed in mineral exploration in British Columbia, Saskatchewan and Arizona. One year was not spent in mineral exploration as employment was as a senior engineering technician (geotechnical).

Since 1986 I have been actively employed in mineral exploration and mine evaluation in British Columbia.

I am a Professional Engineer registered in the Province of British Columbia (APEBC).

I am a Geological Engineer.

NEIL V. FROC, P. Eng.

A. ISMAY ASSOCIATES INC.
APPENDIX I

XRD ANALYTICAL PROCEDURES
Analytical Methodology

The method of X-ray Diffraction (XRD) Analysis has been used to establish the quantitative values of talc, serpentine, chlorite, and tremolite present in each of the grab samples analyzed.

The method of XRD is an analytical technique whereby a continuous wave of x-rays is directed toward the surface of a mounted powder sample which is rotated about an axis at a steady rate. As the sample is rotated, the x-rays bombarding the sample are diffracted by the many different sets of crystal lattice planes characteristic of each mineral present according to principles set out in Bragg's Law. The diffracted x-rays are collected by a counter and recorded on a strip chart as a peak. Each mineral has a set of atomic planes with its own d-spacing and produces its own peak. The peaks for each mineral are distinctly characteristic and vary in intensity and position of rotation. An example of a recorded XRD scan is shown in Figure 1.

XRD is mainly employed in the qualitative identification of minerals and elements. In order to perform quantitative XRD, standards are required. A standard is a material which has been analyzed and contains a known amount of mineral(s). Its properties are compared to those of an unknown material to quantify the unknown's composition. In the case of XRD, the property used is the height of a peak or peaks from a given mineral. The standards chosen for quantitative XRD analyses were taken from the J&J talc deposit 18 km to the southeast containing the same materials that are being analyzed.

To quantify the composition of the minerals present in a sample, the measured peak height(s) of each mineral present are compared against a set of calibration curves developed from the XRD analyses of the known standards.
Figure 1 Example of XRD Scan

Two Theta (degrees)