ASSESSMENT REPORT

INDUCED POLARIZATION SURVEY

on the

FAWN 1-5 CLAIMS

Omineca, Mining Division N.T.S. 93 F/3E
53°12' North latitude and 125°08' West longitude

Prepared for:
WESTERN KELTIC MINES INC.
510 - 675 West Hastings Street
Vancouver, British Columbia
V6B 1N2

Prepared by:
Todd A. Ballantyne, P. Geo.

SJ GEOPHYSICS LTD.
11762 - 94th Avenue
Delta, British Columbia
Canada V4C 3R7

December 1993
<table>
<thead>
<tr>
<th>PROPERTY NAME(S)</th>
<th>FAWN PROPERTY (CLAIMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMODITIES PRESENT</td>
<td>Au, Ag, Zn, Pb</td>
</tr>
<tr>
<td>B.C. MINERAL INVENTORY NUMBER(S), IF KNOWN</td>
<td>NTS 93.F.13.E</td>
</tr>
<tr>
<td>MINING DIVISION</td>
<td>DMINECA</td>
</tr>
<tr>
<td>LATITUDE</td>
<td>53° 12' N</td>
</tr>
<tr>
<td>LONGITUDE</td>
<td>125° 08' W</td>
</tr>
</tbody>
</table>

REFERENCES TO PREVIOUS WORK:

- [See Bibliography](#)
<table>
<thead>
<tr>
<th>TYPE OF WORK IN THIS REPORT</th>
<th>EXTENT OF WORK (IN METRIC UNITS)</th>
<th>ON WHICH CLAIMS</th>
<th>COST APPORTIONED</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGICAL (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOPHYSICAL (line-kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induced Polarization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOCHEMICAL (number of samples analysed for ...)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRILLING (total metres; number of holes, size)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELATED TECHNICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling/assaying</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralogic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallurgic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROSPECTING (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREPARATORY/PHYSICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal surveys (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topographic (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photogrammetric (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line/grid (kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road, local access (kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trench (metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground (metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOR MINISTRY USE ONLY</th>
<th>NAME OF PAC ACCOUNT</th>
<th>DEBIT</th>
<th>CREDIT</th>
<th>REMARKS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value work done (from report)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value of work approved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value claimed (from statement)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value credited to PAC account</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value debited to PAC account</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accepted ... Date ...</td>
<td>Rept. No.</td>
<td></td>
<td></td>
<td>Information Class</td>
</tr>
</tbody>
</table>

TOTAL COST
TABLE OF CONTENTS

1. Introduction ... 1
2. Claims .. 1
3. Claims Location and Access .. 1
4. Field Work and Instrumentation .. 3
5. Data Presentation ... 4
6. Topography and Climate .. 4
7. Property Geology and Mineralization ... 5
8. Interpretation .. 6
9. Recommendations ... 12
10. Conclusion .. 12
11. References .. 13

Appendix I Statement of Expenditures
Appendix II Statement of Qualifications
Appendix III Pseudosections

LIST OF FIGURES
Location Map .. i
Claim Map .. 2
1. Introduction

A Time Domain Induced Polarization survey was completed by SJ Geophysics Ltd. for Western Keltic Mines Inc. on the Fawn Property. The Fawn 1-5 Claims (Property) is located approximately 120 kilometres southwest of Vanderhoof, B.C., in the Omineca mining division, B.C. (N.T.S. 93 F/3E).

The purpose of the survey was to search for disseminated sulfides, to aid in the mapping of local geology and to follow up on the 1991 magnetometer and VLF-EM survey results.

2. Claims

The Fawn 1-5 claims (Figure 2.), are located in the Omineca mining division and are owned by Henry Awmack and are held under option by Western Keltic Mines Inc. Claim data is summarized as follows:

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Mineral Tenure No.</th>
<th>No. of Units</th>
<th>Record Date</th>
<th>Expiry Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fawn 1</td>
<td>243221</td>
<td>20</td>
<td>March 15, 1991</td>
<td>1998</td>
</tr>
<tr>
<td>Fawn 5</td>
<td>305450</td>
<td>20</td>
<td>October 13, 1991</td>
<td>1997</td>
</tr>
</tbody>
</table>

3. Claims Location and Access

The Fawn Property is situated on the Nechako Plateau of central British Columbia, approximately 120 kilometres southwest of Vanderhoof. The claims are centered at 53°12' north latitude and 125°08' west longitude.

Access to the property is via the Kluskus-Malaput forest service road, which is also used for logging. From the Westar mill at Engen on Highway 16 it is 146 kilometres to the north side of the property. The Kluskus-Malaput road angles through the property while a branch road, the Van Tine road, provides good access through the northern part of the property. In general four-wheel drive vehicles are not required to reach the property, but they are required to access areas of the property which have been clear-cut logged.
4. Field Work and Instrumentation

The Induced Polarization survey was completed during the period of October 22, 1993 to November 6, 1993, which includes 14 production days and 2 mobilization days. The field crew consisted of John Ashenhurst (Senior Technologist), Rolf Krawinkel (Geophysicist) and three assistants. Induced Polarization surveying totaled 20.7 kilometres, of which 19.55 kilometres (of 50 metre dipole separation) was actual grid line coverage and 1.15 kilometres on L900N was re-surveyed with a 25 metre dipole separation. A portion of line 900N was repeated at a smaller dipole spacing to provide more detailed information about areas of interest that intersect line 900N. Survey production was affected by warmer than seasonal weather causing rain and wet snow. This excess moisture affected the operation of the IP cables and slowed survey production at the beginning of the job. The moisture problem was resolved and normal survey production continued.

The survey grid was cut and changed by Equity Engineering Ltd. personnel shortly before the start of the IP survey. Chainage notes were supplied to SJ Geophysics Ltd. to produce a survey grid corrected for slope variations.

The Time Domain Induced Polarization survey used a pole-dipole array with an "a" spacing of 50 m and a six dipole separation. The data was recorded digitally with an Androtex Ltd. model TDR-6 IP receiver from a series of 50 metre six-wire cables connected to one metre length steel stakes. The transmitter used in this survey was a Phoenix IPT1 time domain powered by an 8 Hp Honda motor generator. Transmitting time for the current was two seconds on and two seconds off. During the current off time, chargeability data was recorded for the following time windows: delay time to the first window = 80 ms, the ten sample windows widths following the delay were 100 ms each.

The data was processed and plotted daily by a geophysicist and discussed with the client representative D. Caulfield. Upon completion of lines 2900N through 700N the data was sent to SJ Geophysics Ltd. in Vancouver. Syd Visser in consultation with the field crew recommended the addition of lines 500N, 300N to extend an anomaly seen on line 700N. It was also recommended to re-surveying of a portion of line 900N at 25 metre dipoles for increased detailing over an area of geological interest near the Giver Zone. Surveying south of line 300N was not extended further due to budget limitations.

Previous geophysical fieldwork comprising of a magnetometer and VLF-EM survey and test surveying with MaxMin horizontal loop EM were performed in 1991. The results of

5. Data Presentation

The apparent chargeability data for third and sixth windows and the apparent resistivity data were plotted as pseudosections. Plotted above the pseudosections in profile form is filtered apparent resistivity and filtered apparent chargeability (second window). The filtered profile data is calculated for each plotting point, as shown on the pseudosection, by averaging the data values located under the plotting point, which are within a triangle having 45 degree sides. Plan maps for filtered total chargeability and filtered resistivity have been plotted as contour maps. Note that the pseudosection plotting positions are ideal and the plan maps have been corrected for slope along the grid lines. The following is a list of the enclosed data plots:

Pseudosections
1 to 15 Lines 300N to 2900N

Plate G1
Induced Polarization Survey
Filtered Total Chargeability Plan Contours

Plate G2
Induced Polarization Survey
Filtered Total Resistivity Plan Contours

Plate G3
Induced Polarization Survey
Compilation Map

6. Topography and Climate

Topography is moderate with elevation ranging from 1200 metres on Van Tine Creek to nearly 1700 metres along the ridge top. Along the Van Tine road up to 30 metres of glacial till has been exposed in road cuts.

The majority of the property is covered by spruce and lodgepole pine. Undergrowth consisting of alder and huckleberry is light.

The Fawn property is subject to a continental climatic regime having warm summers and cold winters. Snowfall is moderate with accumulation being one to two metres during the winter.

SJ Geophysics Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466
7. Property Geology and Mineralization

The following description of property geology and mineralization has been paraphrased from Todoruck, S.L. (1993): Qualifying Report on the Fawn 1-5 Claims as Revised on July 30, 1993, report included in Western Keltic Mines Inc. Prospectus.

The Fawn property is largely underlain by a sequence of Lower to Middle Jurassic Hazelton Group rhyolitic and andesitic volcanics with minor epiclastic sediments. Rock units assigned to the Lower to Middle Jurassic Hazelton Group generally strike northerly to westerly and are shallow dipping (5° to 30°) to the south and west. These units have been intruded by Cretaceous diorite stocks of the Quanchus Intrusions and later by felsic dykes thought to be feeders to the Tertiary Ootsa Lake rhyolites.

Two stages of intrusive activity are present on the Fawn property. The first consists of fine to medium grained, equigranular diorite which appears to correlate to the Cretaceous Capoose Batholith. Near it's contacts, the diorite is commonly pyritic, irregular in texture and has hornfelsed the intruded andesites. The second consists of a variety of felsic dykes which have intruded all lithologies on the northwestern portion of the property (including the diorite) and are assumed to be feeders for the Ootsa Lake Group volcanics. Generally, the felsic dykes are weakly altered without saussuritization of feldspars or chloritization of biotite.

Epithermal-style alteration and mineralization typify the Giver and Givermore Zones. The Giver Zone comprises silicified and brecciated rock which has been cut by several generations of quartz ± sulphide ± carbonate ± barite veining and filling of open spaces. Silicification is gradational into mixed argillic alteration and silicification, which carries lower gold and silver values. The Givermore Zone is a collection a float boulders found 280 metres west of the Giver trench along the same strong VLF-EM conductor. Outcrop exposure is poor. The boulders are all intensely silicified and sericitized and contain locally abundant pyrite ± arsenopyrite, but lack the brecciation of the Giver Zone. Significant silver, lead and arsenic has been noted in both zones.

Extensive sericitization and pervasive oligoclase alteration on the northwestern end of the Fawn grid is accompanied by abundant pyrite. Anomalous soil geochemistry in this area was not confirmed by sampling of this material to reveal significant base or precious metal mineralization.
8. Interpretation

The Induced Polarization survey has outlined four anomalies of interest in the area covered by the 1993 IP survey. All of the anomalies warrant further investigation. Anomalies A and B are characterized by strong IP responses that are associated with resistivity lows. Anomaly C is characterized by a moderate IP response and is associated with a gradational resistivity response. The resistivity data suggests a contact or contact zone which has been mineralized, silicified or both. This anomaly may be associated with a lithological contact or an intrusive feature. The IP anomaly disappears to the north, which coincides with a break in the resistivity data, suggesting a cross-cutting and different rock unit. This different rock unit also coincides with the southern extent of IP anomaly B. Anomaly D is a weak IP anomaly that is associated with high resistivity.

The pole-dipole configuration, used in this survey, yields data that is biased in its anomaly response pattern by defining more strongly (sometimes only) the leading edge of the pantleg anomaly effect. The predominant anomaly pattern generated is the first leg of the pantleg effect plotted on a 45 degree angle dipping to the east. The second leg of the anomaly is often weak to non-existent.

A 50 metre dipole separation limits the resolution possible in the location, size and depth (of narrow strong anomalies) of IP and resistivity anomalies. Therefore, information regarding the location and size of anomalies in this report are estimates with a probable resolution of ± 25 metres.

In this report, IP response and chargeability anomaly are used interchangeably. The chargeability and resistivity data presented in this report is apparent chargeability and apparent resistivity. The word apparent is generally be omitted.

The survey lines will be discussed individually below. The interpretation is also presented on the compilation map, plate G3. This map may contain anomalies that were not discussed in the text due to their less prominent nature in the pseudosections, but which may yield further interest when compared with known geology, geochemistry, and previous geophysical work.

Line 300N

The most prominent IP anomaly on line 300N is a strong response between 950E and 1150E that appears to have depth extent. This anomaly is noted well at surface and at depth, responding well on the sixth dipole. The filtered chargeability profile for the M2 window displays a very narrow chargeability low within this high. This may be due to

SJ Geophysics Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466
narrow near surface siliceous feature that is reflected on the resistivity section at approximately 1000E (this may mark the eastern edge of a zone of higher resistivity response extending west to approximately 400E). A small moderate IP response which appears to be at depth, centered approximately at 675E, may be a continuation of the strong IP anomaly between 950E and 1150E, a combination of the latter and near surface feature at 525E or is a separate anomaly due to a near surface source at 525E which when presented in a pseudosection implies that the anomalous response is at depth. A resistivity low at 750E may be associated with this IP anomaly.

A very weak and broad IP response is seen between 200W and 100E. This weak feature is associated with an increase in the apparent resistivity data and continues north to line 500N.

There is a resistivity low between 50W and 400E. At the west end of the line are two prominent resistivity high anomalies at 350W and 200W.

Line 500N

The strong IP anomaly on line 300N continues north to line 500N and is associated with a strong apparent resistivity low. It appears to be steeply dipping and is located between 925E and 1075E and have depth extent. This anomaly may represent an intrusive feature or shear zone with disseminated mineralization. The apparent spreading of the anomaly to the east with depth, as noted in the M3 apparent chargeability pseudosection, is not due to lithology, but due to the width of the conductive zone and or the conductive nature of the feature near surface (a shallow, highly conductive structure near surface can cause the fifth and sixth dipoles to measure strong responses, which when presented in pseudosection form, make the anomaly appear as though it were at depth).

A weak and broad IP response with moderate depth extent is noted between 350W and 100W.

There is a sharp resistivity anomaly in this zone at 225 W, which likely a continuation from line 300N. The apparent resistivity data indicates a low resistive zone between the IP responses which dominate the ends of the line. There is a marked change in the resistivity data west of the baseline.

Line 700N

The strong anomaly noted on lines 300N and 500N is less represented on line 700N. The response is strong, but much narrower and not strong at the surface. There appear to be
two separate parallel chargeability anomalies located between 750E and 950E. An exact location of these anomalies at depth is difficult given the nature of pole-dipole arrays. The anomalies may be centered on 750E and 950E, as shown in the M2 filtered chargeability profile above the pseudosections. There also appears to be a subtle resistivity high between these IP responses.

West of 200E is a resistivity high, likely representing a change in lithology. There is little IP response west of 200E, but there are several anomalies represented on the 6th dipole, which may represent conductive source(s) at depth.

Line 900N

The anomaly trending along the eastern ends of lines 300N through 700N has either disappeared or is located further to the east of what had been surveyed. There is a very small indication of it's existence on the 6th dipole of the first measurement location at 1100E. A small IP response is noted at depth in the area of 175E, but may be represented at 100E as shown in the filtered chargeability profile above the pseudosections. There is a very weak IP response on the 5th and 6th dipoles along most of the line.

The resistivity data has delineated three narrow resistive anomalies between 525E and 850E and a high resistive area between 350W and 200E. The 25 metre dipole IP data for this area shows the resistivity response to be very complex. The western half of this area is associated with a very weak IP response, which may dip to the east and is located from approximately 375W to 400W and is associated with a resistivity low.

At approximately 400E is a very weak IP response and a resistivity low which correlates with a VLF anomaly from the 1991 Magnetometer and VLF-EM survey.

Line 1100N

No strong IP response is noted. A weak IP anomaly at the end of the line is associated with the west edge of a prominent resistivity high which is located between 400W and 75W. A very weak IP response, slightly elevated over the background response, located between 150E and 300E has a coincident narrow resistivity anomaly at 150E. A moderate resistivity contrast at 650E has no associated IP response and may be due to siliceous contact or fault.
Line 1300N
There are three sub-anomalous IP responses on line 1300N. They consist of anomalies on the sixth dipole information and all are associated with resistive anomalies. The resistivity data indicates subtle low resistivity zone between 100W and 350E, most likely a lithological feature. The background level of the chargeability response appears to be increasing northward. These IP anomalies are of minor interest.

Line 1500N
A very weak, narrow chargeability anomaly at 250E corresponds with an edge of a resistivity high on it's western edge. The subtle resistivity low trough from line 1300N continues on to line 1500N between 300W and 250E. Within this zone, are several weak chargeability anomalies. Between 200W and 50W is a very weak IP response, which is likely the response of two separate anomalies. A prominent resistivity contrast at 300W likely indicates a change in lithology, with a more resistive rock unit to the west.

Line 1700N
A moderate chargeability anomaly begins at 350E, ends at approximately 100E and correlates with lower resistivity values. The eastern edge correlates with a sharp resistivity contrast (higher resistivity to the east). The above zone may actually extend as far as 200W exhibiting a very weak chargeability response slightly above the background response. There is a break in the continuity of the anomalous area at approximately 250W that correlates with a narrow resistivity low.

A narrow, moderate strength resistivity high is located just east of this break and may represent a siliceous feature such as a weakly mineralized shear zone. Resistivity data at the west end of the line shows an increase in the resistivity response, possibly indicating a lithological change.

Line 1900N
A single IP anomaly predominates line 1900N. It appears to be a near surface feature with shallow depth extent, resembling a slab type feature. The IP response is located in an area of low resistivity, with definite resistivity contrasts on either end. There may be a lithological contact in the vicinity of 350E and another at approximately 100E. This anomaly continues from line 1700N through to line 2100N.
Line 2100N

Line 2100N shows a similar response to that of line 1900N. The majority of the IP response is moderate between 350E and 100E with a strong shallow and narrow IP response located at 200E. A strong resistivity contrast at approximately 50E may represent a change in lithology. A much weaker and narrow resistivity anomaly at 400E may also be lithological.

Line 2300N

The IP response which had extended through lines 1700N through 2100N is now very shallow and narrow. A narrow, moderate strength IP response is centered on 125E and likely has little depth extent.

The resistivity data indicates a possible lithological change at 400E, with the lithology to the west being more resistive. A narrow break in the resistivity data at 25E is either a narrow break in the lithology (if it is the same on either side) such as a silicified zone or contact between differing rock units.

Line 2500N

A very weak and narrow chargeability anomaly centered on 150E correlates with a resistivity high. There are two notable resistivity contrasts: one at 200E and the other (which is lower in magnitude) located at 100W. Topography appears to correlate with a chargeability low which separates two chargeability anomalies between lines 2300N and 2700N.

Line 2700N

A zone of weak anomalous IP response extends from 200W to 500E. Within this area is a strong IP anomaly centered at 250E. It is narrow, perhaps as large as 50 metres, has a shallow depth extent and correlates with a resistivity low. Estimation of the size is purely qualitative as the source could be as small as 10 m very near surface with a very high concentration of metallic minerals.

There are several resistivity anomalies between 525W and 250E. Between 100W and 0 is a moderate resistivity high. It is thought to be near surface by it's lack of response on the distant dipoles when the dipole array is centered on it's location. The next anomaly, located below 200W, does not show a near surface response. This anomaly may exist at depth or it is attributed to a near surface causative source very near to the current

SJ Geophysics Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466
electrode, i.e. the anomaly at approximately 0E. The last resistivity anomaly moving to
the west shows little near surface anomalous response, but does appear to represent a
narrow source at depth.

Line 2900N

One IP anomaly dominates line 2900N. It is located between 0 and 50E, is moderate in
strength and is a near surface feature. It is also associated with a resistivity low. There
are two resistivity anomalies. The first is located approximately 150E and is very narrow
and shallow. The second anomaly is strong and has an apparent, near surface, width from
325W to 200W with a moderate depth extent.

Remember, the anomaly locations sited here are the ideal station locations along each line
and are not slope corrected. The data for the filtered chargeability and resistivity maps
presented in the pocket have been corrected for slope along each line.
9. Recommendations

The most prominent anomaly on the survey grid is anomaly A. The grid should be extended to the south and east to further delineate this anomaly.

Anomaly B, although lower in magnitude than A, should also be investigated further with IP surveying to determine its extent.

Anomalies C and D should be correlated closely with available geological, geochemical and past geophysics to determine whether further field work is warranted. Anomaly D if proved interesting could be investigated further with IP surveying to determine its extent.

As is often the case, budget limitations affect the amount of time that can be spent interpreting geophysical data. It is recommended to further interpret the IP survey results with correlation to the geological and geochemical information and the 1991 geophysical results would be beneficial and may yield more subtle geological information.

10. Conclusion

The Induced Polarization survey has outlined four anomalies of interest in the area covered by the 1993 IP survey. All of the anomalies warrant further investigation.

Anomalies A and B, which are located in the southeast and northeast corners respectively, are characterized by strong IP responses that are associated with resistivity lows. These anomalies are left open and the grid should be expanded to fully delineate their extent.

Anomaly C, which is located in the central area of the grid, is characterized by a moderate IP response and is associated with a gradational resistivity response. The resistivity data suggests a contact or contact zone which has been mineralized, silicified or both. This anomaly may be associated with a lithological contact or an intrusive feature. The IP anomaly disappears to the north, which coincides with a break in the resistivity data, suggesting a cross-cutting and different rock unit. This different rock unit also coincides with the southern extent of IP anomaly B.

Anomaly D, located in the southwestern corner of the grid, is a weak IP anomaly that is associated with high resistivity.

SJ Geophysics Ltd.

20 December, 1993

SJ Geophysics Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466
REFERENCES

APPENDIX I
Statement of Expenditures
APPENDIX I

STATEMENT

I, Todd A. Ballantyne, of 3542 West Sixteenth Avenue, Vancouver, British Columbia, DO HEREBY CERTIFY:

1. THAT the expenditure statement to follow is correct to my personal knowledge of the facts, which were provided by Western Keltic Mines Inc.

20 December, 1993

Todd A. Ballantyne, B.Sc., P-Geo.
Geophysicist

SJ Geophysics Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466
Statement of Expenditures

Professional Fees and Wages:
David A. Caulfield, P. Geo.
17.75 days @ $375 / day $ 6,656.25
Tom Bell, Prospector
12.5 days @ $300 / day 3,750.00
David Reid, Linecutter
13.25 days @ $250 / day 3,312.50
Carrol Rosner, Linecutter
12 days @ $250 / day 3,000.00
Clerical
2 hours @ $20 / hour 40.00 $ 16,758.75

Expenses
Materials and Supplies $ 675.76
Printing and Reproductions 38.13
Camp Fuel 641.08
Equipment Rental 160.00
Accommodation & Meals 7,352.66
Truck Rental 1,596.05
Automotive Expense 25.12
Freight 21.30
Travel 92.07
Automotive Fuel 513.48
Telephone Distance Charges 218.72
Expediting 117.60
Courier and Telefax 56.80 11,508.77

Sub-Contracts
Geophysical Contracting 25,048.38
Geophysical Assessment Report 2,700.00

Equipment Rentals
4x4 Truck 8 days @ $80 / day $ 640.00
4x4 Truck, Standby, 8 days @ $10 / day 80.00
Handheld Radios 24 days @ $5 / day 120.00
Chainsaw 21 days @ 10 / day 210.00 1,050.00

Management Fees:
15 % on expenses only $ 1,726.32
7.5 % on sub-contracts 2,081.13 3,807.45

Subtotal: $60,873.35

G.S.T. 7 % on Subtotal 4,261.13

Total $ 65,134.48
APPENDIX II
Statement of Qualifications
Statement Of Qualifications

I, Todd A. Ballantyne, of 3542 West Sixteenth Avenue, Vancouver, in the Province of British Columbia, DO HEREBY CERTIFY:

1. THAT I am a graduate of the University of British Columbia with a Bachelor of Science degree in Geophysics.

2. THAT I have been engaged in mining and petroleum exploration since 1987.

3. THAT I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

4. THAT this report is based on fieldwork carried out by SJ Geophysics Ltd. personnel in October/November 1993.

5. THAT I own no shares, directly or indirectly in Western Keltic Mines Inc., nor do I expect to acquire any shares. I have no interest, directly or indirectly, in the Fawn Property.

6. THAT I consent to the use by Western Keltic Mines Inc. of this report in a Statement of Material Facts or any such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers.

20 December, 1993

Todd A. Ballantyne, B.Sc., P. Geo.
Geophysicist

SJ Geophysics Ltd. 11762 - 94th Ave., Delta, B.C. Canada tel (604) 582-1100 fax (604) 589-7466
APPENDIX III
Induced Polarization Pseudosections
LINE 1 900 N

INDUCED POLARIZATION SURVEY

POLE-DIPole ARRAY

DEPTH POINT

N : 1, 2, 3, 4, ...
*6 SPACING = 50.0 METRES

PSEUDOSECTION

WESTERN KELTIC MINES LTD.
FINN CLAIMS
OMINECA MINING DIVISION
DATE : 24/10/93 REF : 93 F/3E
SCALE = 1 : 5000
SJ GEOPHYSICS LTD.
LINE: 1100 N

INDUCED POLARIZATION SURVEY

POLE-DIPOLE ARRAY

DEPTH POINT

N 1, 2, 3, 4, ...
"A" SPACING = 50.0 METRES

PSEUDOSECTION

WESTERN KELTIC MINES INC.

FAWN CLAIMS

OMINECA M.O., B.C.

DATE: 26/10/93

SCALE = 1: 5000

REF: 93 F/3E

SJ GEOPHYSICS LTD.

AR 23262
LINE: 1700 N

INDUCED POLARIZATION SURVEY

POLE-DIPOLE ARRAY

PSEUDOSECTION

WESTERN KELTIC MINES INC.
FAWN CLAIMS
OMINECA M.D., B.C.

DATE: 26/10/93 REF: 93 F/3E
SCALE = 1: 5000

SJ GEOPHYSICS LTD.

AR 23262
INDUCED POLARIZATION SURVEY

POLE-DIPOLE ARRAY

DEPTH POINT

N = 1, 2, 3, 4...

"G" SPACING = 50.0 METRES

PSEUDOSECTION

WESTERN KELTIC MINES INC.

FAWN CLAIMS

OMINECA M.D., B.C.

DATE: 29/10/93 REF: 93 F/3E

SCALE = 1: 5000

SJ GEOPHYSICS LTD.
LINE: 2100 N

INDUCED POLARIZATION SURVEY

POLE-DIPOLE ARRAY

DEPTH POINT

N = 1, 2, 3, 4, ...
"A" spacing = 50.0 METRES

PSEUDOSECTION

WESTERN KELTIC MINES INC.

FAWN CLAIMS
OMINECA M.D., B.C.

DATE: 30/10/93 REF: 93 F/3E

SCALE = 1: 5000

SJ GEOPHYSICS LTD.
LINE: 2300 E

INDUCED POLARIZATION SURVEY

POLE-DIPOLE ARRAY

DEPTH POINT

N = 1, 2, 3, 4...
"R" SPACING = 50.0 METRES

PSEUDOSECTION

WESTERN KELTIC MINES INC.
FAWN CLAIMS
OMINECA M.D., B.C.

DATE: 30/10/93 REF: 93 F/3E

SCALE = 1: 5000

SJ GEOPHYSICS LTD.
LINE : 2500 N

INDUCED POLARIZATION SURVEY

POLE-DIPOLE ARRAY

DEPTH POINT

N = 1, 2, 3, 4, ...
"A" SPACING = 50.0 METRES

PSEUDOSECTION

WESTERN KELTIC MINES INC.

FAWN CLAIMS

OMINECA M.O., B.C.

DATE : 31/10/93 | REF : 93 F/3E

SCALE = 1 : 5000

SJ GEOPHYSICS LTD.
LINE: 2900 N

INDUCED POLARIZATION SURVEY

POLE-DIPOLE ARRAY

DEPTH POINT

N = 1, 2, 3, 4, ...
"R" SPACING = 50.0 METRES

PSEUDOSECTION

WESTERN KELTIC MINES INC.

FAWN CLAIMS

OMINECA M.D., B.C.

DATE: 1/11/93 REF: 93 F/3E

SCALE = 1: 5000

SJ GEOPHYSICS LTD.
LEGEND

TIME DOMAIN INDUCED POLARIZATION SURVEY
POLE-DIPOLE SURVEY
N = 1 to 6 WITH A 50m DIPOLE SEPARATION
CURRENT SOURCE EAST OF DIPOLE

FILTERED TOTAL CHARGEABILITY WAS
CALCULATED USING AN FULL TRIANGULAR FILTER

CONTOUR INTERVAL: 2 mSEC

WESTERN KELTIC MINES INC.
FAWN CLAIMS
INDUCED POLARIZATION SURVEY
FILTERED CHARGEABILITY PLAN
OMNECA, M.D.
N.T.S. 93 F/3E

SCALE AS SHOWN
METRES

NOVEMBER 1993
PLATE G1
LEGEND
TIME DOMAIN INDUCED POLARIZATION SURVEY
POLE-DIPOLE SURVEY
N = 1 to 6 WITH A 50m DIPOLE SEPARATION
CURRENT SOURCE EAST OF DIPOLE

- STRONG CHARGEABILITY
- MODERATE CHARGEABILITY
- WEAK CHARGEABILITY (likely lithological)
- LOW RESISTIVITY
- HIGH RESISTIVITY

WESTERN KELTIC MINES INC.
FAWN CLAIMS
INDUCED POLARIZATION SURVEY
COMPILATION MAP
OMINECA, M.D.
N.T.S. 93 F/3E
SCALE AS SHOWN
METRES
NOVEMBER 1993
PLATE G3