REPORT ON DIAMOND DRILLING
ON THE MOUNT POLLEY PROPERTY
LIKELY, B.C., CARIBOO MINING DIVISION
N.T.S. 093 A/12 52°30'N, 121°35'W

GEOLOGICAL BRANCH
ASSESSMENT REPORT

23,839

March 1995
Rad Pesalj, P.Eng.

FILMED
TABLE OF CONTENTS

1.0 INTRODUCTION .. 1
2.0 LOCATION .. 1
3.0 HISTORY OF EXPLORATION 1
4.0 THE PROPERTY .. 2
5.0 REGIONAL AND LOCAL GEOLOGY 3
6.0 DEPOSIT GEOLOGY .. 3
7.0 ROCK CHEMISTRY .. 5
8.0 ROCK ALTERATION .. 6
9.0 COPPER-GOLD MINERALIZATION 6
10.0 1994 DIAMOND DRILLING PROGRAM 7
11.0 DRILLING RESULTS ... 9

CERTIFICATE OF QUALIFICATIONS…… 10

REFERENCES .. 11
STATEMENT OF COST .. 12

FIGURES

Fig.1 Location Map After page 1
Fig.2 Claim Map After page 2
Fig.3 Surface Geology After page 3
Fig.4 Borehole Location Map After page 7

APPENDICES

APPENDIX I Borehole Logs
APPENDIX II Analytical Data
SUMMARY

The Mount Polley deposit occurs in a multiple alkalic intrusive complex within the Quesnellia Terrane, an allochton of dominantly Upper Triassic to Lower Jurassic mafic to intermediate volcanics and comagmatic intrusives that lies along the western margin of the Omineca Belt.

The deposit is hosted by an intrusion breccia developed near the top of the intrusive complex or in remnants of volcanics. The host intrusion and hydrothermal breccias are composed of fragments of syenodiorite, monzonite porphyry and minor volcanics cemented by a late monzonite porphyry intrusive phase. The zones of significant copper-gold mineralization Central Zone and West Zone, have been defined by closely spaced drilling. The Central Zone is a tabular body of mineralized intrusion and hydrothermal breccias with northerly strike and moderate easterly dip. The zone measures 1,100m in length and 200 to 450m in width. The West Zone is a subvertical body of northwesterly trending mineralized breccias 500m long and 300m wide. Both zones are open below the present drilling depth. Principal primary minerals, auriferous chalcopyrite and magnetite, occur as stockwork and disseminations.

Although some sections of the upper most parts of the deposit are strongly oxidized, there is no evidence of supergene copper enrichment. Copper-gold mineralization is contained within pervasive K-feldspar-biotite-diopside alteration which is in turn surrounded by a propylitic pyrite-epidote-albite alteration zone.

In 1994, Gibraltar Mines Ltd. completed a program consisting of 1,215.85 m. of NQ drilling under an option agreement with Imperial Metals Corporation. The objective of the program was to confirm the results of previous drilling and to obtain samples for metallurgical testing.
1.0 INTRODUCTION

The Mount Polley deposit is one of several alkalic porphyry copper-gold deposits in British Columbia. The deposit is associated with a Lower Jurassic alkalic subvolcanic intrusive complex and related volcanics of Lower Jurassic age. The close relationship between the Mount Polley deposit, host intrusion and volcanic phases provides a base for the interpretation of local geological history, formation of the deposit and associated alteration assemblage.

This report presents the results of a diamond drilling program on the Mount Polley property carried out by Gibraltar Mines in 1994 under an option agreement with Imperial Metals Corporation.

2.0 LOCATION

The Mount Polley deposit is located in south-central British Columbia (52° 30'N, 121° 35'W), 56 kilometres northeast of Williams Lake, west of Quesnel Lake and eight kilometres southwest of Likely, B.C. The property is accessible from Highway 97 at 150 Mile House via 76 km of paved road and 14 km of forestry road (Fig. 1). The topography of the area is characterized by moderate hills with recently clear-cut and partially forested landscape. The highest topographic point is Mount Polley with an elevation of 1265 meters above sea level.

3.0 HISTORY OF EXPLORATION

The Mount Polley deposit is located in a historic placer mining district which at the end of last century experienced the famous Cariboo gold rush. In 1964, the federal-provincial airborne magnetic surveys indicated a prominent geophysical anomaly on Mount Polley and subsequent prospecting led to the discovery of copper mineralization. In the period between 1966 and 1987 Cariboo Bell Copper Mines, Highland Crow Resources, Teck Corporation, E & B Exploration Inc., Mascot Gold Mines and Corona Corporation conducted a series of exploration programs including prospecting, trenching, geochemical and geophysical surveying and completed 290 drill
holes totalling 33,736 meters of percussion, rotary and diamond drilling. Between 1988 and 1990, Imperial Metals Corporation completed an extensive exploration and evaluation program of the Mount Polley deposit. The exploration program included 238 NQ diamond drill holes totalling 27,566 meters and six bulk samples (130 tonnes) from surface trenches for pilot plant metallurgical testing. In 1990, following the completion of an ore reserve calculation, metallurgical testing, geotechnical study and an environmental impact assessment study, a feasibility study for 13,700 tonnes of ore per day open pit mine and mill was completed by Wright Engineers Limited.

4.0 THE PROPERTY

The Mount Polley property consists of 21 mineral claims covering an area of approximately 8,550 ha (Fig. 2). The property is owned and operated by Imperial Metals, #420 - 355 Burrard Street, Vancouver, B.C. V6C 2G8. The following is a list of claims with their names, record numbers, area and expiry dates.

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Record #</th>
<th>Units</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB 1</td>
<td>204470</td>
<td>20</td>
<td>1997/05/04</td>
</tr>
<tr>
<td>CB 4</td>
<td>204471</td>
<td>8</td>
<td>1997/05/04</td>
</tr>
<tr>
<td>CB 5</td>
<td>204472</td>
<td>20</td>
<td>1997/05/04</td>
</tr>
<tr>
<td>CB 8</td>
<td>204473</td>
<td>8</td>
<td>1997/05/04</td>
</tr>
<tr>
<td>CB 9</td>
<td>204474</td>
<td>20</td>
<td>1997/05/04</td>
</tr>
<tr>
<td>CB 16</td>
<td>204475</td>
<td>20</td>
<td>1997/05/04</td>
</tr>
<tr>
<td>CB 19</td>
<td>204476</td>
<td>20</td>
<td>2000/05/04</td>
</tr>
<tr>
<td>CB 20</td>
<td>204477</td>
<td>20</td>
<td>1997/05/04</td>
</tr>
<tr>
<td>PM- 1</td>
<td>206446</td>
<td>20</td>
<td>2000/09/17</td>
</tr>
<tr>
<td>PM- 2</td>
<td>206447</td>
<td>20</td>
<td>1999/09/17</td>
</tr>
<tr>
<td>PM- 3</td>
<td>206448</td>
<td>20</td>
<td>1997/09/17</td>
</tr>
<tr>
<td>PM- 4</td>
<td>206449</td>
<td>20</td>
<td>2000/09/14</td>
</tr>
<tr>
<td>PM- 5</td>
<td>206450</td>
<td>20</td>
<td>2000/09/29</td>
</tr>
</tbody>
</table>
The deposit is located in the Central Quesnel trough, a portion of the Quesnellia Terrane of the Canadian Cordillera that lies on the western margin of the Omineca Belt. Quesnellia is predominantly an allochthonous terrane which, during Upper Triassic and Lower Jurassic time, consisted of a volcanic island arc located to the west of Mesozoic North America. It was accreted to the Omineca Belt to the east during the Lower Jurassic.

In the central part of the Quesnel trough, between Polley Lake and Bootjack Lake, on the slopes of Mount Polley and Bootjack Mountain, an intermediate to alkalic intrusive complex is exposed. The complex consists of Polley stock and Bootjack stock. The stocks represent alkalic subvolcanic intrusions of similar age but exhibit contrasting lithology and texture.

The Polley stock of syenodiorite, monzonite porphyry and lesser pyroxenite composition forms the hills between Bootjack Lake and Polley Lake and hosts the Mount Polley deposit.

The Bootjack stock is heterogeneous in composition and varies lithologically from west to east from pseudolucite syenite porphyry to crowded orbicular syenite porphyry to granophyric nepheline syenite (Fraser, 1993).
1. Green lapilli tuff and crystal tuff
2. Syenodiorite
3. Monzonite porphyry-1
4. Intrusion breccia
5. Monzonite porphyry-2
6. Monzonite porphyry-3
7. Pyroxenite, gabbro
8. Augite porphyry dyke
9. Andesitic feldspar porphyry dyke

- Geological contact
- Fault
- Outcrop

Pit S19 outline

Imperial Metals Corporation
Mount Polley

Surface geology

Figure 3

NTS 93 A/12

January 1992
6.0 DEPOSIT GEOLOGY

The deposit is located on the western slope of Mount Polley, east of Bootjack Lake (Fig. 2). Six mineralized zones so far identified at Mount Polley are hosted mainly by the Polley stock. Hydrothermal breccia which cuts intrusion breccia and related intrusive phases is by far the most significant ore hosting lithology. Only insignificant amount of mineralization is hosted by volcanics.

Syenodiorite is the predominant lithology in the area between the Bootjack and Polley lakes. Syenodiorite is microgranular to porphyritic, light to dark grey and contains up to 70 percent subhedral prismatic plagioclase grains, interstitial secondary K-feldspar and varying amounts of biotite, green clinopyroxene and finely disseminated magnetite. Within the mineral deposit, the diorite has been pervasively affected by K-feldspar alteration that locally reaches 25 percent of the total mineral components. Syenodiorite is cut by amphibole-diopside-magnetite veinlets with pink potassium feldspar envelopes and by intrusion breccia in which diorite clasts represent the main constituent.

Monzonite porphyry a massive intrusive unit in the upper part of the Polley stock that forms the matrix to locally extensive intrusion breccias. The unit is a buff-to-pink, sub-porphyritic-to-porphyritic, leucocratic intrusive phase, with up to 40 percent subparallel prismatic plagioclase and minor clinopyroxene phenocrysts set in a microgranular anhedral aggregate composed of up to 50 percent K-feldspar, minor clinopyroxene and hornblende, and trace amounts of biotite, apatite, magnetite and sphene. Compared to syenodiorite, the monzonite porphyry contains less plagioclase, more secondary K-feldspar, and has a lower colour index. K-feldspar occurs predominately in the matrix, but also as occasional phenocrysts and rims on plagioclase phenocrysts. The rock contains small vesicular fillings of a carbonate, prehnite and a strongly pleochroic mineral interpreted as pumpellyite. Intrusion breccia hosts almost all economic copper-gold mineralization in the deposit outlined to-date (Fig. 3). A second breccia composed of a K-feldspar phytic monzonite matrix with syenodiorite, monzonite and pyroxenite clasts is located at the top of Mount Polley but is void of mineralization (Hodgson et al., 1976).
Intrusion breccia contains mainly fragments of syenodiorite, monzonite porphyry and lapilli tuff cemented by a pink monzonite porphyry phase. The breccia is matrix supported and locally contains up to 35 percent clasts. In the southern part of the Central Zone, breccia cement is often magnetite rich and carries an above average copper and gold concentration. Breccia clasts are subangular-to-rounded and average about 3 to 12 cm in size, although syenodiorite blocks up to 30m have been observed. Due to the size of the fragments, the contact with syenodiorite or monzonite porphyry can be sharp to gradational.

Pyroxenite and gabbro were encountered only in drill holes at the east shore of Bootjack Lake. The spatial distribution of this unit has been interpreted from ground magnetometer survey. Post-mineral intrusions of augite porphyry, andesitic feldspar porphyry, minette, monzonite porphyry and sanidine monzonite porphyry cross-cut mineralized zones.

Augite porphyry, andesitic feldspar porphyry and minette dikes occur as a northerly striking and east dipping swarm throughout the deposit. They are unaltered, crosscut all intrusive phases east of Bootjack Lake except pyroxenite and gabbro to which they are probably related. On surface, dikes are continuous along strike and have an average thickness of 4 metres. They occupy a zone about 900 metres wide and appear to preferentially cut the intrusion breccia rather than massive diorite (Hodgson et al., 1976).

Monzonite porphyry dikes have up to 60% plagioclase and a composition otherwise similar to the monzonite porphyry phase of the stock. Although very common in and adjacent to the intrusion breccia, only few have dimensions large enough to be shown on detailed geologic maps.

Quartz monzonite porphyry dikes, mapped only within the Bootjack stock are probably related to a quartz monzonite intrusion of possible Cretaceous age that outcrops at Gavin Lake, 10 km southwest of the deposit.

Sanidine monzonite dikes contain large tabular sanidine phenocrysts up to 2 cm in length together with phenocrysts of plagioclase, augite and apatite set in a matrix of K-feldspar and
plagioclase, with accessory biotite, aegirine-augite, magnetite and quartz. These dikes occur in
the upper part of the Polley stock and as matrix to the intrusion breccia at the top of Mount
Polley (Hodgson et al., 1976).

7.0 ROCK CHEMISTRY

The volcanic and intrusive rocks at Mount Polley display alkaline chemistry and mineralogy,
with general lack of quartz and abundant feldspathoids. The whole rock analyses of volcanics
and intrusive phases of the complex revealed nearly identical petrochemistry. The alkalis versus
silica plot confirms that the majority of samples are alkaline in composition, with only few
samples in the subalkaline field. The later samples probably contain silica introduced during the
process of copper-gold mineralization.

8.0 ROCK ALTERATION

Recent studies of Mount Polley deposit (Fraser, 1993 and 1994) have resulted in a
re-interpretation of the rock alteration pattern.

Two distinct alteration assemblages have been defined: a copper-gold bearing calc-potassic
alteration zone that is centred on the intrusive and hydrothermal breccias and a peripheral
propylitic zone with low metal concentrations.

Post-mineral crosscutting veinlets of prehnite and fibrous, often radial zeolites associated with
calcite are present in both alteration zones described above. These are most abundant in the
vicinity of the intrusion and hydrothermal breccias.

9.0 COPPER-GOLD MINERALIZATION

Detailed drilling of the Mount Polley deposit to-date has outlined two principal zones of
significant copper-gold mineralization known as the Central Zone and the West Zone. The two
zones are separated by a north-south trending fault. The Central Zone is a tabular body of
mineralized intrusion and hydrothermal breccia with a northerly strike and moderate eastward dip. The zone is explored 1100 m along strike and 200 to 450 m in width. The West Zone is a subvertical body of northwesterly trending mineralized breccias 500m long and 300m wide. Copper and gold values exhibit close spatial relationships with each other and with hydrothermal and intrusion breccias (Fig. 3).

Primary minerals in the deposit include magnetite (7%), chalcopyrite (1-3%), minor pyrite (less than 1%), traces of bornite and native gold. They occur as disseminations, and in fractures and cavities. The most common vein assemblage consists of chalcopyrite, magnetite and diopside with or without pyrite. Chalcopyrite also occurs as fine grained disseminations in the matrix of hydrothermal breccia and rarely as breccia cement. Bornite is rare, and is found in chalcopyrite-rich areas. Gold is in form of minute inclusions (5-40 microns) of native gold in chalcopyrite and its distribution is not affected by the degree of copper oxidation. Supergene minerals include malachite, amorphous chrysocolla, native copper, cuprite, digenite and covellite. As mentioned earlier, supergene minerals do not form an enriched zone. They generally concentrate at or near the present day surface, but can be found at depth as a result of circulation of oxidizing waters along the post-mineral faults and fractures. The supergene copper minerals contain 25 percent of total copper in the deposit. The intensity of oxidation is the highest in the southern part of Central Zone and the lowest in the northern part of the deposit.

A pyrite halo consisting of up to 6 percent pyrite and minor chalcopyrite and measuring 4500 m in length and up to 1000 m in width is formed east of and structurally above the mineralized intrusion and hydrothermal breccias.

10.0 1994 DIAMOND DRILLING PROGRAM

The program by Gibraltar Mines Ltd. was carried out between June 2 and June 15, 1994 and involved a Longyear 38 drill operated by LDS Diamond Drilling four men crew working two twelve hour shifts per day seven days per week. Core logging was performed by R. Graden and M. Rydman, supervised by G. Barker of Gibraltar Mines Ltd. The author, who worked
continuously on the property between 1988 and 1992, evaluated the results and completed the report. The program consisted of seven NQ size holes drilled to a maximum depth of 197.21 m below the surface. Five holes were completed in the Central Zone and two in the West Zone (Fig. 4). Borehole logs are presented in Appendix I of the report.

The split core from the program was stored on the property for further reference. Core samples were taken every 1.5 meters and sent to Gibraltar Mines Lab and Min-En Lab for analyses. A total of 771 samples were collected and analyzed for Au, total Cu, acid soluble Cu, acid soluble Fe, cyanide soluble Cu in acid soluble residue and cyanide soluble Cu in the original sample. A total of 69 samples were analyzed for total Cu and acid soluble Cu. Analytical data is presented in the Appendix II of the report.

11.0 DRILLING RESULTS

The significant drill intersections from the program are listed in Table I.

<table>
<thead>
<tr>
<th>Hole #</th>
<th>Interval</th>
<th>Width</th>
<th>TCu (%)</th>
<th>OxCu(%)</th>
<th>Au(g/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>94-101</td>
<td>115-200</td>
<td>85</td>
<td>0.54</td>
<td>0.28</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>245-365</td>
<td>120</td>
<td>0.53</td>
<td>0.19</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>475-535</td>
<td>60</td>
<td>0.32</td>
<td>0.01</td>
<td>0.48</td>
</tr>
<tr>
<td>94-102</td>
<td>20-65</td>
<td>45</td>
<td>0.30</td>
<td>0.19</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>80-165</td>
<td>85</td>
<td>0.31</td>
<td>0.09</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>210-260</td>
<td>50</td>
<td>0.38</td>
<td>0.04</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>330-395</td>
<td>65</td>
<td>0.30</td>
<td>0.02</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>420-460</td>
<td>40</td>
<td>0.39</td>
<td>0.04</td>
<td>0.66</td>
</tr>
<tr>
<td>94-103</td>
<td>120-200</td>
<td>80</td>
<td>0.30</td>
<td>0.17</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>255-295</td>
<td>40</td>
<td>0.33</td>
<td>0.10</td>
<td>0.59</td>
</tr>
<tr>
<td>94-104</td>
<td>105-190</td>
<td>85</td>
<td>0.45</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>210-547</td>
<td>337</td>
<td>1.00</td>
<td>0.13</td>
<td>0.48</td>
</tr>
</tbody>
</table>
The 1994 drill program by Gibraltar Mines tested two major integral parts of the Mount Polley porphyry system, namely the Central Zone and the West Zone with the main objective to confirm the results of previous exploration. The program also provided additional information to an existing exploration database which was utilized in ore reserve calculation in 1991 by Wright Engineers Ltd.

The areas drilled display various degrees of oxidation, from weekly oxidized northern part of the Central Zone to the highly oxidized southern part. The two holes completed in the West Zone encountered a deep mineralization and remained in it to the end of drilling at the depths of 166.72m and 197.20m below the surface. The depth of mineralization encountered in five holes in the Central Zone varies from 36.58m in hole 94-103 to 86.87m in hole 94-102. Hole 94-105 drilled a narrow width of mineralization in what appears to be the extreme northern limit of the Central Zone.

March 7, 1995
Rad Pesalj, P. Eng.
CERTIFICATE OF QUALIFICATIONS

I, Rad Pesalj, do hereby certify that:

I am a Consulting Geological Engineer residing at 18192 Claytonwood Crescent, Surrey, B.C., V3S 8G8.

I am a graduate in Geological Engineering of The University of Belgrade, Yugoslavia (1963).

I have practised within my profession in mineral exploration in Europe, Canada and the United States for the past thirty years.

I am a Fellow of the Society of Economic Geologists Inc. and The Association of Professional Engineers of British Columbia.

The opinions and conclusions contained herein are based on a review of available technical reports, drilling results and observations made during my three years of exploration of the Mount Polley property.

I own no direct, indirect or contingent interest in the Mount Polley property or shares or securities of Imperial Metals Corporation or associated companies.

March 7, 1995

Rad Pesalj, P. Eng.

McNaughton, K. (1990): Diamond Drilling Report, Mount Polley Project

STATEMENT OF COSTS

Personnel

<table>
<thead>
<tr>
<th>Name</th>
<th>Dates</th>
<th>Hours</th>
<th>Rate per Hour</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Pesalj</td>
<td>Jan. 26-Feb. 4, 1995</td>
<td>10 days</td>
<td>@ $300/day</td>
<td>$ 3,000.00</td>
</tr>
<tr>
<td>G. Barker</td>
<td>June 2-30, 1994</td>
<td>199</td>
<td>@ $33.77/hr</td>
<td>6,750.00</td>
</tr>
<tr>
<td>R. Graden</td>
<td>June 2-Aug. 31, 1994</td>
<td>616</td>
<td>@ $20.91/hr</td>
<td>12,880.56</td>
</tr>
<tr>
<td>M. Rydman</td>
<td>June 9-July 15, 1994</td>
<td>259</td>
<td>@ $20.91/hr</td>
<td>5,415.69</td>
</tr>
</tbody>
</table>

Drilling (June 2-18, 1994)

1,215.85m NQ size @ $78.74/m = 95,736.03

Analytical Cost

- 771 samples assayed for:
 - TCu, ASCu, ASFe, CNSCu on AS residue and CNSCu on original sample = 10,408.50
- 771 samples assayed for Au and 69 samples assayed for TCu and ASCu = 7,381.50

Vehicle Rental

- 3/4 ton 4x4 truck: 3 months @ $970/month = 3,880.00
- 1/2 ton 4x4 truck: 1 month @ $970/month

Supplies

- Core boxes: 215 @ $7.65/box = 1,848.00
- Sample bags: 775 @ $0.23/bag
- Miscellaneous: flagging, topo string, etc.

Total cost = $147,300.28

January 30, 1995
KP/Minor/costs:rt
APPENDIX I

Borehole Logs
GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG
 Hole No. PX/10 Page No. 1 of II

LOCATION: CENTRAL Zone
BEARING: --
LENGTH: 392 ft
LATTITUDE (N): 3243.16
CORE SIZE: NQ
LONGITUDE (E): 2299.86
ELEVATION: 1165.17

DATE COLLABRED: JUNE 2, 1994
DATE COMPLETED: JUNE 4, 1994

REMARKS

ROCK TYPES and ALTERATION SYMBOLS

<table>
<thead>
<tr>
<th>ROCK TYPES</th>
<th>Alteration Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synkrotene</td>
<td>Potassic alteration</td>
</tr>
<tr>
<td>Intrusive</td>
<td>Clay alteration</td>
</tr>
<tr>
<td>Mafic</td>
<td>Chlorite alteration</td>
</tr>
</tbody>
</table>

MISCELLANEOUS SYMBOLS

- bady broken rock
- lim = alteration
- downward displacement
- az = anatase
- epi = epidote
- bo = bomite
- ze = zircon
- ex = exsolved
- bro = brockland
- gz = graphite
- bpl = biotite
-jspx = spaltite
- kgz = kyanite
- pbl = plagioclase
- st = strong
- Go = non-directional
- SOW = stackwork
- DEX = deformed
- S = slate

ROCK TYPES and ALTERATION

<table>
<thead>
<tr>
<th>ROCK TYPES</th>
<th>Width of Structure (feet)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synkrotene</td>
<td>17'</td>
<td>Casing to 17'</td>
<td></td>
</tr>
<tr>
<td>Intrusive</td>
<td>20'</td>
<td>Lim - MoO3</td>
<td></td>
</tr>
<tr>
<td>Mafic</td>
<td>30'</td>
<td>45% Carb 3%</td>
<td></td>
</tr>
<tr>
<td>30% K-Spar</td>
<td>30'</td>
<td>45% Carb 3%</td>
<td></td>
</tr>
<tr>
<td>10% Qtz</td>
<td>30'</td>
<td>45% Carb 3%</td>
<td></td>
</tr>
<tr>
<td>Mafic</td>
<td>40'</td>
<td>45% Carb 3%</td>
<td></td>
</tr>
<tr>
<td>Arvonen</td>
<td>45'</td>
<td>45% Carb</td>
<td></td>
</tr>
<tr>
<td>Mafic</td>
<td>50'</td>
<td>45% Carb</td>
<td></td>
</tr>
</tbody>
</table>

BOTTOM DEPTHS

<table>
<thead>
<tr>
<th>Footage</th>
<th>Blocks</th>
<th>R.Q.D.</th>
<th>Sample Number</th>
<th>% TC%</th>
<th>% On Cu</th>
<th>% Ag%</th>
</tr>
</thead>
<tbody>
<tr>
<td>17'</td>
<td>1</td>
<td>95</td>
<td>85001</td>
<td>19</td>
<td>.14</td>
<td>.02</td>
</tr>
<tr>
<td>20'</td>
<td>1</td>
<td>40</td>
<td>85002</td>
<td>.12</td>
<td>.06</td>
<td>.01</td>
</tr>
<tr>
<td>25'</td>
<td>1</td>
<td>27</td>
<td>85003</td>
<td>.14</td>
<td>.11</td>
<td>.02</td>
</tr>
<tr>
<td>30'</td>
<td>1</td>
<td>99</td>
<td>85004</td>
<td>.10</td>
<td>.11</td>
<td>.07</td>
</tr>
<tr>
<td>35'</td>
<td>1</td>
<td>99</td>
<td>85005</td>
<td>.19</td>
<td>.15</td>
<td>.10</td>
</tr>
<tr>
<td>40'</td>
<td>1</td>
<td>99</td>
<td>85006</td>
<td>.23</td>
<td>.15</td>
<td>.14</td>
</tr>
<tr>
<td>45'</td>
<td>1</td>
<td>99</td>
<td>85007</td>
<td>.19</td>
<td>.15</td>
<td>.11</td>
</tr>
</tbody>
</table>

ASSAY RESULTS

- Remarks

NOTE:
- ND = Not Determined
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Cu</th>
<th>OxCu</th>
<th>Au</th>
<th>Ag/Ag</th>
<th>ASR</th>
<th>Ag/Ag on ASR</th>
</tr>
</thead>
<tbody>
<tr>
<td>85007</td>
<td>.72</td>
<td>.16</td>
<td>.15</td>
<td>.02</td>
<td>.54</td>
<td>.01 .05</td>
</tr>
<tr>
<td>85009</td>
<td>.29</td>
<td>.21</td>
<td>.27</td>
<td>.02</td>
<td>.45</td>
<td>.01 .15</td>
</tr>
<tr>
<td>85010</td>
<td>.19</td>
<td>.09</td>
<td>.27</td>
<td>.03</td>
<td>.60</td>
<td>.02 .10</td>
</tr>
<tr>
<td>85011</td>
<td>.12</td>
<td>.07</td>
<td>.13</td>
<td>.01</td>
<td>.51</td>
<td>.01 .05</td>
</tr>
<tr>
<td>85012</td>
<td>.15</td>
<td>.10</td>
<td>.15</td>
<td>.01</td>
<td>.49</td>
<td>.01 .05</td>
</tr>
<tr>
<td>85013</td>
<td>.10</td>
<td>.05</td>
<td>.29</td>
<td>.01</td>
<td>.53</td>
<td>.01 .05</td>
</tr>
<tr>
<td>85014</td>
<td>.10</td>
<td>.06</td>
<td>.14</td>
<td>.01</td>
<td>.41</td>
<td>.01 .05</td>
</tr>
<tr>
<td>85015</td>
<td>.18</td>
<td>.11</td>
<td>.24</td>
<td>.02</td>
<td>.45</td>
<td>.01 .10</td>
</tr>
<tr>
<td>85016</td>
<td>.17</td>
<td>.12</td>
<td>.20</td>
<td>.02</td>
<td>.42</td>
<td>.01 .12</td>
</tr>
<tr>
<td>85017</td>
<td>.18</td>
<td>.13</td>
<td>.26</td>
<td>.04</td>
<td>.45</td>
<td>.02 .15</td>
</tr>
<tr>
<td>85018</td>
<td>.16</td>
<td>.12</td>
<td>.19</td>
<td>.02</td>
<td>.45</td>
<td>.01 .25</td>
</tr>
<tr>
<td>85019</td>
<td>.17</td>
<td>.13</td>
<td>.23</td>
<td>.02</td>
<td>.31</td>
<td>.01 .05</td>
</tr>
</tbody>
</table>

GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (velai) < to core axis</th>
<th>Width of Structure (velai)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>BOTTOM DEPTHS</th>
<th>Footage</th>
<th>Enferred Core Recovery %</th>
<th>R.O.D.</th>
<th>Sample Number</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>ASSAY RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85020</td>
<td>.15</td>
<td>.09</td>
<td>.22</td>
<td>.01</td>
<td>.58</td>
<td>.01 .05</td>
</tr>
<tr>
<td></td>
<td>85021</td>
<td>.32</td>
<td>.23</td>
<td>.46</td>
<td>.05</td>
<td>.54</td>
<td>.02 .05</td>
</tr>
<tr>
<td></td>
<td>85022</td>
<td>.12</td>
<td>.07</td>
<td>.16</td>
<td>.02</td>
<td>.45</td>
<td>.01 .05</td>
</tr>
<tr>
<td></td>
<td>85023</td>
<td>.31</td>
<td>.24</td>
<td>.39</td>
<td>.06</td>
<td>.55</td>
<td>.02 .05</td>
</tr>
<tr>
<td></td>
<td>85024</td>
<td>.46</td>
<td>.33</td>
<td>.48</td>
<td>.09</td>
<td>.59</td>
<td>.04 .10</td>
</tr>
<tr>
<td></td>
<td>85025</td>
<td>.55</td>
<td>.29</td>
<td>.62</td>
<td>.16</td>
<td>.52</td>
<td>.10 .15</td>
</tr>
<tr>
<td></td>
<td>85026</td>
<td>.74</td>
<td>.41</td>
<td>.64</td>
<td>.33</td>
<td>.56</td>
<td>.22 .10</td>
</tr>
<tr>
<td></td>
<td>85027</td>
<td>.12</td>
<td>.20</td>
<td>.27</td>
<td>.52</td>
<td>.41</td>
<td>.39 .20</td>
</tr>
<tr>
<td></td>
<td>85028</td>
<td>.13</td>
<td>.27</td>
<td>.91</td>
<td>.58</td>
<td>.47</td>
<td>.40 .30</td>
</tr>
<tr>
<td></td>
<td>85029</td>
<td>.35</td>
<td>.19</td>
<td>.81</td>
<td>.07</td>
<td>.30</td>
<td>.02 .10</td>
</tr>
<tr>
<td></td>
<td>85030</td>
<td>.14</td>
<td>.88</td>
<td>.29</td>
<td>.12</td>
<td>.42</td>
<td>.03 .20</td>
</tr>
<tr>
<td></td>
<td>85031</td>
<td>.57</td>
<td>.47</td>
<td>.94</td>
<td>.12</td>
<td>.44</td>
<td>.02 .15</td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (velas) < to core axis</td>
<td>Width of Structure (velas)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
<td>BOTTOM DEPTHS</td>
<td>ASSAY RESULTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------</td>
<td>--------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Footage Blocks</td>
<td>R.Q.D.</td>
<td>% Cu</td>
<td>% Pb</td>
<td>% Zn</td>
<td>% Ag</td>
<td>% Au</td>
<td>Cu value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensely Altered Spoduminate & 200' to 233'</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85032</td>
<td>.59</td>
<td>.20</td>
<td>.82</td>
<td>.22</td>
<td>5.05</td>
<td>15.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85033</td>
<td>3.1</td>
<td>.23</td>
<td>.46</td>
<td>.04</td>
<td>5.09</td>
<td>10.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>172</td>
<td></td>
<td>86037</td>
<td>.13</td>
<td>.16</td>
<td>.36</td>
<td>.03</td>
<td>4.60</td>
<td>10.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>85034</td>
<td>.13</td>
<td>.13</td>
<td>.36</td>
<td>.03</td>
<td>3.54</td>
<td>10.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107</td>
<td></td>
<td>85035</td>
<td>.13</td>
<td>.13</td>
<td>.36</td>
<td>.03</td>
<td>4.60</td>
<td>10.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192</td>
<td></td>
<td>85036</td>
<td>.34</td>
<td>.23</td>
<td>.33</td>
<td>.08</td>
<td>3.99</td>
<td>10.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192</td>
<td></td>
<td>85037</td>
<td>.34</td>
<td>.05</td>
<td>.49</td>
<td>.05</td>
<td>4.30</td>
<td>10.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85038</td>
<td>.01</td>
<td>.13</td>
<td>.01</td>
<td>2.69</td>
<td>10.01</td>
<td>10.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85039</td>
<td>.06</td>
<td>.02</td>
<td>.06</td>
<td>2.98</td>
<td>10.01</td>
<td>10.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85040</td>
<td>.06</td>
<td>.02</td>
<td>.06</td>
<td>2.98</td>
<td>10.01</td>
<td>10.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85041</td>
<td>.04</td>
<td>.03</td>
<td>.05</td>
<td>.01</td>
<td>1.73</td>
<td>10.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85042</td>
<td>.08</td>
<td>.06</td>
<td>.12</td>
<td>.01</td>
<td>2.60</td>
<td>10.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85043</td>
<td>.08</td>
<td>.06</td>
<td>.12</td>
<td>.01</td>
<td>2.60</td>
<td>10.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>Graphic LOG</td>
<td>Structure (veins)</td>
<td>Width of Structure (veins)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Contact with sericite</td>
<td>250 m</td>
<td>30°</td>
<td>coarse</td>
<td>MnO₂ - lim</td>
<td>1.2%</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 m</td>
<td>30°</td>
<td>coarse</td>
<td>MnO₂ - lim</td>
<td>1%</td>
<td>↑</td>
<td>TRACE py, moderate epidote alt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 m</td>
<td>30°</td>
<td>coarse</td>
<td>MnO₂ - lim</td>
<td>1%</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 m</td>
<td>30°</td>
<td>coarse</td>
<td>MnO₂ - lim</td>
<td>1%</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Intermediate Brecia</td>
<td>250 m</td>
<td>30°</td>
<td>coarse</td>
<td>MnO₂ - lim</td>
<td>1.5%</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 m</td>
<td>30°</td>
<td>coarse</td>
<td>MnO₂ - lim</td>
<td>1%</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 m</td>
<td>30°</td>
<td>coarse</td>
<td>MnO₂ - lim</td>
<td>1%</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 m</td>
<td>30°</td>
<td>coarse</td>
<td>MnO₂ - lim</td>
<td>1%</td>
<td>↑</td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Cu</th>
<th>Au</th>
<th>Ag</th>
<th>Zn</th>
<th>Pb</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>60</td>
<td>95.4%</td>
<td>0.18</td>
<td>14</td>
<td>2.8</td>
<td>0.1</td>
</tr>
<tr>
<td>97</td>
<td>67</td>
<td>95.4%</td>
<td>0.10</td>
<td>0.06</td>
<td>0.24</td>
<td>0.01</td>
</tr>
<tr>
<td>98</td>
<td>67</td>
<td>95.4%</td>
<td>0.08</td>
<td>0.04</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>99</td>
<td>67</td>
<td>95.4%</td>
<td>0.08</td>
<td>0.04</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>100</td>
<td>67</td>
<td>95.4%</td>
<td>0.08</td>
<td>0.04</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>101</td>
<td>67</td>
<td>95.4%</td>
<td>0.08</td>
<td>0.04</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>102</td>
<td>67</td>
<td>95.4%</td>
<td>0.08</td>
<td>0.04</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>103</td>
<td>67</td>
<td>95.4%</td>
<td>0.08</td>
<td>0.04</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>104</td>
<td>67</td>
<td>95.4%</td>
<td>0.08</td>
<td>0.04</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>105</td>
<td>67</td>
<td>95.4%</td>
<td>0.08</td>
<td>0.04</td>
<td>0.16</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No. 94/01

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (velas)</th>
<th>Width of Structure (velas)</th>
<th>Mineralization</th>
<th>Ext. %</th>
<th>Mag</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>330</td>
<td>52 52°</td>
<td></td>
<td>Lim Along Fractures</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td>MnO, Limonite</td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>316</td>
<td></td>
<td></td>
<td>Diop Carborated</td>
<td>1-2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>310</td>
<td></td>
<td></td>
<td>High K-Spar alter</td>
<td>1-2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>315</td>
<td></td>
<td></td>
<td>Pyrite, mica, talc</td>
<td>1-2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>320</td>
<td></td>
<td></td>
<td>Pyrophyllite, arfvedsonite</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>225</td>
<td></td>
<td></td>
<td>Qtz-Ep-Co-Py</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>316</td>
<td></td>
<td></td>
<td>Diop Carborated</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>315</td>
<td></td>
<td></td>
<td>Qtz-Ep-Co-Py</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>315</td>
<td></td>
<td></td>
<td>Qtz-Ep-Co-Py</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>315</td>
<td></td>
<td></td>
<td>Qtz-Ep-Co-Py</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom Depths

- Footage: Blocks
- Estimated Core Recovery: %
- R.Q.D.

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>Ni</th>
<th>Co</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>85045</td>
<td>.13</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
</tr>
<tr>
<td>85046</td>
<td>.13</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
</tr>
<tr>
<td>85047</td>
<td>.13</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
</tr>
<tr>
<td>85048</td>
<td>.13</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
</tr>
<tr>
<td>85049</td>
<td>.13</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
</tr>
</tbody>
</table>

Note: The table contains data on rock types, alteration, mineralization, and assay results for the Mount Polley property.
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. %</th>
<th>Est. %</th>
<th>Footage Blocks</th>
<th>Enthalpy Change</th>
<th>R.Q.D.</th>
<th>Sample Number</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>As</th>
<th>CSW</th>
<th>CSW</th>
<th>ASR</th>
<th>Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELANOCRYS SYENODERDETE</td>
<td>ND</td>
<td>319' - 339'</td>
<td>8' 22' x 3' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>11%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85068</td>
<td>.31</td>
<td>.11</td>
<td>.54</td>
<td>.04</td>
<td>.43</td>
<td>.03</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>ERODED BULK, or large blasts - Strong K-Spar Art. Alum minerals, and 20% pyrite</td>
<td>ND</td>
<td>329' - 349'</td>
<td>6' 17' x 2' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>1%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85069</td>
<td>.22</td>
<td>.01</td>
<td>.33</td>
<td>.02</td>
<td>5.02</td>
<td>.01</td>
<td>.25</td>
<td></td>
</tr>
<tr>
<td>359' - 379' - Strong alteration of K-Spar Art. Alum minerals, and 20% pyrite</td>
<td>ND</td>
<td>329' - 349'</td>
<td>6' 17' x 2' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>1%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85070</td>
<td>.21</td>
<td>.01</td>
<td>.41</td>
<td>.02</td>
<td>5.12</td>
<td>.01</td>
<td>.40</td>
<td></td>
</tr>
<tr>
<td>389' - 409' - Strong alteration of K-Spar Art. Alum minerals, and 20% pyrite</td>
<td>ND</td>
<td>329' - 349'</td>
<td>6' 17' x 2' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>1%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85071</td>
<td>.15</td>
<td>.01</td>
<td>.26</td>
<td>.04</td>
<td>4.13</td>
<td>.03</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>Country rock (black) - Described as described between 387' - 397'</td>
<td>ND</td>
<td>329' - 349'</td>
<td>6' 17' x 2' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>1%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85072</td>
<td>.14</td>
<td>.01</td>
<td>.23</td>
<td>.01</td>
<td>5.45</td>
<td>.01</td>
<td>.30</td>
<td></td>
</tr>
<tr>
<td>Intergrowth of breccia, Intensely altered granite, and country rock</td>
<td>ND</td>
<td>329' - 349'</td>
<td>6' 17' x 2' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>1%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85073</td>
<td>.16</td>
<td>.03</td>
<td>.27</td>
<td>.02</td>
<td>3.13</td>
<td>.01</td>
<td>.30</td>
<td></td>
</tr>
<tr>
<td>Numerous microstructures, minor and localized clay alteration</td>
<td>ND</td>
<td>329' - 349'</td>
<td>6' 17' x 2' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>1%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85074</td>
<td>.11</td>
<td>.06</td>
<td>.19</td>
<td>.02</td>
<td>2.99</td>
<td>.01</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>359' - 379' - Strong alteration of K-Spar Art. Alum minerals, and 20% pyrite</td>
<td>ND</td>
<td>329' - 349'</td>
<td>6' 17' x 2' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>1%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85075</td>
<td>.13</td>
<td>.10</td>
<td>.19</td>
<td>.01</td>
<td>3.11</td>
<td>.01</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>389' - 409' - Strong alteration of K-Spar Art. Alum minerals, and 20% pyrite</td>
<td>ND</td>
<td>329' - 349'</td>
<td>6' 17' x 2' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>1%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85076</td>
<td>.34</td>
<td>.14</td>
<td>.63</td>
<td>.09</td>
<td>5.20</td>
<td>.06</td>
<td>.25</td>
<td></td>
</tr>
<tr>
<td>399' - 419' - Strong alteration of K-Spar Art. Alum minerals, and 20% pyrite</td>
<td>ND</td>
<td>329' - 349'</td>
<td>6' 17' x 2' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>1%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85077</td>
<td>.12</td>
<td>.02</td>
<td>.18</td>
<td>.02</td>
<td>3.89</td>
<td>.01</td>
<td>.25</td>
<td></td>
</tr>
<tr>
<td>409' - 419' - Strong alteration of K-Spar Art. Alum minerals, and 20% pyrite</td>
<td>ND</td>
<td>329' - 349'</td>
<td>6' 17' x 2' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>1%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85078</td>
<td>.12</td>
<td>.01</td>
<td>.17</td>
<td>.01</td>
<td>2.42</td>
<td>.01</td>
<td>.25</td>
<td></td>
</tr>
<tr>
<td>419' - 429' - Strong alteration of K-Spar Art. Alum minerals, and 20% pyrite</td>
<td>ND</td>
<td>329' - 349'</td>
<td>6' 17' x 2' 10'</td>
<td>Gt + MnO₂ + Ep</td>
<td>1%</td>
<td>1%</td>
<td>387</td>
<td>2%</td>
<td>1%</td>
<td>85079</td>
<td>.14</td>
<td>.01</td>
<td>.24</td>
<td>.01</td>
<td>5.72</td>
<td>.01</td>
<td>.35</td>
<td></td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Rock Types and Alteration

<table>
<thead>
<tr>
<th>Layer</th>
<th>Type</th>
<th>Structure (Veins)</th>
<th>Width of Structure (Veins)</th>
<th>Mineralization</th>
<th>Ext. % Mag</th>
<th>Ext. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td></td>
<td>21 10° x 1/8"</td>
<td>Lim-MnO₂-Pre</td>
<td>2.3% Ø</td>
<td></td>
<td></td>
<td>Less 3 Yr. Storing more Ag + Cu + Au.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23 3° x 1/2"</td>
<td>Carr-Cp + Pre</td>
<td>1.2% Ø</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 19° x 1/2"</td>
<td>Car-Pre + Pre</td>
<td>1% TR</td>
<td>1% TR</td>
<td></td>
<td>Multiple Interl. Ø (20") Test Features</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 12° x 1/8"</td>
<td>Carr-Pre + Pre</td>
<td>1% TR</td>
<td>1% TR</td>
<td></td>
<td>Cp ass. weft, chl. in small vein. occasional micro-faults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 17° x 1/4"</td>
<td>Hem</td>
<td>1% TR</td>
<td>1% TR</td>
<td></td>
<td>Diopside - Ep - Chl calcite filling veins</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27 82</td>
<td>Hem - chl - ep</td>
<td>1% Ø</td>
<td></td>
<td></td>
<td>Chl ass. very calcite enrichment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 92</td>
<td>Carr - Cp</td>
<td>1% Ø</td>
<td></td>
<td></td>
<td>Start of clay + pitch + clay calcite, calcite + carbonate + kaolinite + chlorite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 19°</td>
<td>Carr - Cp</td>
<td>1.5% Ø</td>
<td></td>
<td></td>
<td>Chl ass. ep calcite + clay calcite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 34°</td>
<td>Calc - Cp</td>
<td>1% Ø</td>
<td></td>
<td></td>
<td>Clay, diopside veins - Ø</td>
</tr>
</tbody>
</table>

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Pb</th>
<th>% Zn</th>
<th>% Ag</th>
<th>% Au</th>
<th>Cu Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>85080</td>
<td>0.15</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>85081</td>
<td>0.29</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>85082</td>
<td>0.12</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>85083</td>
<td>0.11</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>85084</td>
<td>0.13</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>85085</td>
<td>0.08</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>85086</td>
<td>0.11</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>85087</td>
<td>0.14</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>85088</td>
<td>0.15</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>85089</td>
<td>0.11</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>85090</td>
<td>0.13</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>85091</td>
<td>0.12</td>
<td>0.01</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Rock Types and Alteration

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins) < to core axis</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. %</th>
<th>Est. % Mag</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syenodiorite</td>
<td>475 - 485'</td>
<td>39° 18'</td>
<td>1/8 & 3/16</td>
<td>Hem</td>
<td>2%</td>
<td>0</td>
<td>Adjacent epidote, Qtz fine filling</td>
</tr>
<tr>
<td></td>
<td>485</td>
<td>3/8 7' & 1/2'</td>
<td></td>
<td>Qtz - Car - Mag - Carph</td>
<td>4%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Intrusive breccia</td>
<td>480</td>
<td>14° 30' & 1/2'</td>
<td></td>
<td>Qtz - Car - Carph</td>
<td>2%</td>
<td>TR</td>
<td>Qtz - Chl - Ep - Bt minerals present</td>
</tr>
<tr>
<td></td>
<td>497</td>
<td>34 60' & 1/2'</td>
<td></td>
<td>Mag. 2</td>
<td>3%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Anhydrous hornfels</td>
<td>497</td>
<td>34 60' & 1/2'</td>
<td></td>
<td>Hem.</td>
<td>2%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>570</td>
<td>34 60' & 1/2'</td>
<td></td>
<td>Hem - Chl.</td>
<td>2%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Anhydrous hornfels</td>
<td>515</td>
<td>34 60' & 1/2'</td>
<td></td>
<td></td>
<td>1-2%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>515</td>
<td>34 60' & 1/2'</td>
<td></td>
<td></td>
<td>1-2%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fault Zone</td>
<td>515</td>
<td>34 60' & 1/2'</td>
<td></td>
<td></td>
<td>1-2%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Broken RR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-2%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Heamatite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-2%</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Bottom Depths

| Hole No | 940.91 | Page 9 of 11 |

<table>
<thead>
<tr>
<th>R.Q.D.</th>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Zn</th>
<th>% Pb</th>
<th>% Ni</th>
<th>% As</th>
<th>% Ag</th>
<th>% Au</th>
<th>Estimated</th>
<th>Cu Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B5092</td>
<td>0.15</td>
<td>0.46</td>
<td>0.16</td>
<td>0.63</td>
<td>0.10</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5093</td>
<td>0.11</td>
<td>0.53</td>
<td>0.03</td>
<td>2.81</td>
<td>0.10</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5094</td>
<td>0.23</td>
<td>0.41</td>
<td>0.03</td>
<td>3.47</td>
<td>0.01</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5095</td>
<td>0.30</td>
<td>0.57</td>
<td>0.02</td>
<td>9.98</td>
<td>0.10</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5096</td>
<td>0.46</td>
<td>0.82</td>
<td>0.02</td>
<td>3.31</td>
<td>0.10</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5097</td>
<td>0.30</td>
<td>0.48</td>
<td>0.02</td>
<td>3.06</td>
<td>0.10</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5098</td>
<td>0.40</td>
<td>0.25</td>
<td>0.02</td>
<td>4.07</td>
<td>0.10</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5099</td>
<td>0.26</td>
<td>0.41</td>
<td>0.02</td>
<td>4.07</td>
<td>0.10</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5100</td>
<td>0.25</td>
<td>0.25</td>
<td>0.02</td>
<td>7.30</td>
<td>0.10</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5101</td>
<td>0.17</td>
<td>0.27</td>
<td>0.02</td>
<td>6.15</td>
<td>0.10</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5102</td>
<td>0.33</td>
<td>0.41</td>
<td>0.02</td>
<td>4.45</td>
<td>0.10</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5103</td>
<td>0.22</td>
<td>0.30</td>
<td>0.02</td>
<td>3.94</td>
<td>0.10</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No. 94-101
Page 10 of 11

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BOTTOM DEPTHS

- **Reach Cap**
- **Loseable Ore**
- **Lime Zone**
- **Supergene**

FOOTAGE BLOCKS

ORIDE %

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>TCO</th>
<th>OxCu</th>
<th>Ag</th>
<th>Cu</th>
<th>As</th>
<th>RSRe</th>
<th>ENSL</th>
<th>Cu in OZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>85104</td>
<td>.25</td>
<td>.01</td>
<td>.42</td>
<td>.01</td>
<td>.42</td>
<td>.10</td>
<td>.38</td>
<td></td>
</tr>
<tr>
<td>85105</td>
<td>.19</td>
<td>.01</td>
<td>.25</td>
<td>.01</td>
<td>.30</td>
<td>.01</td>
<td>.33</td>
<td></td>
</tr>
<tr>
<td>85106</td>
<td>.18</td>
<td>.01</td>
<td>.23</td>
<td>.01</td>
<td>.47</td>
<td>.01</td>
<td>.28</td>
<td></td>
</tr>
<tr>
<td>85107</td>
<td>.12</td>
<td>.01</td>
<td>.20</td>
<td>.01</td>
<td>.47</td>
<td>.01</td>
<td>.28</td>
<td></td>
</tr>
<tr>
<td>85108</td>
<td>.15</td>
<td>.01</td>
<td>.33</td>
<td>.01</td>
<td>.15</td>
<td>.01</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>85109</td>
<td>.05</td>
<td>.01</td>
<td>.11</td>
<td>.01</td>
<td>.35</td>
<td>.01</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>85110</td>
<td>.04</td>
<td>.01</td>
<td>.06</td>
<td>.01</td>
<td>.38</td>
<td>.01</td>
<td>.07</td>
<td></td>
</tr>
<tr>
<td>85111</td>
<td>.08</td>
<td>.01</td>
<td>.11</td>
<td>.01</td>
<td>.34</td>
<td>.01</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>85112</td>
<td>.07</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>.40</td>
<td>.01</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>85113</td>
<td>.07</td>
<td>.01</td>
<td>.11</td>
<td>.01</td>
<td>.40</td>
<td>.01</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>85114</td>
<td>.06</td>
<td>.01</td>
<td>.11</td>
<td>.01</td>
<td>.43</td>
<td>.01</td>
<td>.13</td>
<td></td>
</tr>
<tr>
<td>85115</td>
<td>.06</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>.25</td>
<td>.01</td>
<td>.07</td>
<td></td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>ROCK STRUCTURE</td>
<td>Width of Structure</td>
<td>Mineralization</td>
<td>Est. %</td>
<td>Ext. %</td>
<td>Mag</td>
<td>Py</td>
<td>R.Q.D</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Fr 35 x (1/8)''</td>
<td></td>
<td>(ARB - cp)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>As</th>
<th>Au</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>8516</td>
<td>.07</td>
<td>.01</td>
<td>.01</td>
<td>5.6</td>
<td>1.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Remarks

Inc. Mag.
Dss, Cp
Ep alt. - replacing mica
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Location: Central Zone
Bearing: —
Latitude: 31° 59.72'
Core Size: NQ
Logged By: R. Gradén
Date Collared: June 4, 1994
Length: 567'
Longitude: 2149.52'
Scale of Log: 1/16
Date Completed: June 6, 1994
Dip: -90°
Elevation: 11,693'
Remarks: —

Rock Types and Alteration Symbols

- **Intensive Brecia**
- **Syndiagene**
- **Travertine Dyke**
- **Diorite Porphyry?**
- **Plagiogneiss Dyke**

Rock Types and Alteration

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>Porphyry</th>
<th>Chem. Alteration</th>
<th>Width (feet)</th>
<th>Structure (Feet)</th>
<th>Est. %</th>
<th>Mag</th>
<th>Py</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogeneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogneiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous Symbols and Abbreviations

- **Intensive Breccia**
- **Syndiagene**
- **Travertine Dyke**
- **Diorite Porphyry?**
- **Plagiogneiss Dyke**

Assay Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>% Cu</th>
<th>% Pb</th>
<th>% Zn</th>
<th>% Ag</th>
<th>% Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>85117</td>
<td>1.5</td>
<td>0.05</td>
<td>0.01</td>
<td>0.03</td>
<td>0.50</td>
</tr>
<tr>
<td>85118</td>
<td>0.24</td>
<td>0.07</td>
<td>0.02</td>
<td>0.03</td>
<td>0.50</td>
</tr>
<tr>
<td>85119</td>
<td>0.09</td>
<td>0.04</td>
<td>0.01</td>
<td>0.03</td>
<td>0.50</td>
</tr>
<tr>
<td>85120</td>
<td>0.29</td>
<td>0.07</td>
<td>0.02</td>
<td>0.03</td>
<td>0.50</td>
</tr>
<tr>
<td>85121</td>
<td>0.52</td>
<td>0.35</td>
<td>1.40</td>
<td>0.21</td>
<td>15.06</td>
</tr>
<tr>
<td>85122</td>
<td>0.19</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.50</td>
</tr>
<tr>
<td>85123</td>
<td>0.40</td>
<td>0.16</td>
<td>0.69</td>
<td>0.17</td>
<td>8.45</td>
</tr>
</tbody>
</table>

Drill Hole Data

- **Hole Number:** 84/12
- **Page Number:** 1 of 10
- **Rock Types and Alteration Symbols:**
 - Intensive Breccia
 - Syndiagene
 - Travertine Dyke
 - Diorite Porphyry?
 - Plagiogneiss Dyke

Drill Hole Details

- **Location:** Central Zone
- **Bearing:** —
- **Latitude:** 31° 59.72'
- **Core Size:** NQ
- **Logged By:** R. Gradén
- **Date Collared:** June 4, 1994
- **Length:** 567'
- **Longitude:** 2149.52'
- **Scale of Log:** 1/16
- **Date Completed:** June 6, 1994
- **Dip:** -90°
- **Elevation:** 11,693'
- **Remarks:** —

Drill Hole Log

- **Rock Types and Alteration Symbols:**
 - Intensive Breccia
 - Syndiagene
 - Travertine Dyke
 - Diorite Porphyry?
 - Plagiogneiss Dyke

Assay Results

- **Sample:** 85117
- **% Cu:** 1.5
- **% Pb:** 0.05
- **% Zn:** 0.01
- **% Ag:** 0.03
- **% Au:** 0.50

Drill Hole Notes

- **Remarks:** —

Drill Hole Summary

- **Hole Number:** 84/12
- **Page Number:** 1 of 10
- **Rock Types and Alteration Symbols:**
 - Intensive Breccia
 - Syndiagene
 - Travertine Dyke
 - Diorite Porphyry?
 - Plagiogneiss Dyke

Assay Results

- **Sample:** 85117
- **% Cu:** 1.5
- **% Pb:** 0.05
- **% Zn:** 0.01
- **% Ag:** 0.03
- **% Au:** 0.50

Drill Hole Data

- **Location:** Central Zone
- **Bearing:** —
- **Latitude:** 31° 59.72'
- **Core Size:** NQ
- **Logged By:** R. Gradén
- **Date Collared:** June 4, 1994
- **Length:** 567'
- **Longitude:** 2149.52'
- **Scale of Log:** 1/16
- **Date Completed:** June 6, 1994
- **Dip:** -90°
- **Elevation:** 11,693'
- **Remarks:** —
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>TCo</th>
<th>As</th>
<th>CSFe</th>
<th>CRSh</th>
<th>CaO</th>
<th>Enthal</th>
<th>Cu %</th>
<th>Pb %</th>
<th>Zn %</th>
<th>AI %</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS124</td>
<td>0.28</td>
<td>0.12</td>
<td>0.77</td>
<td>0.10</td>
<td>8.48</td>
<td>0.03</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS125</td>
<td>0.20</td>
<td>0.05</td>
<td>0.31</td>
<td>0.05</td>
<td>6.94</td>
<td>0.02</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS130</td>
<td>0.39</td>
<td>0.29</td>
<td>1.19</td>
<td>0.18</td>
<td>8.0</td>
<td>0.04</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS127</td>
<td>0.15</td>
<td>0.09</td>
<td>0.20</td>
<td>0.07</td>
<td>5.4</td>
<td>0.04</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS134</td>
<td>0.13</td>
<td>0.09</td>
<td>0.32</td>
<td>0.03</td>
<td>4.08</td>
<td>0.02</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS128</td>
<td>0.16</td>
<td>0.09</td>
<td>0.35</td>
<td>0.05</td>
<td>3.89</td>
<td>0.02</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS130</td>
<td>0.36</td>
<td>0.11</td>
<td>0.81</td>
<td>0.16</td>
<td>3.91</td>
<td>0.09</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS131</td>
<td>0.39</td>
<td>0.10</td>
<td>0.93</td>
<td>0.19</td>
<td>4.15</td>
<td>0.13</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS132</td>
<td>0.50</td>
<td>0.08</td>
<td>1.24</td>
<td>0.16</td>
<td>4.80</td>
<td>0.09</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS133</td>
<td>0.46</td>
<td>0.26</td>
<td>1.22</td>
<td>0.21</td>
<td>3.84</td>
<td>0.06</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS134</td>
<td>0.29</td>
<td>0.16</td>
<td>0.60</td>
<td>0.13</td>
<td>6.24</td>
<td>0.05</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC135</td>
<td>0.14</td>
<td>0.08</td>
<td>0.31</td>
<td>0.03</td>
<td>4.75</td>
<td>0.01</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rock Types and Alteration

| PORPHYRY DIKE | Grapeg. | Width (veins) | Mineralization | Ext.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geological Data

<table>
<thead>
<tr>
<th>Hole No. 94-102</th>
<th>Page 2 of 12</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geologic Notes

- **Porphyry Dike:**
 - Grapeg.: 60' to 65'
 - Width: 60' to 65'
 - Mineralization: Ep-Mo
 - Ext.: 90' to 95'

- **Porphyry Dike 2:**
 - Grapeg.: 65' to 70'
 - Width: 70' to 75'
 - Mineralization: Ep-Mo
 - Ext.: 90' to 95'

- **Porphyry Dike 3:**
 - Grapeg.: 70' to 75'
 - Width: 75' to 80'
 - Mineralization: Ep-Mo
 - Ext.: 90' to 95'

- **Porphyry Dike 4:**
 - Grapeg.: 80' to 85'
 - Width: 85' to 90'
 - Mineralization: Ep-Mo
 - Ext.: 95' to 100'

- **Porphyry Dike 5:**
 - Grapeg.: 90' to 95'
 - Width: 95' to 100'
 - Mineralization: Ep-Mo
 - Ext.: 100' to 105'

Other Data

- **Lode:**
 - Grapeg.: 105' to 110'
 - Width: 110' to 115'
 - Mineralization: Calcareous
 - Ext.: 115' to 120'

- **Porphyry Dike 6:**
 - Grapeg.: 110' to 115'
 - Width: 115' to 120'
 - Mineralization: Calcareous
 - Ext.: 120' to 125'

Footage Blocks

<table>
<thead>
<tr>
<th>Footage Blocks</th>
<th>R.Q.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Leach Results

- **Lode:**
 - Grapeg.: 120' to 125'
 - Width: 125' to 130'
 - Mineralization: Calcareous
 - Ext.: 130' to 135'

- **Porphyry Dike 7:**
 - Grapeg.: 130' to 135'
 - Width: 135' to 140'
 - Mineralization: Calcareous
 - Ext.: 140' to 145'

Additional Notes

- **Porphyry Dike 8:**
 - Grapeg.: 140' to 145'
 - Width: 145' to 150'
 - Mineralization: Calcareous
 - Ext.: 150' to 155'

- **Porphyry Dike 9:**
 - Grapeg.: 150' to 155'
 - Width: 155' to 160'
 - Mineralization: Calcareous
 - Ext.: 160' to 165'

Geologic Interpretation

- **Porphyry Dike 1:**
 - Grapeg.: 60' to 65'
 - Width: 60' to 65'
 - Mineralization: Ep-Mo
 - Ext.: 90' to 95'

- **Porphyry Dike 2:**
 - Grapeg.: 65' to 70'
 - Width: 70' to 75'
 - Mineralization: Ep-Mo
 - Ext.: 90' to 95'

- **Porphyry Dike 3:**
 - Grapeg.: 70' to 75'
 - Width: 75' to 80'
 - Mineralization: Ep-Mo
 - Ext.: 90' to 95'

- **Porphyry Dike 4:**
 - Grapeg.: 80' to 85'
 - Width: 85' to 90'
 - Mineralization: Ep-Mo
 - Ext.: 95' to 100'

- **Porphyry Dike 5:**
 - Grapeg.: 90' to 95'
 - Width: 95' to 100'
 - Mineralization: Ep-Mo
 - Ext.: 100' to 105'

Geologic Features

- **Porphyry Dike 6:**
 - Grapeg.: 105' to 110'
 - Width: 110' to 115'
 - Mineralization: Calcareous
 - Ext.: 115' to 120'

- **Porphyry Dike 7:**
 - Grapeg.: 110' to 115'
 - Width: 115' to 120'
 - Mineralization: Calcareous
 - Ext.: 120' to 125'

Geologic Context

- **Porphyry Dike 8:**
 - Grapeg.: 120' to 125'
 - Width: 125' to 130'
 - Mineralization: Calcareous
 - Ext.: 130' to 135'

- **Porphyry Dike 9:**
 - Grapeg.: 130' to 135'
 - Width: 135' to 140'
 - Mineralization: Calcareous
 - Ext.: 140' to 145'

Geologic Observations

- **Porphyry Dike 1:**
 - Grapeg.: 60' to 65'
 - Width: 60' to 65'
 - Mineralization: Ep-Mo
 - Ext.: 90' to 95'

- **Porphyry Dike 2:**
 - Grapeg.: 65' to 70'
 - Width: 70' to 75'
 - Mineralization: Ep-Mo
 - Ext.: 90' to 95'

- **Porphyry Dike 3:**
 - Grapeg.: 70' to 75'
 - Width: 75' to 80'
 - Mineralization: Ep-Mo
 - Ext.: 90' to 95'

- **Porphyry Dike 4:**
 - Grapeg.: 80' to 85'
 - Width: 85' to 90'
 - Mineralization: Ep-Mo
 - Ext.: 95' to 100'

- **Porphyry Dike 5:**
 - Grapeg.: 90' to 95'
 - Width: 95' to 100'
 - Mineralization: Ep-Mo
 - Ext.: 100' to 105'

- **Porphyry Dike 6:**
 - Grapeg.: 105' to 110'
 - Width: 110' to 115'
 - Mineralization: Calcareous
 - Ext.: 115' to 120'

- **Porphyry Dike 7:**
 - Grapeg.: 110' to 115'
 - Width: 115' to 120'
 - Mineralization: Calcareous
 - Ext.: 120' to 125'

- **Porphyry Dike 8:**
 - Grapeg.: 120' to 125'
 - Width: 125' to 130'
 - Mineralization: Calcareous
 - Ext.: 130' to 135'

- **Porphyry Dike 9:**
 - Grapeg.: 130' to 135'
 - Width: 135' to 140'
 - Mineralization: Calcareous
 - Ext.: 140' to 145'
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Rock Types and Alteration

<table>
<thead>
<tr>
<th>Depth</th>
<th>Graphic Log</th>
<th>Structure (Vein)</th>
<th>Width of Structure (Veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110'</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115'</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120'</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125'</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130'</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135'</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140'</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145'</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150'</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Tn</th>
<th>OxCu</th>
<th>Au</th>
<th>Ag</th>
<th>Cu</th>
<th>ASF</th>
<th>Pb</th>
<th>Sk</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>85136</td>
<td>.20</td>
<td>.07</td>
<td>.83</td>
<td>.06</td>
<td>.56</td>
<td>.03</td>
<td>.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85137</td>
<td>.23</td>
<td>.05</td>
<td>.41</td>
<td>.05</td>
<td>.48</td>
<td>.02</td>
<td>.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85138</td>
<td>.33</td>
<td>.14</td>
<td>.68</td>
<td>.08</td>
<td>.54</td>
<td>.03</td>
<td>.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85139</td>
<td>.27</td>
<td>.10</td>
<td>.46</td>
<td>.06</td>
<td>.32</td>
<td>.02</td>
<td>.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85140</td>
<td>.27</td>
<td>.06</td>
<td>.50</td>
<td>.07</td>
<td>.43</td>
<td>.05</td>
<td>.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85141</td>
<td>.40</td>
<td>.05</td>
<td>.65</td>
<td>.07</td>
<td>.37</td>
<td>.03</td>
<td>.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85142</td>
<td>.14</td>
<td>.02</td>
<td>.25</td>
<td>.03</td>
<td>.38</td>
<td>.02</td>
<td>.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85143</td>
<td>.16</td>
<td>.01</td>
<td>.26</td>
<td>.03</td>
<td>.34</td>
<td>.02</td>
<td>.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85144</td>
<td>.28</td>
<td>.16</td>
<td>.68</td>
<td>.10</td>
<td>.38</td>
<td>.04</td>
<td>.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85145</td>
<td>.46</td>
<td>.05</td>
<td>.77</td>
<td>.12</td>
<td>.40</td>
<td>.06</td>
<td>.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85146</td>
<td>.43</td>
<td>.03</td>
<td>1.03</td>
<td>.05</td>
<td>.40</td>
<td>.03</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- Strong Ep. Alt. 175-185°
- Met along fractures
- Dis, cp 4
- Calcite infilling of strong graphitic met. by A. Rad. mineral
- Met along fractures
- Kspar alt. decrease overall abundance, increased width c.f.
- Near clay with increases in A. & Sp. Alt. B. P. 40-60 A.M.
- Abundance of gray red meta mineral (in breccia?)
- Dis, cp 4
- No Var. cp in right weakly magnetic

As described above, fine grained, meta with distinctive alteration. Strong alteration of alkali? Enough to sample for alkali?

Preparative to sample A. 1c. 2

Preparent to sample A. 1c. 2

Preparent to sample A. 1c. 2

Preparent to sample A. 1c. 2
Gibraltar Mines Limited (Mount Folley Property) Diamond Drill Log

Bottom Depths

<table>
<thead>
<tr>
<th>Hole No.</th>
<th>Depth (m)</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Fy</th>
<th>R.Q.D.</th>
<th>Percentage of Blocks</th>
<th>Uranium Recovery %</th>
<th>Assay Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>179'</td>
<td></td>
<td></td>
<td></td>
<td>1-2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>178'</td>
<td></td>
<td></td>
<td></td>
<td>1-2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>187'</td>
<td></td>
<td></td>
<td></td>
<td>1-2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>194'</td>
<td></td>
<td></td>
<td></td>
<td>1-2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>188'</td>
<td></td>
<td></td>
<td></td>
<td>1-2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>192'</td>
<td></td>
<td></td>
<td></td>
<td>1-2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>197'</td>
<td></td>
<td></td>
<td></td>
<td>1-2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200'</td>
<td></td>
<td></td>
<td></td>
<td>1-2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% TOrC</th>
<th>% Cu</th>
<th>% Au</th>
<th>% Ag</th>
<th>% As</th>
<th>% Co</th>
<th>% Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>85148</td>
<td>0.21</td>
<td>0.01</td>
<td>0.28</td>
<td>3.54</td>
<td>0.01</td>
<td>2.73</td>
<td></td>
</tr>
<tr>
<td>85159</td>
<td>0.28</td>
<td>0.01</td>
<td>0.28</td>
<td>3.54</td>
<td>0.01</td>
<td>2.73</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- *Note:* The information in the log includes details about rock types, alterations, and mineralization observed during drilling. The table provides a summary of assay results for various elements, including TOrC, Cu, Au, Ag, As, Co, and Ni. The R.Q.D. (Recovery of Quoted Depth) column indicates the percentage of blocks that were recovered for analysis.
<table>
<thead>
<tr>
<th>Rock Types and Alteration</th>
<th>Graphic Log</th>
<th>Structure (velas) < 10 core axis</th>
<th>Width of Structure (velas)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>225° to 226.5° Au-Ag porphyry Dyklet lower contact @ ~80° to CA</td>
<td>230°</td>
<td>225°</td>
<td>Fe, Cu, 2° W (Cu)</td>
<td>Chal, pyrite, calcite, quartz</td>
<td>2-3%</td>
<td>Ø</td>
<td>Fault w/ calc veining, minor chalcopyrite, minor biotite, minor quartz.</td>
</tr>
<tr>
<td>227.3° to 228.3° Au-Ag porphyry Dyklet</td>
<td>230°</td>
<td>225°</td>
<td>Fe, Cu, 2° W (Cu)</td>
<td>Chal, pyrite, calcite, quartz</td>
<td>1-2%</td>
<td>Ø</td>
<td>Minor, calc veining at 227° to 228°</td>
</tr>
<tr>
<td>Upper contact @ 24° to CA lower contact bounded by 24° ore vein, 24° vein, lower contact @ 33° to CA</td>
<td>230°</td>
<td>230°</td>
<td>W (Cu)</td>
<td>Zn + Fe, calcite</td>
<td>1-1%</td>
<td>Ø</td>
<td>Zn + Fe, calcite, minor chalcopyrite.</td>
</tr>
<tr>
<td>290° to 492° Weather breccia</td>
<td>235°</td>
<td>230°</td>
<td>MnO, calcite</td>
<td>MnO, clay, calcite</td>
<td>5-6%</td>
<td>Ø</td>
<td>Minor MnO, calcite, minor clay.</td>
</tr>
</tbody>
</table>

Syenoderrite (Diogenite I)

- 260° to 370°
- May vary from hornblende to diopside, with numerous of the plagioclase and potassic mafic (Fa-Ser) rocks composition.

<table>
<thead>
<tr>
<th>Rock Types and Alteration</th>
<th>Graphic Log</th>
<th>Structure (velas) < 10 core axis</th>
<th>Width of Structure (velas)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>230° to 235°</td>
<td>230°</td>
<td>230°</td>
<td>MnO, calcite</td>
<td>MnO, clay, calcite</td>
<td>5-6%</td>
<td>Ø</td>
<td>Minor MnO, calcite, minor clay.</td>
</tr>
<tr>
<td>260° to 492° Weather breccia</td>
<td>235°</td>
<td>230°</td>
<td>MnO, calcite</td>
<td>MnO, clay, calcite</td>
<td>5-6%</td>
<td>Ø</td>
<td>Minor MnO, calcite, minor clay.</td>
</tr>
<tr>
<td>230° to 235°</td>
<td>230°</td>
<td>230°</td>
<td>MnO, calcite</td>
<td>MnO, clay, calcite</td>
<td>5-6%</td>
<td>Ø</td>
<td>Minor MnO, calcite, minor clay.</td>
</tr>
</tbody>
</table>

Syenoderrite (Diogenite I)

- 260° to 370°
- May vary from hornblende to diopside, with numerous of the plagioclase and potassic mafic (Fa-Ser) rocks composition.
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No.: 94-02
Page: 9 of 10

Rock Types and Alteration

<table>
<thead>
<tr>
<th>GRAPHIC LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>Vs: 27" 1/8"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Vs: 30"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Vs: 40"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Vs: 50"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Vs: 60"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom Depths

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>368</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Zn</th>
<th>% Pb</th>
<th>% Ag</th>
<th>% Au</th>
<th>Estimated % Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>85172</td>
<td>0.16</td>
<td>0.12</td>
<td>0.12</td>
<td>0.15</td>
<td>3.90</td>
<td>1.90</td>
</tr>
<tr>
<td>85173</td>
<td>0.08</td>
<td>0.16</td>
<td>0.02</td>
<td>0.14</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>85174</td>
<td>0.07</td>
<td>0.17</td>
<td>0.03</td>
<td>0.42</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>85175</td>
<td>0.03</td>
<td>0.06</td>
<td>0.13</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>85176</td>
<td>0.51</td>
<td>0.04</td>
<td>0.09</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>85177</td>
<td>0.20</td>
<td>0.44</td>
<td>0.07</td>
<td>0.46</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>85178</td>
<td>0.18</td>
<td>0.37</td>
<td>0.05</td>
<td>0.47</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>85179</td>
<td>0.22</td>
<td>0.38</td>
<td>0.02</td>
<td>0.56</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>85180</td>
<td>0.43</td>
<td>0.68</td>
<td>0.02</td>
<td>0.53</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>85181</td>
<td>0.24</td>
<td>0.49</td>
<td>0.02</td>
<td>0.56</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>85182</td>
<td>0.20</td>
<td>0.40</td>
<td>0.02</td>
<td>0.56</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>85183</td>
<td>0.48</td>
<td>1.08</td>
<td>0.06</td>
<td>0.54</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (veins)</td>
<td>Width of Structure (veins)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Fy</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>Intergenic Bresica (1)</td>
<td>Hole SNXX</td>
<td>105 0 1/2"</td>
<td>0 1/4"</td>
<td>Qtz - Calc - Hem 5-6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As described above</td>
<td>Materialized</td>
<td>0 3/4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svend Inkomite Abundant</td>
<td>Hole SNXX</td>
<td>105 0 1/2"</td>
<td>0 1/4"</td>
<td>Qtz - Calc - Hem 5-6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materialized</td>
<td>0 3/4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flager Nodules (Dike)</td>
<td>Hole SNXX</td>
<td>105 0 1/2"</td>
<td>0 1/4"</td>
<td>Qtz - Calc - Hem 5-6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materialized</td>
<td>0 3/4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svend Inkomite Abundant</td>
<td>Hole SNXX</td>
<td>105 0 1/2"</td>
<td>0 1/4"</td>
<td>Qtz - Calc - Hem 5-6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materialized</td>
<td>0 3/4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>7C</th>
<th>Cu</th>
<th>C</th>
<th>Si</th>
<th>As</th>
<th>Cu</th>
<th>Si</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>85189</td>
<td>26</td>
<td>04</td>
<td>04</td>
<td>05</td>
<td>05</td>
<td>10</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>85190</td>
<td>26</td>
<td>04</td>
<td>04</td>
<td>05</td>
<td>05</td>
<td>10</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>85191</td>
<td>26</td>
<td>04</td>
<td>04</td>
<td>05</td>
<td>05</td>
<td>10</td>
<td>05</td>
<td>05</td>
</tr>
</tbody>
</table>

Remarks

Top or internal appears altered. Clasts of magnetite (light brown)
GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG

ROCK TYPES and ALTERATION

<table>
<thead>
<tr>
<th>ROCK TYPE</th>
<th>Alteration</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper compact @ 75° to CA</td>
<td>quartz carbonates e 78° to CA</td>
<td>Fr. 70°</td>
<td>1/2°</td>
<td>Calc. - Act.</td>
<td>1-2%</td>
<td>0%</td>
<td>Drop in K-tenorite (Ct). Fill bottom of dyke. Ep bbs in Zn-Ba-BSE.</td>
</tr>
<tr>
<td>Intermediate Breccia</td>
<td>43.8° to 45.8°</td>
<td>Vn 70°</td>
<td>2°</td>
<td>Zn8 (Fe3+8) - Ca (yellowish - white)</td>
<td>6-7%</td>
<td>0%</td>
<td>High sulf. content. Bbsile (pyrite rich) pores in act.</td>
</tr>
<tr>
<td>Symmorphic compaction</td>
<td>As described above</td>
<td>Vn 60°</td>
<td>1/2°</td>
<td>Trem 1</td>
<td>4-5%</td>
<td>0%</td>
<td>Increased ep bbsile. Fd at top of sample. Mos bulk of bbsile at bottom.</td>
</tr>
<tr>
<td>Breccia</td>
<td>45.8° to 45.8°</td>
<td>Vn 39°</td>
<td>3°</td>
<td>Pyx - Non-Co</td>
<td>6-7%</td>
<td>0%</td>
<td>Hcp. Bbsile. Cont. Fe in Zn-Ba-BSE.</td>
</tr>
<tr>
<td>Intrusive Breccia</td>
<td>45.8° to 45.8°</td>
<td>Vn 30°</td>
<td>1/2°</td>
<td>Pyx-Chl - Ca - Co</td>
<td>7%</td>
<td>0%</td>
<td>Breccia. TR. metal in DCo.</td>
</tr>
<tr>
<td>Trachyte dyke 2</td>
<td>45.8° to 45.8°</td>
<td>Tr. Hw.</td>
<td>2/3°</td>
<td>0%</td>
<td>0%</td>
<td>Cp infilling.</td>
<td></td>
</tr>
</tbody>
</table>

BOTTOM DEPTHS

- Leach Cap:
- Leachable Cu:
- Lim. Zone:
- Superbase:

RQD

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5198</td>
<td>25</td>
<td>101</td>
<td>1.07</td>
<td>1.01</td>
<td>1.53</td>
</tr>
<tr>
<td>B5199</td>
<td>19</td>
<td>104</td>
<td>0.35</td>
<td>1.05</td>
<td>0.5</td>
</tr>
<tr>
<td>B5198</td>
<td>28</td>
<td>0.19</td>
<td>1.07</td>
<td>3.91</td>
<td>0.5</td>
</tr>
<tr>
<td>B5199</td>
<td>27</td>
<td>0.18</td>
<td>0.89</td>
<td>5.14</td>
<td>0.8</td>
</tr>
<tr>
<td>B5100</td>
<td>56</td>
<td>0.18</td>
<td>0.79</td>
<td>1.99</td>
<td>0.7</td>
</tr>
<tr>
<td>B5101</td>
<td>61</td>
<td>0.18</td>
<td>0.83</td>
<td>6.47</td>
<td>0.6</td>
</tr>
<tr>
<td>B5102</td>
<td>41</td>
<td>0.06</td>
<td>1.5</td>
<td>4.49</td>
<td>0.9</td>
</tr>
<tr>
<td>B5103</td>
<td>31</td>
<td>0.15</td>
<td>1.3</td>
<td>4.2</td>
<td>0.2</td>
</tr>
<tr>
<td>B5104</td>
<td>42</td>
<td>0.16</td>
<td>0.58</td>
<td>7.08</td>
<td>0.8</td>
</tr>
<tr>
<td>B5105</td>
<td>21</td>
<td>0.32</td>
<td>0.05</td>
<td>3.42</td>
<td>0.3</td>
</tr>
<tr>
<td>B5106</td>
<td>15</td>
<td>0.21</td>
<td>0.21</td>
<td>3.74</td>
<td>0.3</td>
</tr>
<tr>
<td>B5107</td>
<td>63</td>
<td>0.01</td>
<td>0.12</td>
<td>3.78</td>
<td>0.1</td>
</tr>
</tbody>
</table>

ASSAY RESULTS

- Sample Number:
- % Cu:
- % Zn:
- % Pb:
- % Zn:
- % Ag:

Footage Blocks

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (velais)</td>
<td>Width of Structure (velais)</td>
<td>Mineralization</td>
<td>Est. %</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>TRACHYTE PORPHYRY BORNE 539.7 ft to 595.7 ft</td>
<td>ND</td>
<td>Vn 21"</td>
<td>1/2"</td>
<td>Q12.</td>
<td>3-4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36 6"</td>
<td>AV - calc - cal - sp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANDESITE BORNE 574.6 ft to 597 ft</td>
<td>ND</td>
<td>Vn 30"</td>
<td>Vn</td>
<td>Ep - calc</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36 6"</td>
<td></td>
<td>Calc</td>
<td>1-2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRECAMBRIAN PROTOPLANE</td>
<td>SVD 6" to SVI 7"</td>
<td>As described above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRACHITE PORPHYRY DIKE 597 ft to SVI 7"</td>
<td>As described above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRECAMBRIAN PROTOPLANE</td>
<td>SVD 6" to 561 ft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRACHITE PORPHYRY DIKE</td>
<td>561 1 to 565 ft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRECAMBRIAN PROTOPLANE</td>
<td>565 1 to 567 (E.O.H)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOTTOM DEPTHS</th>
<th>Percentage Composition %</th>
<th>R.Q.D.</th>
<th>ASSAY RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leach Cap :</td>
<td>Leachable Cu.</td>
<td>An</td>
<td>CHSO</td>
</tr>
<tr>
<td>Leachable Oz:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lisa Zone:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supergene:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>TCu</th>
<th>OxCu</th>
<th>An</th>
<th>CHSO</th>
<th>AS Fe</th>
<th>CuO</th>
<th>& Fe</th>
<th>E</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5220</td>
<td>18</td>
<td>02</td>
<td>29</td>
<td>05</td>
<td>104</td>
<td>04</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5221</td>
<td>08</td>
<td>01</td>
<td>11</td>
<td>02</td>
<td>172</td>
<td>01</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5222</td>
<td>01</td>
<td>01</td>
<td>02</td>
<td>01</td>
<td>40</td>
<td>01</td>
<td>05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5223</td>
<td>03</td>
<td>01</td>
<td>03</td>
<td>01</td>
<td>242</td>
<td>01</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5224</td>
<td>04</td>
<td>01</td>
<td>06</td>
<td>01</td>
<td>183</td>
<td>01</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5225</td>
<td>05</td>
<td>01</td>
<td>06</td>
<td>01</td>
<td>190</td>
<td>01</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5226</td>
<td>02</td>
<td>01</td>
<td>02</td>
<td>01</td>
<td>223</td>
<td>01</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ron Ludden
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No. 94-103 Page No. 1 of 1

<table>
<thead>
<tr>
<th>Location</th>
<th>Central Zone</th>
<th>Bearing</th>
<th>Latitude (N)</th>
<th>Core Size</th>
<th>Logged By</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE405</td>
<td></td>
<td></td>
<td>-329°.94</td>
<td>NQ</td>
<td>L. Graden</td>
<td></td>
</tr>
<tr>
<td>Bear Date: June 7, 1994</td>
<td>Length: 67'</td>
<td>Longitude (E) 2198.43</td>
<td>Scale of Log 1" : 10'</td>
<td>Date: July 2, 1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Completed: June 9, 1994</td>
<td>Dip: 90°</td>
<td>Elevation: 190,251</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rock Types and Alteration Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrusive Breccia</td>
<td>Abundant microbrecciation.</td>
</tr>
<tr>
<td>Porphyry</td>
<td>Abundant microbrecciation.</td>
</tr>
<tr>
<td>Albite Alteration</td>
<td>Episodic Alteration.</td>
</tr>
<tr>
<td>Synediorite</td>
<td>Clay alteration.</td>
</tr>
</tbody>
</table>

Miscellaneous Symbols and Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b/b</td>
<td>Baffly broken rock</td>
</tr>
<tr>
<td>x</td>
<td>Breccia</td>
</tr>
<tr>
<td>f</td>
<td>Fault gouge</td>
</tr>
<tr>
<td>c</td>
<td>Chlorite</td>
</tr>
<tr>
<td>e</td>
<td>Episodic</td>
</tr>
<tr>
<td>a</td>
<td>Albitization</td>
</tr>
<tr>
<td>m</td>
<td>Mineralization</td>
</tr>
<tr>
<td>r</td>
<td>Rock type</td>
</tr>
</tbody>
</table>

Rock Types and Alteration

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Graphic Log</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. %</th>
<th>Est. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>20'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom Depths

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>TC7 %</th>
<th>OXCu %</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
</table>

Assay Results

<table>
<thead>
<tr>
<th>R.Q.D.</th>
<th>Leach COP</th>
<th>Footage</th>
<th>Blocks</th>
<th>Enriched Ore Recovery</th>
<th>Enriched Ore Recovery</th>
<th>Enriched Ore Recovery</th>
<th>Enriched Ore Recovery</th>
</tr>
</thead>
</table>

Remarks

CASING TO 20'
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>BOTTOM DEPTHS</th>
<th>Footage</th>
<th>Estimated Core Recovery %</th>
<th>R.Q.D.</th>
<th>ASSAY RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breccia has a moderate to strong K-speck alteration.</td>
<td>ND</td>
<td>5'</td>
<td>60°</td>
<td>Lm + Opx + ma +mel</td>
<td>3-1%</td>
<td>0</td>
<td>Fracturing</td>
<td>78'</td>
<td>52</td>
<td>852355</td>
<td>.17</td>
</tr>
<tr>
<td>Angle Porphyry 2:</td>
<td>ND</td>
<td>6'</td>
<td>20°</td>
<td>ma + hornblende</td>
<td>5-6%</td>
<td>0</td>
<td>Drop in Alkali Air</td>
<td>97</td>
<td>42</td>
<td>85236</td>
<td>.21</td>
</tr>
<tr>
<td>Dr. Brown-Grey color, typically altered. Breccia seen in surrounding area. Agates partially weathered to chert.</td>
<td>ND</td>
<td>2'</td>
<td>20°</td>
<td>ma + hornblende</td>
<td>3-5%</td>
<td>0</td>
<td>Increase in Cu oxide</td>
<td>90</td>
<td>42</td>
<td>85237</td>
<td>.22</td>
</tr>
<tr>
<td>Massive breccia seen in core. Breccia is not very weathered in core.</td>
<td>ND</td>
<td>2'</td>
<td>20°</td>
<td>ma + hornblende</td>
<td>4-5%</td>
<td>0</td>
<td>Significant drop in K-speck Air</td>
<td>92</td>
<td>42</td>
<td>85238</td>
<td>.23</td>
</tr>
<tr>
<td>As Described Above</td>
<td>ND</td>
<td>2'</td>
<td>20°</td>
<td>ma + hornblende</td>
<td>4-5%</td>
<td>0</td>
<td>Drop in Alkali Air</td>
<td>88</td>
<td>45</td>
<td>85239</td>
<td>.24</td>
</tr>
<tr>
<td>As Described Above.</td>
<td>ND</td>
<td>2'</td>
<td>20°</td>
<td>ma + hornblende</td>
<td>4-5%</td>
<td>0</td>
<td>Increase in Cu oxide</td>
<td>97</td>
<td>45</td>
<td>85240</td>
<td>.29</td>
</tr>
</tbody>
</table>

Remarks:
- Breccia has a moderate to strong K-speck alteration.
- Massive breccia seen in core. Breccia is not very weathered in core.

Assay Results:
- Sample Number: 852355
- % Cu: 0.17
- % Zn: 0.19
- % Pb: 0.01
- % Ag: 4.84
- % Fe: <0.13
- Sample Number: 85236
- % Cu: 0.21
- % Zn: 0.24
- % Pb: 0.02
- % Ag: 5.63
- % Fe: <0.17
- Sample Number: 85237
- % Cu: 0.22
- % Zn: 0.34
- % Pb: 0.02
- % Ag: 4.33
- % Fe: <0.10
- Sample Number: 85238
- % Cu: 0.23
- % Zn: 0.31
- % Pb: 0.02
- % Ag: 4.44
- % Fe: <0.15
- Sample Number: 85239
- % Cu: 0.24
- % Zn: 0.64
- % Pb: 0.05
- % Ag: 4.65
- % Fe: 0.01
- Sample Number: 85240
- % Cu: 0.29
- % Zn: 0.50
- % Pb: 0.02
- % Ag: 5.02
- % Fe: <0.25
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Table

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>85247</td>
<td>.11</td>
<td>.03</td>
<td>.18</td>
<td>.04</td>
<td>3.71</td>
</tr>
<tr>
<td>85248</td>
<td>.13</td>
<td>.03</td>
<td>.22</td>
<td>.04</td>
<td>3.62</td>
</tr>
<tr>
<td>85249</td>
<td>.27</td>
<td>.11</td>
<td>.51</td>
<td>.12</td>
<td>4.46</td>
</tr>
<tr>
<td>85250</td>
<td>.43</td>
<td>.20</td>
<td>.64</td>
<td>.24</td>
<td>4.13</td>
</tr>
<tr>
<td>85251</td>
<td>.27</td>
<td>.06</td>
<td>.63</td>
<td>.11</td>
<td>4.23</td>
</tr>
<tr>
<td>85252</td>
<td>.38</td>
<td>.14</td>
<td>.70</td>
<td>.13</td>
<td>5.56</td>
</tr>
<tr>
<td>85253</td>
<td>.22</td>
<td>.18</td>
<td>.59</td>
<td>.03</td>
<td>6.27</td>
</tr>
<tr>
<td>85254</td>
<td>.29</td>
<td>.20</td>
<td>.71</td>
<td>.05</td>
<td>9.60</td>
</tr>
<tr>
<td>85255</td>
<td>.27</td>
<td>.23</td>
<td>.43</td>
<td>.09</td>
<td>11.72</td>
</tr>
<tr>
<td>85256</td>
<td>.27</td>
<td>.13</td>
<td>.52</td>
<td>.11</td>
<td>7.62</td>
</tr>
<tr>
<td>85257</td>
<td>.27</td>
<td>.08</td>
<td>.65</td>
<td>.11</td>
<td>6.91</td>
</tr>
<tr>
<td>85258</td>
<td>.28</td>
<td>.15</td>
<td>.48</td>
<td>.14</td>
<td>5.58</td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (veins)</td>
<td>Width of Structure (veins)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>173' to 200'</td>
<td>ND</td>
<td>170</td>
<td>0.03</td>
<td>Horn</td>
<td>5.6%</td>
</tr>
<tr>
<td>Intense K-spar act</td>
<td>ND</td>
<td>175</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity limited</td>
<td>ND</td>
<td>180</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With bleaching</td>
<td>ND</td>
<td>185</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very weakly bleaching</td>
<td>ND</td>
<td>200</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorite and other</td>
<td>ND</td>
<td>185</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locally altered</td>
<td>ND</td>
<td>190</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augite Dyke</td>
<td>ND</td>
<td>200</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 ft to 255'</td>
<td>ND</td>
<td>205</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evident gray color</td>
<td>ND</td>
<td>210</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With bleaching</td>
<td>ND</td>
<td>215</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augite</td>
<td>ND</td>
<td>220</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent ep beag</td>
<td>ND</td>
<td>225</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOTTOM DEPTHS</th>
<th>FOOTAGE</th>
<th>BLOCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>179</td>
<td>179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASSAY RESULTS</th>
<th>Sample Number</th>
<th>TCu</th>
<th>OxAu</th>
<th>Ag</th>
<th>Au</th>
<th>Cu</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Estimated Cu Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>85259</td>
<td>.13</td>
<td>.05</td>
<td>.30</td>
<td>.08</td>
<td>.16</td>
<td>.04</td>
<td>.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85260</td>
<td>.40</td>
<td>.22</td>
<td>.16</td>
<td>.17</td>
<td>.38</td>
<td>.07</td>
<td>.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85261</td>
<td>.13</td>
<td>.15</td>
<td>.38</td>
<td>.03</td>
<td>.15</td>
<td>.01</td>
<td>.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85262</td>
<td>.28</td>
<td>.24</td>
<td>.50</td>
<td>.05</td>
<td>.84</td>
<td>.01</td>
<td>.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85263</td>
<td>.44</td>
<td>.28</td>
<td>.82</td>
<td>.19</td>
<td>.70</td>
<td>.07</td>
<td>.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85264</td>
<td>.36</td>
<td>.31</td>
<td>.68</td>
<td>.13</td>
<td>.47</td>
<td>.02</td>
<td>.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85265</td>
<td>.02</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.04</td>
<td>.01</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85266</td>
<td>.02</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>.38</td>
<td>.01</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85267</td>
<td>.02</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.04</td>
<td>.01</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85268</td>
<td>.02</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.49</td>
<td>.01</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85269</td>
<td>.03</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.43</td>
<td>.01</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85270</td>
<td>.02</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.35</td>
<td>.01</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole No.</td>
<td>Rp 103</td>
<td>Page 5 of 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Rock Types and Alteration

<table>
<thead>
<tr>
<th>Depth</th>
<th>Structure Width</th>
<th>Mineralization</th>
<th>Est. % Mg</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
</table>

Intrusive Breccia

- As described above.
- 265' to 301'
- Strong k-space act on 1st portion of unit; minor breccia.
- Breccia mostly the result of differential alkali weathering.

- 85271: 0.21, 0.01, 0.01, 3.30, <0.10
- 85272: 0.21, 0.01, 0.01, 4.06, <0.10
- 85273: 0.02, 0.01, 0.01, 3.77, <0.10
- 85274: 0.02, 0.01, 0.01, 4.28, <0.10
- 85275: 0.04, 0.03, 0.03, 4.80, <0.10
- 85276: 0.30, 0.10, 0.10, 4.10, <0.10
- 85277: 0.44, 0.02, 0.02, 4.73, <0.10
- 85278: 0.48, 0.19, 0.10, 5.91, <0.10
- 85279: 0.37, 0.01, 0.01, 4.99, <0.10
- 85280: 0.28, 0.02, 0.01, 6.18, <0.10
- 85281: 0.24, 0.09, 0.09, 5.22, <0.10
- 85282: 0.35, 0.22, 0.09, 5.86, <0.10

Note: The table contains detailed geologic data for drill holes, including rock types, mineralization, and assay results.
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No. 94-193

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins) Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Py</th>
<th>BOTTOM DEPTHS</th>
<th>R.Q.D.</th>
<th>ASSAY RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticline Dyke</td>
<td>ND 200</td>
<td>Jt 31°</td>
<td>Bi+Fb +Mn + lim.</td>
<td>2-3%</td>
<td>Footage Blocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jt 9°</td>
<td>MNO 2</td>
<td>5-14%</td>
<td>Enlarged Cut Recovery</td>
<td>99%</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85283 .26 .21 .57 .02 5.80 .40 .33</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85284 .19 .15 .24 .01 5.50 .40 .30</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85285 .16 .14 .26 .01 4.43 .40 .16</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85286 .03 .02 .03 .01 4.57 .40 .05</td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85287 .27 .23 .34 .01 5.62 .00 .18</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85288 .20 .17 .27 .01 5.02 .40 .25</td>
</tr>
<tr>
<td>Intrusive Breccia</td>
<td>ND 300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85289 .15 .11 .23 .01 6.00 .40 .21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85290 .14 .11 .26 .01 4.68 .40 .14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85291 .15 .11 .16 .01 2.59 .40 .19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85292 .19 .15 .23 .01 4.16 .40 .11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85293 .39 .02 .56 .03 4.92 .02 .95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85294 .16 .02 .25 .02 3.45 .01 .27</td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Rock Types and Alteration

<table>
<thead>
<tr>
<th>Folded Rock and Intensity</th>
<th>Graphic Log</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>St 39°</td>
<td>Lim-Mno2</td>
<td>3-7% V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>St 22°</td>
<td>Hem-Lim-MnO2</td>
<td>2.7% O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>355</td>
<td>St 22°</td>
<td>Hem-MnO2</td>
<td>2.7% O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>365</td>
<td>St 22°</td>
<td>Zn-Cu-MnO2</td>
<td>3.3% V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>370</td>
<td>St 31°</td>
<td>Zn-Cu-MnO2</td>
<td>3.3% V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>St 30°</td>
<td>Zn-Cu-MnO2</td>
<td>3.3% V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>385</td>
<td>Vn 2°</td>
<td>Zn-Cu-MnO2</td>
<td>3.3% V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>Vn 3°</td>
<td>Zn-Cu-MnO2</td>
<td>3.3% V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>Vn 3°</td>
<td>Zn-Cu-MnO2</td>
<td>3.3% V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>405</td>
<td>St 30°</td>
<td>Zn-Cu-MnO2</td>
<td>3.3% V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>St 29°</td>
<td>Zn-Cu-MnO2</td>
<td>3.3% V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom Depths

<table>
<thead>
<tr>
<th>Depth</th>
<th>Form</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>Vn</td>
<td>3-7% V</td>
<td>2.7% O</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>Vn</td>
<td>2.7% O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>Vn</td>
<td>2.7% O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>Vn</td>
<td>3.3% V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>Vn</td>
<td>3.3% V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>Vn</td>
<td>3.3% V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>Vn</td>
<td>3.3% V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>Vn</td>
<td>3.3% V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>Vn</td>
<td>3.3% V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>Vn</td>
<td>3.3% V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Pb</th>
<th>% Zn</th>
<th>% Ag</th>
<th>% Au</th>
<th>% Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>85295</td>
<td>0.13</td>
<td>0.24</td>
<td>0.24</td>
<td>0.74</td>
<td>0.02</td>
<td>19</td>
</tr>
<tr>
<td>85296</td>
<td>0.18</td>
<td>0.23</td>
<td>0.01</td>
<td>0.44</td>
<td>0.01</td>
<td>13</td>
</tr>
<tr>
<td>85297</td>
<td>0.14</td>
<td>0.20</td>
<td>0.02</td>
<td>0.36</td>
<td>0.01</td>
<td>20</td>
</tr>
<tr>
<td>85298</td>
<td>0.14</td>
<td>0.20</td>
<td>0.02</td>
<td>0.36</td>
<td>0.01</td>
<td>22</td>
</tr>
<tr>
<td>85299</td>
<td>0.17</td>
<td>0.27</td>
<td>0.02</td>
<td>0.40</td>
<td>0.01</td>
<td>34</td>
</tr>
<tr>
<td>85300</td>
<td>0.17</td>
<td>0.27</td>
<td>0.02</td>
<td>0.40</td>
<td>0.01</td>
<td>35</td>
</tr>
<tr>
<td>85301</td>
<td>0.17</td>
<td>0.22</td>
<td>0.01</td>
<td>0.36</td>
<td>0.01</td>
<td>18</td>
</tr>
<tr>
<td>85302</td>
<td>0.24</td>
<td>0.54</td>
<td>0.01</td>
<td>0.43</td>
<td>0.01</td>
<td>40</td>
</tr>
<tr>
<td>85303</td>
<td>0.11</td>
<td>0.20</td>
<td>0.02</td>
<td>0.31</td>
<td>0.01</td>
<td>75</td>
</tr>
<tr>
<td>85304</td>
<td>0.10</td>
<td>0.19</td>
<td>0.03</td>
<td>0.23</td>
<td>0.01</td>
<td>28</td>
</tr>
<tr>
<td>85305</td>
<td>0.13</td>
<td>0.51</td>
<td>0.03</td>
<td>0.40</td>
<td>0.02</td>
<td>36</td>
</tr>
<tr>
<td>85306</td>
<td>0.08</td>
<td>0.31</td>
<td>0.01</td>
<td>0.44</td>
<td>0.01</td>
<td>24</td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (veins)</td>
<td>Width of Structure (veins)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>As described above: periodic Zone of differential alteration (very alkaline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG

Hole No. 99-203 Page 8 of 11

<table>
<thead>
<tr>
<th>BOTTOM DEPTHS</th>
<th>Footage</th>
<th>Enthalpy Rec. %</th>
<th>R.Q.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leach Cap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leachable Ores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lim. Zones</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Fe</th>
<th>% Au</th>
<th>% Ag</th>
<th>Assayed Cu Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>85307</td>
<td>0.12</td>
<td>0.12</td>
<td>0.01</td>
<td>0.26</td>
<td>3.49<0.1</td>
</tr>
<tr>
<td>85308</td>
<td>0.12</td>
<td>0.12</td>
<td>0.01</td>
<td>0.26</td>
<td>3.49<0.1</td>
</tr>
<tr>
<td>85309</td>
<td>0.12</td>
<td>0.12</td>
<td>0.01</td>
<td>0.26</td>
<td>3.49<0.1</td>
</tr>
<tr>
<td>85310</td>
<td>0.12</td>
<td>0.12</td>
<td>0.01</td>
<td>0.26</td>
<td>3.49<0.1</td>
</tr>
<tr>
<td>85311</td>
<td>0.12</td>
<td>0.12</td>
<td>0.01</td>
<td>0.26</td>
<td>3.49<0.1</td>
</tr>
<tr>
<td>85312</td>
<td>0.12</td>
<td>0.12</td>
<td>0.01</td>
<td>0.26</td>
<td>3.49<0.1</td>
</tr>
<tr>
<td>85313</td>
<td>0.12</td>
<td>0.12</td>
<td>0.01</td>
<td>0.26</td>
<td>3.49<0.1</td>
</tr>
<tr>
<td>85314</td>
<td>0.12</td>
<td>0.12</td>
<td>0.01</td>
<td>0.26</td>
<td>3.49<0.1</td>
</tr>
<tr>
<td>85315</td>
<td>0.12</td>
<td>0.12</td>
<td>0.01</td>
<td>0.26</td>
<td>3.49<0.1</td>
</tr>
<tr>
<td>85316</td>
<td>0.12</td>
<td>0.12</td>
<td>0.01</td>
<td>0.26</td>
<td>3.49<0.1</td>
</tr>
</tbody>
</table>

Note: The table includes various rock types and alteration descriptions along with their respective mineralization estimates and assay results.
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAFIC LOG</th>
<th>Structure (< to core axis)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.69" to 2.96"</td>
<td>ND</td>
<td>470</td>
<td>15°</td>
<td>chl + clay + go, ox + green + go, muscovite</td>
<td>1% Tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very dark grey, fine grained</td>
<td>ND</td>
<td>575</td>
<td>15°</td>
<td>chlorite + hematite</td>
<td>4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amorphous alteration by</td>
<td>ND</td>
<td>490</td>
<td>15°</td>
<td>clay + go, ox + green + go, muscovite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.96" to 4.30"</td>
<td>ND</td>
<td>575</td>
<td>45°</td>
<td>hematite</td>
<td>3-4% Py</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well mineralized, gneiss-like</td>
<td>ND</td>
<td>490</td>
<td>45°</td>
<td>go + chlorite + oxidized</td>
<td>4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core may have been the metasedimentary</td>
<td>ND</td>
<td>490</td>
<td>45°</td>
<td>chlorite + go, ox + green + go, muscovite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.30" to 5.30"</td>
<td>ND</td>
<td>570</td>
<td>30°</td>
<td>chlorite + go, ox + green + go, muscovite</td>
<td>2-3% Py</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.30" to 6.30"</td>
<td>ND</td>
<td>570</td>
<td>30°</td>
<td>chlorite + go, ox + green + go, muscovite</td>
<td>3-4% Py</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.30" to 7.30"</td>
<td>ND</td>
<td>575</td>
<td>30°</td>
<td>chlorite + go, ox + green + go, muscovite</td>
<td>5% Tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.30" to 8.30"</td>
<td>ND</td>
<td>570</td>
<td>30°</td>
<td>chlorite + go, ox + green + go, muscovite</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.30" to 9.30"</td>
<td>ND</td>
<td>575</td>
<td>30°</td>
<td>chlorite + go, ox + green + go, muscovite</td>
<td>3-4% Py</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.30" to 10.30"</td>
<td>ND</td>
<td>570</td>
<td>30°</td>
<td>chlorite + go, ox + green + go, muscovite</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.30" to 11.30"</td>
<td>ND</td>
<td>575</td>
<td>30°</td>
<td>chlorite + go, ox + green + go, muscovite</td>
<td>3-4% Py</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.30" to 12.30"</td>
<td>ND</td>
<td>570</td>
<td>30°</td>
<td>chlorite + go, ox + green + go, muscovite</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG

<table>
<thead>
<tr>
<th>Hole No. 97-103</th>
<th>Page 9 of 11</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Zn</th>
<th>% Pb</th>
<th>% Ag</th>
<th>% Au</th>
<th>% Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>85319</td>
<td>.29</td>
<td>.01</td>
<td>.01</td>
<td>3.64</td>
<td>.01</td>
<td>.31</td>
</tr>
<tr>
<td>85320</td>
<td>.20</td>
<td><.01</td>
<td>.29</td>
<td>.01</td>
<td>.39</td>
<td><.01</td>
</tr>
<tr>
<td>85321</td>
<td>.20</td>
<td>.01</td>
<td>.31</td>
<td>.01</td>
<td>3.78</td>
<td>.01</td>
</tr>
<tr>
<td>85322</td>
<td>.20</td>
<td>.01</td>
<td>.26</td>
<td>.02</td>
<td>3.56</td>
<td>.01</td>
</tr>
<tr>
<td>85323</td>
<td>.18</td>
<td>.01</td>
<td>.23</td>
<td>.01</td>
<td>4.33</td>
<td>.01</td>
</tr>
<tr>
<td>85324</td>
<td>.30</td>
<td>.01</td>
<td>.35</td>
<td>.03</td>
<td>5.00</td>
<td>.01</td>
</tr>
<tr>
<td>85325</td>
<td>.20</td>
<td>.01</td>
<td>.24</td>
<td>.01</td>
<td>6.07</td>
<td>.01</td>
</tr>
<tr>
<td>85326</td>
<td>.12</td>
<td>.01</td>
<td>.17</td>
<td>.01</td>
<td>6.57</td>
<td>.01</td>
</tr>
<tr>
<td>85327</td>
<td>.13</td>
<td>.01</td>
<td>.20</td>
<td>.02</td>
<td>4.82</td>
<td>.01</td>
</tr>
<tr>
<td>85328</td>
<td>.18</td>
<td>.01</td>
<td>.28</td>
<td>.03</td>
<td>5.33</td>
<td>.01</td>
</tr>
<tr>
<td>85329</td>
<td>.11</td>
<td>.01</td>
<td>.10</td>
<td><.01</td>
<td>3.75</td>
<td><.01</td>
</tr>
<tr>
<td>85330</td>
<td>.08</td>
<td>.01</td>
<td>.12</td>
<td>.01</td>
<td>2.88</td>
<td><.01</td>
</tr>
<tr>
<td>85331</td>
<td>.20</td>
<td>.01</td>
<td>.20</td>
<td>.02</td>
<td>4.32</td>
<td>.01</td>
</tr>
</tbody>
</table>

LEACHABLE RESULTS

- Ledge Core: 472.0'
- Leachable: 472.0'
- Assay: %.01
- Recovery: %.01
- Cu: %.01
- Zn: %.01
- Pb: %.01
- Ag: %.01
- Au: %.01
- % Cu: %.01
- % Zn: %.01
- % Pb: %.01
- % Ag: %.01
- % Au: %.01
- % Ag: %.01

ASSAY RESULTS

- Sample Number: 85319, 85320, 85321, 85322, 85323, 85324, 85325, 85326, 85327, 85328, 85329, 85330
- % Cu: .29, .20, .20, .20, .18, .30, .20, .12, .13, .18
- % Zn: .01, <.01, .01, .01, .01, .01, .01, .01, .01, .01
- % Pb: .01, .29, .31, .26, .23, .35, .24, .17, .20, .10
- % Ag: 3.64, 3.93, 3.78, 3.56, 4.33, 5.00, 6.07, 6.57, 4.82, 3.75
- % Au: .01, .01, .01, .01, .01, .01, .01, .01, .01, .01
- % Ag: .31, .39, .38, .28, .33, .30, .28, .19, .20, .20
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure Width of Structure</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>BOTTOM DEPTHS</th>
<th>LOG</th>
<th>Leach Gate</th>
<th>Leachable Orp</th>
<th>LOG</th>
<th>List</th>
<th>Zone</th>
<th>Sample Number</th>
<th>R.O.D.</th>
<th>Cu</th>
<th>OxCu</th>
<th>Au %</th>
<th>Ag %</th>
<th>Au %</th>
<th>Cu %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>539 SH 20'</td>
<td>Hem - chl (sticks @ 60° to ca)</td>
<td>3-1% of</td>
<td>93%</td>
<td>85331</td>
<td>.07</td>
<td>.01</td>
<td>.13</td>
<td>.01</td>
<td>5.16</td>
<td>.01</td>
<td>.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>515 SH 17'</td>
<td>clay - ep - chl - Hem - chl</td>
<td>5% of</td>
<td>85332</td>
<td>.11</td>
<td>.13</td>
<td>2.14</td>
<td>.01</td>
<td>.02</td>
<td>4.94</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>540 SH 20'</td>
<td>clay - ep - chl - Hem - chl</td>
<td>5% of</td>
<td>85333</td>
<td>.07</td>
<td>.01</td>
<td>.08</td>
<td>.02</td>
<td>3.54</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>545 SH 30'</td>
<td>Hem - chl (sticks @ 90° to ca)</td>
<td>4-5% of</td>
<td>85334</td>
<td>.03</td>
<td>.01</td>
<td>.04</td>
<td>.01</td>
<td>3.10</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>549 SH 17'</td>
<td>Hem - Al - chl (sticks @ 80° to ca)</td>
<td>2-3% of</td>
<td>94%</td>
<td>85335</td>
<td>.04</td>
<td>.01</td>
<td>.06</td>
<td>.01</td>
<td>3.33</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>555 SH 2'</td>
<td>Hem - Al - chl (sticks @ 55° to ca)</td>
<td>2-3% of</td>
<td>85336</td>
<td>.07</td>
<td>.01</td>
<td>.11</td>
<td>.01</td>
<td>3.90</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>560 SH 4'</td>
<td>chl - hem (sticks @ 70° to ca)</td>
<td>3% of</td>
<td>85337</td>
<td>.06</td>
<td>.01</td>
<td>.06</td>
<td>.02</td>
<td>4.15</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>565 SH 12'</td>
<td>chl - hem (sticks @ 90° to ca)</td>
<td>1-2% of</td>
<td>85338</td>
<td>.04</td>
<td>.01</td>
<td>.09</td>
<td>.01</td>
<td>4.58</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>570 SH 9'</td>
<td>Hem - Al - chl (sticks @ 80° to ca)</td>
<td>1% of</td>
<td>99%</td>
<td>85339</td>
<td>.13</td>
<td>.19</td>
<td>.13</td>
<td>.13</td>
<td>3.29</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>575 SH 4'</td>
<td>chl - hem (sticks @ 70° to ca)</td>
<td>3-4% of</td>
<td>85340</td>
<td>.24</td>
<td>.01</td>
<td>.27</td>
<td>.01</td>
<td>4.92</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>579 SH 9'</td>
<td>Hem - Al - chl (sticks @ 80° to ca)</td>
<td>4% of</td>
<td>98%</td>
<td>85341</td>
<td>.12</td>
<td>.01</td>
<td>.13</td>
<td>.01</td>
<td>1.67</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>585 SH 6'</td>
<td>Hem - Al - chl (sticks @ 70° to ca)</td>
<td>4-5% of</td>
<td>85342</td>
<td>.12</td>
<td>.01</td>
<td>.16</td>
<td>.01</td>
<td>3.09</td>
<td>.01</td>
<td></td>
</tr>
</tbody>
</table>

GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG

Hole No. 94-103

ASSAY RESULTS

Sample Number	R.O.D.	Cu	OxCu	Au %	Ag %	Au %	Cu %
85331 | .07 | .01 | .13 | .01 | 5.16 | .01 |
85332 | .11 | .13 | 2.14 | .01 | .02 | 4.94 | .01 |
85333 | .07 | .01 | .08 | .02 | 3.54 | .01 |
85334 | .03 | .01 | .04 | .01 | 3.10 | .01 |
85335 | .04 | .01 | .06 | .01 | 3.33 | .01 |
85336 | .07 | .01 | .11 | .01 | 3.90 | .01 |
85337 | .06 | .01 | .06 | .02 | 4.15 | .01 |
85338 | .04 | .01 | .09 | .01 | 4.58 | .01 |
85339 | .13 | .19 | .13 | .13 | 3.29 | .01 |
85340 | .24 | .01 | .27 | .01 | 4.92 | .01 |
85341 | .12 | .01 | .13 | .01 | 1.67 | .01 |
85342 | .12 | .01 | .16 | .01 | 3.09 | .01 |
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins) < to core axis</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>BOTTOM DEPTHS</th>
<th>Footage Blocks</th>
<th>R.Q.D.</th>
<th>Assay Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synodenedite</td>
<td>ND</td>
<td>495° 1/2"</td>
<td>495° 1/2"</td>
<td>Alb-cul - diop, Ep (shiny vein on surface)</td>
<td>3-4% Tr</td>
<td>982</td>
<td>93</td>
<td>353.43</td>
<td>0.20</td>
<td>0.01</td>
</tr>
<tr>
<td>Brecia</td>
<td>ND</td>
<td>395°</td>
<td>395°</td>
<td>K-spark all, slight alteration, matrix broken</td>
<td>3-4% K</td>
<td>152</td>
<td>42</td>
<td>353.45</td>
<td>0.17</td>
<td>0.01</td>
</tr>
<tr>
<td>Brecia</td>
<td>ND</td>
<td>395°</td>
<td>395°</td>
<td>K-spark all, slight alteration, matrix broken</td>
<td>3-4% K</td>
<td>152</td>
<td>42</td>
<td>353.45</td>
<td>0.23</td>
<td>0.01</td>
</tr>
<tr>
<td>Brecia</td>
<td>ND</td>
<td>395°</td>
<td>395°</td>
<td>K-spark all, slight alteration, matrix broken</td>
<td>3-4% K</td>
<td>152</td>
<td>42</td>
<td>353.45</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>Brecia</td>
<td>ND</td>
<td>495°</td>
<td>495°</td>
<td>Weak, Diop, Ep, Synodenedite, matrix broken</td>
<td>2-3% K</td>
<td>972</td>
<td>70</td>
<td>353.47</td>
<td>0.10</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Remarks:
- Hardy strong, k-spark all, matrix broken, minor auth of Act
- Very broken up, partial of calcite, minor calcite on the broken fracture
- Very little structure
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est Mag</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRUSION BRECCIA (10'-547' E.O.H.)</td>
<td>ND</td>
<td>?</td>
<td>10'</td>
<td>bnx-(\text{MnO}_2)-lim (ep)</td>
<td>1.0</td>
<td>casing to 10'</td>
</tr>
<tr>
<td>- variable k-feld alt'n</td>
<td>ND</td>
<td>?</td>
<td>5'</td>
<td>bnx-lm-(\text{MnO}_2)-(chn)</td>
<td>1.0</td>
<td>ep alt'n occurring w/k-feld alth' giving patchy/orange/ green appearance</td>
</tr>
<tr>
<td>- originally syenodiorite</td>
<td>ND</td>
<td>?</td>
<td>3'</td>
<td>bnx-gg-(\text{MnO}_2)-lim</td>
<td>1.5</td>
<td>ep alt'n w/k-feld alth'</td>
</tr>
<tr>
<td>- intervals of MAFIC DYKES</td>
<td>ND</td>
<td>?</td>
<td>6'</td>
<td>bnx-gg-(\text{MnO}_2)</td>
<td>1.0</td>
<td>ep alt'n w/k-feld alth'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOTTOM DEPTHS</th>
<th>Feet</th>
<th>%</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leach Cap</td>
<td>17</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Leachable Oc.</td>
<td>13</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>L.Iz. Zone</td>
<td>31'</td>
<td>85713</td>
<td>.42 .34 .22 .04 6.32 .01 .12</td>
</tr>
<tr>
<td>Superpore</td>
<td></td>
<td>85714</td>
<td>.23 .16 .10 .03 6.20 .01 .15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASSAY RESULTS</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>Bq/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Number</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>Bq/L</td>
</tr>
<tr>
<td>TOA</td>
<td>.42</td>
<td>.23</td>
<td>.37</td>
<td>.28</td>
<td>.28</td>
<td>.14</td>
<td>.11</td>
<td>.98</td>
</tr>
<tr>
<td>FeO</td>
<td>.34</td>
<td>.16</td>
<td>.39</td>
<td>.25</td>
<td>.25</td>
<td>.07</td>
<td>.15</td>
<td>.25</td>
</tr>
<tr>
<td>Cu</td>
<td>.22</td>
<td>.10</td>
<td>.21</td>
<td>.15</td>
<td>.15</td>
<td>.04</td>
<td>.15</td>
<td>.20</td>
</tr>
<tr>
<td>As</td>
<td>.04</td>
<td>.03</td>
<td>.07</td>
<td>.03</td>
<td>.03</td>
<td>.02</td>
<td>.01</td>
<td>.20</td>
</tr>
<tr>
<td>Sn</td>
<td>.63</td>
<td>.62</td>
<td>.72</td>
<td>.62</td>
<td>.53</td>
<td>.48</td>
<td>.52</td>
<td>.48</td>
</tr>
<tr>
<td>Au</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>Total</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
</tbody>
</table>

June 1994
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (vein)</th>
<th>Width of Structure (vein)</th>
<th>MINERALIZATION</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Botton Depths</th>
<th>Footage Blocks</th>
<th>Recovery</th>
<th>R.Q.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2”</td>
<td>1”</td>
<td>brx-competed MnO₂</td>
<td>1.5</td>
<td>0</td>
<td>lim-MnO₂-mel on fract surf</td>
<td>90</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3”</td>
<td>2”</td>
<td>MnO₂-diss cp</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3”</td>
<td>1”</td>
<td>brx-MnO₂-mel</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3”</td>
<td>1”</td>
<td>brx-MnO₂</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td>67</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8”</td>
<td>1”</td>
<td>brx-MnO₂-(lim)</td>
<td>0.5</td>
<td>0</td>
<td></td>
<td></td>
<td>77</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8”</td>
<td>5”</td>
<td>brx-MnO₂-MnO₂(chr)</td>
<td>0.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAULT</td>
<td></td>
<td>8”</td>
<td>1”</td>
<td>MnO₂-chr-(lim)</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td>87</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8”</td>
<td>1”</td>
<td>chr on fract surfaces</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td>85</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8”</td>
<td>1”</td>
<td>brx-geo-MnO₂-chr</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8”</td>
<td>2”</td>
<td>MnO₂-lim-chr on fract</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td>90</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8”</td>
<td>2”</td>
<td>MnO₂-lim-mel on fract</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td>107</td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Zn</th>
<th>% Pb</th>
<th>% Cr</th>
<th>% Mn</th>
<th>% Ni</th>
<th>% Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>85721</td>
<td>0.32</td>
<td>0.22</td>
<td>0.19</td>
<td>0.04</td>
<td>6.15</td>
<td>0.01</td>
<td>2.5</td>
</tr>
<tr>
<td>85722</td>
<td>0.42</td>
<td>0.14</td>
<td>0.07</td>
<td>0.04</td>
<td>4.34</td>
<td>0.01</td>
<td>2.8</td>
</tr>
<tr>
<td>85723</td>
<td>0.20</td>
<td>0.19</td>
<td>0.08</td>
<td>0.03</td>
<td>4.45</td>
<td>0.01</td>
<td>2.2</td>
</tr>
<tr>
<td>85724</td>
<td>0.21</td>
<td>0.13</td>
<td>0.06</td>
<td>0.03</td>
<td>4.64</td>
<td>0.01</td>
<td>2.0</td>
</tr>
<tr>
<td>85725</td>
<td>0.33</td>
<td>0.19</td>
<td>0.09</td>
<td>0.03</td>
<td>4.11</td>
<td><0.1</td>
<td>1.2</td>
</tr>
<tr>
<td>85726</td>
<td>0.23</td>
<td>0.19</td>
<td>0.10</td>
<td>0.02</td>
<td>4.06</td>
<td><0.1</td>
<td>1.5</td>
</tr>
<tr>
<td>85727</td>
<td>0.27</td>
<td>0.20</td>
<td>0.08</td>
<td>0.02</td>
<td>3.62</td>
<td><0.1</td>
<td>1.5</td>
</tr>
<tr>
<td>85728</td>
<td>0.24</td>
<td>0.20</td>
<td>0.10</td>
<td>0.02</td>
<td>3.05</td>
<td><0.1</td>
<td>1.2</td>
</tr>
<tr>
<td>85729</td>
<td>0.33</td>
<td>0.27</td>
<td>0.14</td>
<td>0.02</td>
<td>2.41</td>
<td><0.1</td>
<td>1.8</td>
</tr>
<tr>
<td>85730</td>
<td>0.19</td>
<td>0.13</td>
<td>0.07</td>
<td>0.02</td>
<td>3.56</td>
<td>0.01</td>
<td>1.5</td>
</tr>
<tr>
<td>85731</td>
<td>0.29</td>
<td>0.24</td>
<td>0.12</td>
<td>0.03</td>
<td>3.69</td>
<td><0.1</td>
<td>1.5</td>
</tr>
<tr>
<td>85732</td>
<td>0.30</td>
<td>0.16</td>
<td>0.13</td>
<td>0.10</td>
<td>4.77</td>
<td>0.01</td>
<td>1.2</td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (veins) < to core axis</td>
<td>Width of Structure (veins)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
<td>BOTTOM DEPTHS</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG
Hole No. 94-104 Page 3 of 10
Rock Types and Alteration

- No secondary biotite or mafic
- Original eclogite texture
- Intense K-feld alteration
- Possibly still INTRUSION BRECCIA

Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Sample Number

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>%TCu</th>
<th>%Cov</th>
<th>%As</th>
<th>%Fe</th>
<th>%Cu</th>
<th>%Mn</th>
<th>%Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>85745</td>
<td>.58</td>
<td>.20</td>
<td>.19</td>
<td>.23</td>
<td>3.26</td>
<td>.09</td>
<td>.10</td>
</tr>
<tr>
<td>85746</td>
<td>.57</td>
<td>.19</td>
<td>.19</td>
<td>.23</td>
<td>5.05</td>
<td>.06</td>
<td>.25</td>
</tr>
</tbody>
</table>

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>%Cu</th>
<th>%Fe</th>
<th>%Co</th>
<th>%Ni</th>
<th>%As</th>
</tr>
</thead>
<tbody>
<tr>
<td>85747</td>
<td>.63</td>
<td>.25</td>
<td>.35</td>
<td>.21</td>
<td>4.62</td>
</tr>
<tr>
<td>85748</td>
<td>.58</td>
<td>.08</td>
<td>.31</td>
<td>.12</td>
<td>6.11</td>
</tr>
</tbody>
</table>

Remarks

- Depth: 190 feet
- Mineralization: calcite-natural
- Alteration: secondary mag-sil, thus infilling:
 - Major mag-kaol
 - Secondary mag-sil in fractures

Bottom Depths

<table>
<thead>
<tr>
<th>Depth</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>1.0</td>
<td>0</td>
<td>mag veins</td>
</tr>
<tr>
<td>197</td>
<td>4.0</td>
<td>0</td>
<td>mag veins</td>
</tr>
<tr>
<td>207</td>
<td>2.0</td>
<td>0</td>
<td>mag veins</td>
</tr>
<tr>
<td>217</td>
<td>4.0</td>
<td>0</td>
<td>mag veins</td>
</tr>
<tr>
<td>227</td>
<td>2.0</td>
<td>0</td>
<td>mag veins</td>
</tr>
</tbody>
</table>

End of Limonite Zone

- Depth: 30 feet
- Mineralization: calcite
- Alteration: large blebs of mag-caol
- Remarks: lim-MnO2 on fracture surface

<table>
<thead>
<tr>
<th>Hole No. 94-104 Page 4 of 10</th>
<th>Depth</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>4.0</td>
<td>0</td>
<td>mag veins</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>6.0</td>
<td>0</td>
<td>mag veins</td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>2.0</td>
<td>0</td>
<td>mag veins</td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>4.0</td>
<td>0</td>
<td>mag veins</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>2.0</td>
<td>0</td>
<td>mag veins</td>
<td></td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>Graphic LOG</td>
<td>Structure (velas)</td>
<td>Width of Structure (velas)</td>
<td>Mineralization</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>diss cp + algal fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>weak ep allin secondary mag infilling diss cp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>249</td>
<td></td>
<td>mag-go (cal) diss cp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>blebs of cp secondary mag infilling diss cp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>259</td>
<td></td>
<td>alb-cal (mag) diss cp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cal-mag blebs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>269</td>
<td></td>
<td>diss cp cal (her)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>secondary mag infilling diss cp</td>
</tr>
<tr>
<td>MAFIC DYKE (270° - 288°)</td>
<td></td>
<td></td>
<td></td>
<td>vugy vein of calcite ten</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>grey in color, blocky habit, possibly a pyroxene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>amygdules of calcite and epidote</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>contacts: top 40°, bottom 30°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>weakly magnetic</td>
</tr>
</tbody>
</table>

<p>| Bottom Depths |
|---------------|---------------|---------------|---------------|</p>
<table>
<thead>
<tr>
<th>Footage Blocks</th>
<th>Est. Con Recovery</th>
<th>R.Q.D.</th>
<th>Sample Number</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Hole No. 94-104 Page 5 of 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Number</td>
</tr>
<tr>
<td>TCa</td>
</tr>
<tr>
<td>85757</td>
</tr>
<tr>
<td>85758</td>
</tr>
<tr>
<td>85759</td>
</tr>
<tr>
<td>85760</td>
</tr>
<tr>
<td>85761</td>
</tr>
<tr>
<td>85762</td>
</tr>
<tr>
<td>85763</td>
</tr>
<tr>
<td>85764</td>
</tr>
<tr>
<td>85765</td>
</tr>
<tr>
<td>85766</td>
</tr>
<tr>
<td>85767</td>
</tr>
<tr>
<td>85768</td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Cu%</th>
<th>OxCu%</th>
<th>Zn%</th>
<th>Pb%</th>
<th>Fe%</th>
<th>Ag%</th>
<th>Au%</th>
<th>Bottom Depths</th>
<th>R.O.D</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>85769</td>
<td>1.47</td>
<td>.19</td>
<td>.201</td>
<td>.39</td>
<td>5.40</td>
<td>.22</td>
<td>.85</td>
<td>95</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>85770</td>
<td>.97</td>
<td>.09</td>
<td>.22</td>
<td>5.11</td>
<td>.12</td>
<td>.45</td>
<td></td>
<td>98</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>85771</td>
<td>.86</td>
<td>.05</td>
<td>.55</td>
<td>.15</td>
<td>5.58</td>
<td>.06</td>
<td>.38</td>
<td>95</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>85772</td>
<td>.66</td>
<td>.08</td>
<td>.47</td>
<td>.17</td>
<td>6.04</td>
<td>.09</td>
<td>.38</td>
<td>95</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>85773</td>
<td>.30</td>
<td>.01</td>
<td>.16</td>
<td>.02</td>
<td>4.98</td>
<td>.01</td>
<td>.30</td>
<td>95</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>85774</td>
<td>.54</td>
<td>.01</td>
<td>.25</td>
<td>.02</td>
<td>7.28</td>
<td>.01</td>
<td>.28</td>
<td>95</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>85775</td>
<td>.47</td>
<td>.04</td>
<td>.28</td>
<td>.11</td>
<td>6.45</td>
<td>.05</td>
<td>.20</td>
<td>85</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>85776</td>
<td>.65</td>
<td>.43</td>
<td>.22</td>
<td>.20</td>
<td>6.79</td>
<td>.06</td>
<td>.22</td>
<td>85</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>85777</td>
<td>.46</td>
<td>.09</td>
<td>.31</td>
<td>.16</td>
<td>4.60</td>
<td>.08</td>
<td>.22</td>
<td>85</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>85778</td>
<td>.34</td>
<td>.10</td>
<td>.52</td>
<td>.29</td>
<td>6.91</td>
<td>.15</td>
<td>.24</td>
<td>85</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>85779</td>
<td>.171</td>
<td>.35</td>
<td>.34</td>
<td>.24</td>
<td>6.49</td>
<td>.41</td>
<td>.22</td>
<td>85</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>85780</td>
<td>2.59</td>
<td>.55</td>
<td>1.16</td>
<td>.78</td>
<td>7.26</td>
<td>.70</td>
<td>.35</td>
<td>85</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure Y-axis</td>
<td>Width of Structure (veins)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
<td>BOTTOM DEPTHS</td>
<td>FOOTAGE Blocks</td>
<td>Recovery %</td>
<td>R.O.D.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>ND</td>
<td>366</td>
<td>17</td>
<td>1'</td>
<td>wk diss cp</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td>45</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>357</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>30-50</td>
<td>3'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (veins)</td>
<td>Width of Structure (veins)</td>
<td>Mineralization</td>
<td>Est. %</td>
<td>Est. %</td>
<td>Py</td>
<td>Remarks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>----</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td>420</td>
<td>60 x 5"</td>
<td>large bleb of actinolite
 dial = cp
 +
 bleb of cp
 dill = cp
 calc</td>
<td>2.0</td>
<td>0</td>
<td>patchy albite ± tln</td>
<td>447</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td>430</td>
<td>70 x 5"</td>
<td>str Native Cu on fract
 mag
 + wkh dill = cp</td>
<td>1.5</td>
<td>0</td>
<td>str albite ± tln</td>
<td>427</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td>440</td>
<td>90 x 5"</td>
<td>large blebs mag-cal-
 cp
 dill = cp</td>
<td>2.5</td>
<td>0</td>
<td>patches of alb ± tln</td>
<td>437</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td>450</td>
<td>1" x 1"</td>
<td>brx
 +
 brx-(ben)</td>
<td>1.0</td>
<td>0</td>
<td>mod albite ± tln</td>
<td>447</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td>30 x 3</td>
<td>20 x 3</td>
<td>cal-mag</td>
<td>2.0</td>
<td>0</td>
<td></td>
<td>457</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td>460</td>
<td>1" x 1"</td>
<td>wkh dill = cp</td>
<td>1.5</td>
<td>0</td>
<td></td>
<td>457</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td>470</td>
<td>0-10 x 5"</td>
<td>wkh dill = cp
 +
 bleb of alb-cal-(mag)-cp
 dill = cp
 +
 calc</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td>467</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>TCu</th>
<th>OxCu</th>
<th>Au</th>
<th>Ag</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>P</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>85793</td>
<td>9.8</td>
<td>10</td>
<td>52</td>
<td>5.89</td>
<td>14</td>
<td>5.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85794</td>
<td>7.5</td>
<td>10</td>
<td>3.1</td>
<td>7.39</td>
<td>14</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85795</td>
<td>5.2</td>
<td>10</td>
<td>3.1</td>
<td>4.81</td>
<td>06</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85796</td>
<td>1.76</td>
<td>10</td>
<td>3.1</td>
<td>7.35</td>
<td>30</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85797</td>
<td>1.63</td>
<td>18</td>
<td>0.69</td>
<td>6.16</td>
<td>22</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85798</td>
<td>1.22</td>
<td>23</td>
<td>0.53</td>
<td>6.39</td>
<td>27</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85799</td>
<td>0.31</td>
<td>05</td>
<td>0.14</td>
<td>5.13</td>
<td>07</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85800</td>
<td>1.09</td>
<td>17</td>
<td>0.52</td>
<td>6.64</td>
<td>24</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85801</td>
<td>1.35</td>
<td>25</td>
<td>0.90</td>
<td>7.24</td>
<td>31</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85802</td>
<td>1.35</td>
<td>25</td>
<td>0.90</td>
<td>7.24</td>
<td>31</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85803</td>
<td>1.66</td>
<td>09</td>
<td>0.25</td>
<td>4.88</td>
<td>12</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85804</td>
<td>0.70</td>
<td>08</td>
<td>0.22</td>
<td>2.73</td>
<td>10</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (veins) & Width of Structure (veins)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
<td>BOTTOM DEPTHS</td>
<td>R.Q.D.</td>
<td>ASSAY RESULTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Footage Blocks</td>
<td>Weighted % Recovery</td>
<td>Sample Number</td>
<td>% Cu</td>
<td>% Zn</td>
<td>% Pb</td>
</tr>
<tr>
<td>MAFIC DYKE</td>
<td>40°</td>
<td>30°</td>
<td>dim</td>
<td>calcite + veinlets</td>
<td>2.0</td>
<td>0.0</td>
<td>477</td>
<td>98</td>
<td>85805</td>
<td>1.13</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No. 94-104 Page 10 of 10

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPESE LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>BOTTOM DEPTHS</th>
<th>R.O.D.</th>
<th>FOOTECE Blocks</th>
<th>Ft</th>
<th>Submitted</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% As</th>
<th>% Co</th>
<th>% Ag</th>
<th>% Au</th>
<th>% Pb</th>
<th>% Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>65817</td>
<td>1.04</td>
<td>0.09</td>
<td>0.39</td>
<td>0.22</td>
<td>5.70</td>
<td>1.10</td>
<td>0.45</td>
</tr>
<tr>
<td>85818</td>
<td>1.24</td>
<td>0.79</td>
<td>0.29</td>
<td>0.18</td>
<td>6.57</td>
<td>0.09</td>
<td>0.58</td>
</tr>
<tr>
<td>85819</td>
<td>1.09</td>
<td>0.10</td>
<td>1.43</td>
<td>0.26</td>
<td>5.90</td>
<td>0.12</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Remarks:

- dia: cp
- blebs of cp assoc w/ alb-cal-(mag)
- infill of blebs of cp alb-(mag)-(cal)
- blebs of alb-cal-cp
- muddy part of calcite w/large blebs of cp
- str dia: cp

E.O.H. 547

Murray Rydman
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (velas)</th>
<th>Width of Structure (velas)</th>
<th>Mineralization</th>
<th>Ext. %</th>
<th>Mag</th>
<th>Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUGITE PORPHYRY DYE (30'-41')</td>
<td>ND</td>
<td>7'</td>
<td>10'</td>
<td>btr-gg-lim-MoO_3-(fes)</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>casing to 30'</td>
</tr>
<tr>
<td>INTRUSION BRECCIA (41'-56')</td>
<td>ND</td>
<td>20</td>
<td>3'</td>
<td>calc-Nem-mal</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>lim-MoO_3-(mal) on fractures</td>
</tr>
<tr>
<td>AUGITE PORPHYRY DYE (56'-77')</td>
<td>ND</td>
<td>6'</td>
<td>5'</td>
<td>btr-lim-(MoO_3)</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>TCo</th>
<th>OxAu</th>
<th>Au</th>
<th>Cu</th>
<th>As</th>
<th>Fe</th>
<th>Cu %</th>
<th>As %</th>
</tr>
</thead>
<tbody>
<tr>
<td>85921</td>
<td>0.07</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>4.37</td>
<td><0.01</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>85922</td>
<td>0.08</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>4.92</td>
<td><0.01</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>85923</td>
<td>0.34</td>
<td>0.30</td>
<td>0.17</td>
<td>0.12</td>
<td>4.42</td>
<td><0.01</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>85924</td>
<td>0.30</td>
<td>0.27</td>
<td>0.12</td>
<td>0.09</td>
<td>4.48</td>
<td><0.01</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>85925</td>
<td>0.29</td>
<td>0.25</td>
<td>0.20</td>
<td>0.08</td>
<td>4.26</td>
<td><0.01</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>85926</td>
<td>0.07</td>
<td>0.06</td>
<td>0.09</td>
<td>0.01</td>
<td>4.60</td>
<td><0.01</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>85927</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>4.51</td>
<td><0.01</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>85928</td>
<td>0.03</td>
<td>0.01</td>
<td><0.01</td>
<td>0.04</td>
<td><0.01</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (veins)</td>
<td>Width of Structure (veins)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
<td>R.Q.D.</td>
<td>Sample Number</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTRUSION BRECCIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(77'-135')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (veln)</td>
<td>Width of Structure (veln)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>SYENODIORITE (135°-145°)**</td>
<td>ND</td>
<td>A</td>
<td>20</td>
<td>30</td>
<td>cal w/k-feld rim mod dss py calcite stringers dss cp(py)</td>
<td>0.5</td>
<td>1.0</td>
<td>str lim-MnO₂-mal on fractures</td>
</tr>
<tr>
<td>- fine grained diorite - moderate k-feld alkali with interval of strong k-feld alteration</td>
<td>ND</td>
<td>A</td>
<td>20</td>
<td>30</td>
<td>cal w/k-feld rim mod dss py calcite stringers dss cp(py)</td>
<td>0.5</td>
<td>1.0</td>
<td>str lim-MnO₂-mal on fractures</td>
</tr>
<tr>
<td>INTRUSION BRECCIA (145°-170°)</td>
<td>ND</td>
<td>A</td>
<td>20</td>
<td>30</td>
<td>cal w/k-feld rim mod dss py calcite stringers dss cp(py)</td>
<td>0.5</td>
<td>1.0</td>
<td>str lim-MnO₂-mal on fractures</td>
</tr>
<tr>
<td>SYENODIORITE (170°-207°)</td>
<td>ND</td>
<td>A</td>
<td>20</td>
<td>30</td>
<td>cal w/k-feld rim mod dss py calcite stringers dss cp(py)</td>
<td>0.5</td>
<td>1.0</td>
<td>str lim-MnO₂-mal on fractures</td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>85841</td>
<td>0.36</td>
<td>0.15</td>
<td>0.37</td>
<td>0.12</td>
<td>6.35</td>
<td>0.05</td>
</tr>
<tr>
<td>85842</td>
<td>0.13</td>
<td>0.03</td>
<td>0.10</td>
<td>0.04</td>
<td>3.51</td>
<td>0.03</td>
</tr>
<tr>
<td>85843</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>3.66</td>
<td>0.01</td>
</tr>
<tr>
<td>85844</td>
<td>0.44</td>
<td>0.28</td>
<td>0.53</td>
<td>0.21</td>
<td>7.83</td>
<td>0.06</td>
</tr>
<tr>
<td>85845</td>
<td>0.07</td>
<td>0.16</td>
<td>0.40</td>
<td>0.25</td>
<td>8.01</td>
<td>0.13</td>
</tr>
<tr>
<td>85846</td>
<td>0.51</td>
<td>0.19</td>
<td>0.43</td>
<td>0.19</td>
<td>8.41</td>
<td>0.08</td>
</tr>
<tr>
<td>85847</td>
<td>0.78</td>
<td>0.29</td>
<td>0.67</td>
<td>0.33</td>
<td>7.17</td>
<td>0.18</td>
</tr>
<tr>
<td>85848</td>
<td>0.30</td>
<td>0.08</td>
<td>0.32</td>
<td>0.08</td>
<td>5.56</td>
<td>0.03</td>
</tr>
<tr>
<td>85849</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>3.12</td>
<td>0.01</td>
</tr>
<tr>
<td>85850</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
<td>3.76</td>
<td>0.01</td>
</tr>
<tr>
<td>85851</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.01</td>
<td>2.53</td>
<td>0.01</td>
</tr>
<tr>
<td>85852</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>3.16</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No. 94-105 Page 4 of 11

<table>
<thead>
<tr>
<th>Rock Types and Alteration</th>
<th>Graphic Log</th>
<th>Structure (veins) < to core axis</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Bottom Depths</th>
<th>R.Q.D.</th>
<th>Sample Number</th>
<th>TCo</th>
<th>Ore</th>
<th>Ag</th>
<th>Au</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>As</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Intrusion Breccia</td>
<td></td>
</tr>
<tr>
<td>(215° - 395°)</td>
<td></td>
</tr>
<tr>
<td>with intervals of Trachyte (Felsic Dikes)</td>
<td></td>
</tr>
<tr>
<td>298° - 393°</td>
<td></td>
</tr>
<tr>
<td>318° - 347°</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>3209</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Possible Cenozoic with white altered veining, strong calcite/zeolite veins</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Assay Results

- Sample Number:
- TCo: %
- Ore: %
- Ag: %
- Au: %
- Cu: %
- Pb: %
- Zn: %
- As: %
- Co: %

Remarks:
- 95.0
- 147.0
- 207.0
- 217.0
- 92.0
- 47.0
- 47.0
- 37.0

Notes:
- Bex: lim - chr
- str: cup - chr
- chl: lim: (mal)
- bex: lim: cup
- str: dis: cp
- bex: lim - chr
- dis: cp
- cal: (mal): veining
- contains chl: dis: k-feld altered intrusion breccia
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No. 94-105 Page 5 of 11

<table>
<thead>
<tr>
<th>Rock Types and Alteration</th>
<th>ROCK LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. %</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>< to core axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom Depths

<table>
<thead>
<tr>
<th>R.O.D.</th>
<th>Sample Number</th>
<th>TCu</th>
<th>OxCu</th>
<th>As</th>
<th>Ca</th>
<th>SiO2</th>
<th>A.S.</th>
<th>Cu-set</th>
<th>Cu in Ag</th>
<th>Cu Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85865</td>
<td>0.20</td>
<td>0.10</td>
<td>0.24</td>
<td>0.06</td>
<td>5.04</td>
<td>0.02</td>
<td></td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>85866</td>
<td>0.37</td>
<td>0.12</td>
<td>0.32</td>
<td>0.10</td>
<td>5.41</td>
<td>0.06</td>
<td></td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>85867</td>
<td>0.39</td>
<td>0.09</td>
<td>0.41</td>
<td>0.12</td>
<td>4.19</td>
<td>0.07</td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>85868</td>
<td>0.42</td>
<td>0.10</td>
<td>0.40</td>
<td>0.13</td>
<td>4.09</td>
<td>0.07</td>
<td></td>
<td></td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>85869</td>
<td>0.21</td>
<td>0.11</td>
<td>0.18</td>
<td>0.07</td>
<td>4.21</td>
<td>0.03</td>
<td></td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>85870</td>
<td>0.26</td>
<td>0.16</td>
<td>0.30</td>
<td>0.10</td>
<td>2.39</td>
<td>0.03</td>
<td></td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>85871</td>
<td>0.33</td>
<td>0.11</td>
<td>0.37</td>
<td>0.08</td>
<td>3.30</td>
<td>0.03</td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>85872</td>
<td>0.15</td>
<td>0.08</td>
<td>0.10</td>
<td>0.05</td>
<td>4.33</td>
<td>0.02</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>85873</td>
<td>0.25</td>
<td>0.08</td>
<td>0.13</td>
<td>0.09</td>
<td>5.07</td>
<td>0.04</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>85874</td>
<td>0.31</td>
<td>0.13</td>
<td>0.18</td>
<td>0.09</td>
<td>5.24</td>
<td>0.04</td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>85875</td>
<td>0.18</td>
<td>0.05</td>
<td>0.09</td>
<td>0.04</td>
<td>4.93</td>
<td>0.01</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>85876</td>
<td>0.15</td>
<td>0.01</td>
<td>0.09</td>
<td>0.02</td>
<td>4.63</td>
<td>0.01</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (velas) < to core axis</td>
<td>Width of Structure (velas)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
<td>Remarks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>320</td>
<td>wk diss cp</td>
<td>0.3</td>
<td>0</td>
<td>mod albite alt’n</td>
<td></td>
</tr>
<tr>
<td>TRACHYTE (FELSIC) DYKE (319° - 314°)</td>
<td>ND</td>
<td>50</td>
<td>5”</td>
<td>wk lim on Fractures</td>
<td>0.3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INTRUSION BRECCIA</td>
<td>0.3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"albite + epidote + calcite"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"INTRUSION BRECCIA"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRACHYTE (FELSIC) DYKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(319° - 314°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>330</td>
<td>wk diss cp</td>
<td>0.3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>340</td>
<td>brgy-ge-(hem)</td>
<td>0.3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>small blebs cp</td>
<td>0.3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>360</td>
<td>brgy-ge-hem</td>
<td>0.5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>370</td>
<td>blebs of cp</td>
<td>2.5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>380</td>
<td>blebs of secondary mag</td>
<td>2.5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>390</td>
<td>large blebs of cp</td>
<td>2.0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>blebs of secondary act diss cp</td>
<td>2.0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>410</td>
<td>diss cp</td>
<td>2.0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>420</td>
<td>large mag blebs diss cp</td>
<td>3.0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% TCu</th>
<th>% OxCu</th>
<th>% Au</th>
<th>% Ag</th>
<th>% Ag</th>
<th>% Fe</th>
<th>% Cu</th>
<th>% Co</th>
<th>% Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>85877</td>
<td>0.18</td>
<td>0.03</td>
<td>0.16</td>
<td>0.06</td>
<td>4.34</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85878</td>
<td>0.22</td>
<td>0.04</td>
<td>0.24</td>
<td>0.05</td>
<td>3.78</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85879</td>
<td>0.08</td>
<td>0.04</td>
<td>0.05</td>
<td>0.03</td>
<td>4.43</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85880</td>
<td>0.08</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>4.91</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85881</td>
<td>0.14</td>
<td>0.04</td>
<td>0.07</td>
<td>0.04</td>
<td>3.87</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85882</td>
<td>0.12</td>
<td>0.03</td>
<td>0.06</td>
<td>0.06</td>
<td>4.54</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85883</td>
<td>0.14</td>
<td>0.01</td>
<td>0.07</td>
<td>0.01</td>
<td>4.56</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85884</td>
<td>0.88</td>
<td>0.03</td>
<td>0.77</td>
<td>0.07</td>
<td>7.38</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85885</td>
<td>1.30</td>
<td>0.03</td>
<td>1.44</td>
<td>0.08</td>
<td>6.36</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85886</td>
<td>1.46</td>
<td>0.09</td>
<td>1.37</td>
<td>0.29</td>
<td>6.07</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85887</td>
<td>2.50</td>
<td>0.35</td>
<td>2.33</td>
<td>0.96</td>
<td>6.31</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85888</td>
<td>1.93</td>
<td>0.09</td>
<td>2.06</td>
<td>0.25</td>
<td>8.51</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (volts)</td>
<td>Width of Structure (volts)</td>
<td>Mineralization</td>
<td>Ext. % Mag</td>
<td>Ext. % Py</td>
<td>R.Q.D.</td>
<td>ASSAY RESULTS</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sample Number</td>
<td>% Cu</td>
</tr>
<tr>
<td>Gibbaltic Mafic</td>
<td>ND</td>
<td>20</td>
<td>1/2</td>
<td>cal-mag-cp</td>
<td>2.0</td>
<td>0</td>
<td>95</td>
<td>8589</td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>1/4</td>
<td>brx-qt-diss cp</td>
<td>1.5</td>
<td>0</td>
<td>90</td>
<td>8590</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>1/4</td>
<td>cal-mag</td>
<td>1.0</td>
<td>0</td>
<td>90</td>
<td>8591</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>0.25</td>
<td>brx-qt-diss cp</td>
<td>1.0</td>
<td>0</td>
<td>43</td>
<td>8593</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>1/4</td>
<td>cal-mag</td>
<td>1.0</td>
<td>0</td>
<td>43</td>
<td>8594</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>1/4</td>
<td>cal-mag-cp</td>
<td>1.0</td>
<td>0</td>
<td>43</td>
<td>8595</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>1/4</td>
<td>cal-mag-cp</td>
<td>1.0</td>
<td>0</td>
<td>43</td>
<td>8596</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>1/4</td>
<td>cal-mag-cp</td>
<td>1.0</td>
<td>0</td>
<td>43</td>
<td>8597</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>1/4</td>
<td>cal-mag-cp</td>
<td>1.0</td>
<td>0</td>
<td>43</td>
<td>8598</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>1/4</td>
<td>cal-mag-cp</td>
<td>1.0</td>
<td>0</td>
<td>43</td>
<td>8599</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>1/4</td>
<td>cal-mag-cp</td>
<td>1.0</td>
<td>0</td>
<td>43</td>
<td>8600</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No.: 94-105

Rock Types and Alteration

<table>
<thead>
<tr>
<th>Position</th>
<th>Graphic Log</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>N/A</td>
<td>0-20</td>
<td>1"</td>
<td>disseminated cp cal-(zeol)-(mag)</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>N/A</td>
<td>20</td>
<td>3/8</td>
<td>disseminated cp cal-(mag)</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>850</td>
<td>1/2</td>
<td>br-ass-hem on shear</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>640</td>
<td>1/2</td>
<td>br-ass-hem on shear</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>170</td>
<td>1/2</td>
<td>disseminated cp cal-(zeol)</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>470</td>
<td>1/8</td>
<td>disseminated cp fine grained disseminated native Cu</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>480</td>
<td>1/8</td>
<td>disseminated cp fine grained disseminated native Cu</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>490</td>
<td>1/8</td>
<td>disseminated cp fine grained disseminated native Cu</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Zn</th>
<th>% Ag</th>
<th>% Au</th>
<th>% Ag/Cu</th>
<th>R.Q.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85901</td>
<td>0.31</td>
<td>0.02</td>
<td>0.35</td>
<td>0.07</td>
<td>0.62</td>
<td>0.04</td>
</tr>
<tr>
<td>85902</td>
<td>0.62</td>
<td>0.03</td>
<td>0.83</td>
<td>0.11</td>
<td>0.98</td>
<td>0.05</td>
</tr>
<tr>
<td>85903</td>
<td>0.50</td>
<td>0.05</td>
<td>0.61</td>
<td>0.07</td>
<td>0.65</td>
<td>0.04</td>
</tr>
<tr>
<td>85904</td>
<td>0.29</td>
<td>0.06</td>
<td>0.15</td>
<td>0.07</td>
<td>0.23</td>
<td>0.03</td>
</tr>
<tr>
<td>85905</td>
<td>0.10</td>
<td>0.01</td>
<td>0.05</td>
<td>0.03</td>
<td>0.19</td>
<td>0.01</td>
</tr>
<tr>
<td>85906</td>
<td>0.33</td>
<td>0.01</td>
<td>0.30</td>
<td>0.03</td>
<td>0.73</td>
<td>0.02</td>
</tr>
<tr>
<td>85907</td>
<td>0.35</td>
<td>0.14</td>
<td>0.11</td>
<td>0.19</td>
<td>0.16</td>
<td>0.07</td>
</tr>
<tr>
<td>85908</td>
<td>0.07</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.51</td>
<td>0.01</td>
</tr>
<tr>
<td>85909</td>
<td>0.09</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td>0.98</td>
<td>0.01</td>
</tr>
<tr>
<td>85910</td>
<td>0.20</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.22</td>
<td>0.03</td>
</tr>
<tr>
<td>85911</td>
<td>0.07</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.45</td>
<td>0.01</td>
</tr>
<tr>
<td>85912</td>
<td>0.17</td>
<td>0.04</td>
<td>0.07</td>
<td>0.06</td>
<td>0.67</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Remarks

- Trachyte (Felsic) Dyke
- Spreadingite from 465'-520' - no K-feldaltin
- Increased mafic phenocrysts (angular) - groundmass 1.18 dark grey to slightly K-feldalt st by slightly grey phenocrysts
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (velox)</th>
<th>Width of Structure (velox)</th>
<th>Mineralization</th>
<th>Est. %</th>
<th>Est. %</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>14</td>
<td>brs-(py)-(hem)</td>
<td>0.5</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>0.5</td>
<td>0</td>
<td>95</td>
<td>497</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
<td>10</td>
<td>cel-g2</td>
<td>0.5</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>0.5</td>
<td></td>
<td>98</td>
<td>517</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>0-10</td>
<td>cel-g2</td>
<td>0.5</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>0.5</td>
<td></td>
<td>95</td>
<td>547</td>
<td>27</td>
</tr>
<tr>
<td>INTRUSION BRECCIA</td>
<td></td>
<td>a</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(520' - 647' E.O.K.)</td>
<td></td>
<td>a</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R.Q.D.</th>
<th>Sample Number</th>
<th>TCu</th>
<th>CuO</th>
<th>Aa</th>
<th>CuO stk cp</th>
<th>As</th>
<th>Fe</th>
<th>CuO stk cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>85913</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>4.89</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>95</td>
<td>85914</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>4.20</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>95</td>
<td>85915</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>4.02</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>95</td>
<td>85916</td>
<td>0.04</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>5.97</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>95</td>
<td>85917</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>5.14</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>95</td>
<td>85918</td>
<td>0.15</td>
<td>0.08</td>
<td>0.10</td>
<td>0.10</td>
<td>5.16</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>95</td>
<td>85919</td>
<td>0.59</td>
<td>0.33</td>
<td>1.09</td>
<td>0.93</td>
<td>6.95</td>
<td>0.17</td>
<td>0.14</td>
</tr>
<tr>
<td>95</td>
<td>85920</td>
<td>0.38</td>
<td>0.15</td>
<td>0.47</td>
<td>0.24</td>
<td>5.32</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>95</td>
<td>85921</td>
<td>0.59</td>
<td>0.18</td>
<td>0.35</td>
<td>0.24</td>
<td>6.77</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>95</td>
<td>85922</td>
<td>0.78</td>
<td>0.13</td>
<td>0.99</td>
<td>0.33</td>
<td>6.24</td>
<td>0.21</td>
<td>0.15</td>
</tr>
<tr>
<td>95</td>
<td>85923</td>
<td>0.38</td>
<td>0.06</td>
<td>0.44</td>
<td>0.13</td>
<td>6.06</td>
<td>0.10</td>
<td>0.23</td>
</tr>
<tr>
<td>95</td>
<td>85924</td>
<td>0.78</td>
<td>0.16</td>
<td>1.80</td>
<td>0.34</td>
<td>5.24</td>
<td>0.21</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No.: 94-105 Page: 10 of 11

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>560</td>
<td>6"</td>
<td>patchy albite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>570</td>
<td>10%</td>
<td>patchy albite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>580</td>
<td>3"</td>
<td>patchy albite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>590</td>
<td>10%</td>
<td>patchy albite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600</td>
<td>10%</td>
<td>patchy albite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>620</td>
<td>10%</td>
<td>patchy albite</td>
</tr>
</tbody>
</table>

BOTTOM DEPTHS

<table>
<thead>
<tr>
<th></th>
<th>Est. %</th>
<th>Est. Mag</th>
<th>Bottom Depth</th>
<th>Ore Zone</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Pb</th>
<th>% Zn</th>
<th>% Ag</th>
<th>% Au</th>
<th>% Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>85925</td>
<td>0.42</td>
<td>0.03</td>
<td>0.55</td>
<td>0.10</td>
<td>4.13</td>
<td>0.03</td>
</tr>
<tr>
<td>85926</td>
<td>0.36</td>
<td>0.14</td>
<td>0.72</td>
<td>0.13</td>
<td>2.96</td>
<td>0.23</td>
</tr>
<tr>
<td>85927</td>
<td>0.50</td>
<td>0.05</td>
<td>0.55</td>
<td>0.13</td>
<td>2.96</td>
<td>0.13</td>
</tr>
<tr>
<td>85928</td>
<td>0.55</td>
<td>0.05</td>
<td>0.13</td>
<td>0.16</td>
<td>2.96</td>
<td>0.13</td>
</tr>
<tr>
<td>85929</td>
<td>0.57</td>
<td>0.04</td>
<td>0.42</td>
<td>0.18</td>
<td>2.96</td>
<td>0.13</td>
</tr>
<tr>
<td>85930</td>
<td>0.45</td>
<td>0.03</td>
<td>0.34</td>
<td>0.09</td>
<td>2.96</td>
<td>0.13</td>
</tr>
<tr>
<td>85931</td>
<td>0.51</td>
<td>0.09</td>
<td>0.44</td>
<td>0.18</td>
<td>2.96</td>
<td>0.13</td>
</tr>
<tr>
<td>85932</td>
<td>0.24</td>
<td>0.03</td>
<td>0.34</td>
<td>0.09</td>
<td>2.96</td>
<td>0.13</td>
</tr>
<tr>
<td>85933</td>
<td>0.26</td>
<td>0.06</td>
<td>0.27</td>
<td>0.10</td>
<td>4.80</td>
<td>0.08</td>
</tr>
<tr>
<td>85934</td>
<td>0.40</td>
<td>0.06</td>
<td>0.40</td>
<td>0.18</td>
<td>4.80</td>
<td>0.08</td>
</tr>
<tr>
<td>85935</td>
<td>0.25</td>
<td>0.02</td>
<td>0.35</td>
<td>0.06</td>
<td>5.01</td>
<td>0.04</td>
</tr>
<tr>
<td>85936</td>
<td>0.26</td>
<td>0.01</td>
<td>0.24</td>
<td>0.03</td>
<td>4.73</td>
<td>0.03</td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAFTEC LOG</td>
<td>Structure (vein)</td>
<td>Width of Structure (vein)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>650</td>
<td>30</td>
<td>5"</td>
<td>dike cp heam-act on shear wk-disk cp</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>AUGITE PORPHYRY DYKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>650</td>
<td>30</td>
<td>6"</td>
<td>calcite calcite bre-99-hem-calcite</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>AUGITE PORPHYRY DYKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>640</td>
<td>1"</td>
<td>1"</td>
<td>bre-99-(heam)-(act) wk-disk cp in dyke bre-99-(heam) disk cp</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>TRACHYTE (FELSIC) DYKE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>640</td>
<td>1"</td>
<td>2"</td>
<td>bre-99-hem</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>647</td>
<td>1"</td>
<td>3"</td>
<td>disk cp - same grade weathered product</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>E.O.H. 647</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murray Rybman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (velum)</td>
<td>Width of Structure (velum)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>Intrusive Brecia</td>
<td>ND</td>
<td>A</td>
<td>30°</td>
<td></td>
<td>1%</td>
<td>.15</td>
</tr>
<tr>
<td>Abundant Ba. Diorite - Syenodiorite</td>
<td>ND</td>
<td>A</td>
<td>30°</td>
<td></td>
<td>1%</td>
<td>.15</td>
</tr>
<tr>
<td>Potassic Alteration</td>
<td>ND</td>
<td>A</td>
<td>30°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-spar Alteration</td>
<td>ND</td>
<td>A</td>
<td>30°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorite Alteration</td>
<td>ND</td>
<td>A</td>
<td>30°</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- Legible Copper
- Leachable Cu
- Assay Fe
- Copper sulfur

Assay Results

- **Sample Number**: 85401, 85402, 85403, 85404, 85405
- **Copper (%)**: 0.29, 0.24, 0.10, 0.11, 3.40, 0.01, 0.30
- **Sulfur (%)**: 6.63, 6.41, 6.54, 6.53, 6.41, 6.37, 6.27
- **Iron Oxide (%)**: 4.24, 4.27, 4.29, 4.30, 4.31, 4.32, 4.33
- **Calcium (%)**: 95.3
- **Jaw %**: 4.7
- **Total Copper (%)**: 0.29, 0.24, 0.10, 0.11, 3.40, 0.01, 0.30
- **Total Sulfur (%)**: 6.63, 6.41, 6.54, 6.53, 6.41, 6.37, 6.27
- **Total Iron Oxide (%)**: 4.24, 4.27, 4.29, 4.30, 4.31, 4.32, 4.33
- **Total Calcium (%)**: 95.3
- **Total Jaw %**: 4.7
- **Total Copper Sulfur**: 9.99
- **Total Sulfur Iron Oxide**: 11.96
- **Total Calcium Iron Oxide**: 105.2
- **Total Total Copper Sulfur**: 9.99
- **Total Total Sulfur Iron Oxide**: 11.96
- **Total Total Calcium Iron Oxide**: 105.2

Miscellaneous Symbols and Abbreviations

- a = alteration
- b = biotite
- c = chlorite
- d = diopside
- e = epidote
- f = feldspar
- g = garnet
- h = hornblende
- i = inclusion
- k = kyanite
- l = lepidolite
- m = magnetite
- n = muscovite
- o = oxide
- p = pyrophyllite
- q = quartz
- r = rutile
- s = spessartine
- t = tourmaline
- u = uraninite
- v = volcanic
- w = xenolith
- x = xenocryst
- y = yellow
- z = zoisite

Bottom Depths

- **Footage**: 17', 31', 52', 73', 95', 117', 138'
- **R.O.I %**

Location Details

- **No. 94-106**: Page No. 1 of 8

Core Size: MO

Logged by: B. Graden

Location: North Zone

Date Collected: July 15, 1994

Length: 437'

Elevation: 1182.9'
GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. %</th>
<th>Est. %</th>
<th>R.O.D.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synedobsdrite</td>
<td>52' to 62'</td>
<td>Vn. 55' x 4'</td>
<td>2% Gt.</td>
<td>Py: Cu: Co: Cal: Chl: Ptx: Co:</td>
<td>2% 1%</td>
<td>58% 15%</td>
<td>98/67</td>
<td>6'</td>
</tr>
<tr>
<td></td>
<td>62'</td>
<td>Vn. 55' x 4'</td>
<td>2% Gt.</td>
<td>Py: Cu: Co: Cal: Chl: Ptx: Co:</td>
<td>2% 1%</td>
<td>58% 15%</td>
<td>98/67</td>
<td>6'</td>
</tr>
<tr>
<td></td>
<td>62'</td>
<td>Vn. 55' x 4'</td>
<td>2% Gt.</td>
<td>Py: Cu: Co: Cal: Chl: Ptx: Co:</td>
<td>2% 1%</td>
<td>58% 15%</td>
<td>98/67</td>
<td>6'</td>
</tr>
</tbody>
</table>

Rocks seen above are of intrusive breccia, but less k-spar att. giving a patchy red, color. Weaker overall att. Original rock type probably a biotite, transitional gneiss.

Change from above pseudo-brecce to:
- Kspar 50%
- Plag 50%
- Mafics 15%
- GtZ 5%

Notes:
- Rocks and veins of massive Py or Co common.
- Intensely altered gneiss.
- From 85' to 95'.
- Possibly synedobsdrite may be metasedimentary or garnet.

Sample Number
- B5408
- B5409
- B5410
- B5411
- B5412
- B5413
- B5414
- B5415
- B5416
- B5417
- B5418
- B5419

Assay Results
- Cu: 0.16 - 0.94
- Co: 1.01 - 7.37
- Ag: 0.10 - 0.85
- Au: 0.10 - 0.30
- Ag/Ag+Cu: 0.10 - 0.50
- Cu/Ag: 0.10 - 2.00
| Hole No. | 87-0196 | Page 3 of 8 |

GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>82%</th>
<th>Sample Number</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONZOLOITE & Porphyry</td>
<td>Nd</td>
<td>130°</td>
<td>60° 35°</td>
<td>chl-Cd-Py-Co</td>
<td>1.2%</td>
<td>1.2%</td>
<td>92%</td>
<td>85430</td>
<td>14</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1.43</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Nd</td>
<td>110°</td>
<td>60° 30°</td>
<td>chl-Cd-Py-Co</td>
<td>1.2%</td>
<td>1.2%</td>
<td>92%</td>
<td>85411</td>
<td>19</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1.43</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Nd</td>
<td>130°</td>
<td>60° 35°</td>
<td>chl-Cd-Py-Co</td>
<td>1.2%</td>
<td>1.2%</td>
<td>92%</td>
<td>85432</td>
<td>18</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>2.52</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Nd</td>
<td>130°</td>
<td>60° 30°</td>
<td>chl-Cd-Py-Co</td>
<td>1.2%</td>
<td>1.2%</td>
<td>92%</td>
<td>85424</td>
<td>13</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>2.59</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Nd</td>
<td>130°</td>
<td>60° 30°</td>
<td>chl-Cd-Py-Co</td>
<td>1.2%</td>
<td>1.2%</td>
<td>92%</td>
<td>85435</td>
<td>13</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>2.59</td>
<td>0.01</td>
</tr>
<tr>
<td>SYENITOIDESITE (Diabase)</td>
<td>Nd</td>
<td>130°</td>
<td>60° 30°</td>
<td>chl-Cd-Py-Co</td>
<td>1.2%</td>
<td>1.2%</td>
<td>92%</td>
<td>85429</td>
<td>12</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>2.59</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Nd</td>
<td>130°</td>
<td>60° 30°</td>
<td>chl-Cd-Py-Co</td>
<td>1.2%</td>
<td>1.2%</td>
<td>92%</td>
<td>85430</td>
<td>12</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>2.59</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Nd</td>
<td>130°</td>
<td>60° 30°</td>
<td>chl-Cd-Py-Co</td>
<td>1.2%</td>
<td>1.2%</td>
<td>92%</td>
<td>85431</td>
<td>12</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>2.59</td>
<td>0.01</td>
</tr>
</tbody>
</table>

ASSAY RESULTS

- **TaN**: 0.14
- **Fe2O3**: 0.10
- **Cu**: 1.43
- **Pb**: 0.01
- **Zn**: 0.01
- **As**: 0.01
- **Sb**: 0.01
- **Bi**: 0.01
- **Te**: 0.01
- **Au**: 0.01
- **Ag**: 0.01
- **Cd**: 0.01
- **Hg**: 0.01
- **Sn**: 0.01
- **S**: 0.01
- **SiO2**: 0.01
- **K2O**: 0.01
- **MgO**: 0.01
- **CaO**: 0.01
- **MnO**: 0.01
- **Fe2O3**: 0.01
- **Al2O3**: 0.01
- **TiO2**: 0.01
- **Na2O**: 0.01
- **P2O5**: 0.01
- **CO2**: 0.01
- **H2O**: 0.01
- **Total**: 100.01

Remarks

- Alteration: Strong alteration of the pyrite and chalcopyrite to pyrite and chalcopyrite, respectively.
- Mineralization: Moderate to strong mineralization along the contact with chalcopyrite and pyrite.
- Structure: Steep dipping structure with chalcopyrite and pyrite.
- Width: Moderate width of the structure with chalcopyrite and pyrite.
- Type: Vein-type mineralization with chalcopyrite and pyrite.
<table>
<thead>
<tr>
<th>Sampler</th>
<th>Depth</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mg</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>170</td>
<td>Vn 10°</td>
<td>0.10</td>
<td>All: Qtz.</td>
<td>1%</td>
<td>1.5%</td>
<td>Trace, occasional garnet, chill on 1° fault.</td>
</tr>
<tr>
<td>0.11</td>
<td>175</td>
<td>Vn 10°</td>
<td>0.10</td>
<td>Rib: cal: Qtz-mg: cal</td>
<td>1.5%</td>
<td>1.5%</td>
<td>Thin white marble.</td>
</tr>
<tr>
<td>0.15</td>
<td>180</td>
<td>Vn 15°</td>
<td>0.10</td>
<td>Rib: cal: Qtz-mg: cal</td>
<td>1.5%</td>
<td>1.5%</td>
<td>Thin white marble.</td>
</tr>
<tr>
<td>0.19</td>
<td>190</td>
<td>Vn 10°</td>
<td>0.10</td>
<td>Cal: cl: cal</td>
<td>0.5%</td>
<td>0.5%</td>
<td>Increasing - X-ray calcite, all calcite, all minerals.</td>
</tr>
<tr>
<td>0.21</td>
<td>200</td>
<td>Vn 10°</td>
<td>0.10</td>
<td>Calcite</td>
<td>0.5%</td>
<td>0.5%</td>
<td>Weak band along contact.</td>
</tr>
<tr>
<td>0.25</td>
<td>220</td>
<td>Vn 10°</td>
<td>0.10</td>
<td>Calcite</td>
<td>0.5%</td>
<td>0.5%</td>
<td>Strong band in contact.</td>
</tr>
<tr>
<td>0.29</td>
<td>230</td>
<td>Vn 10°</td>
<td>0.10</td>
<td>Calcite</td>
<td>0.5%</td>
<td>0.5%</td>
<td>Strong band in contact.</td>
</tr>
<tr>
<td>0.33</td>
<td>240</td>
<td>Vn 10°</td>
<td>0.10</td>
<td>Calcite</td>
<td>0.5%</td>
<td>0.5%</td>
<td>Strong band in contact.</td>
</tr>
</tbody>
</table>

ASSAY RESULTS:

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>TdCu</th>
<th>Cu</th>
<th>As</th>
<th>Ag</th>
<th>Au</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>85432</td>
<td>0.94</td>
<td>0.09</td>
<td>0.3</td>
<td>0.02</td>
<td>2.74</td>
<td>0.01</td>
</tr>
<tr>
<td>85433</td>
<td>0.94</td>
<td>0.06</td>
<td>0.04</td>
<td>0.02</td>
<td>2.47</td>
<td>0.02</td>
</tr>
<tr>
<td>85434</td>
<td>0.94</td>
<td>0.06</td>
<td>0.03</td>
<td>0.02</td>
<td>2.52</td>
<td>0.01</td>
</tr>
<tr>
<td>85435</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>2.51</td>
<td>0.01</td>
</tr>
<tr>
<td>85436</td>
<td>0.03</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
<td>2.28</td>
<td>0.01</td>
</tr>
<tr>
<td>85437</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>2.18</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Note: The table and text describe the geological and mineralogical characteristics of the rock types and alteration at Mount Polley Property. The Assay Results section includes the concentrations of various elements in parts per million (ppm).
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No.: 94-106 Page: 5 of 8

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>231 to 232</td>
<td>ND</td>
<td>35° 70'</td>
<td>5' 8"</td>
<td>Sodium-rich mica</td>
<td>0.5%</td>
<td>7%</td>
<td>Deep in E. part, rock has high red oxide content. Increased Cu. in radial veins.</td>
</tr>
<tr>
<td>232</td>
<td>ND</td>
<td>37° 62"</td>
<td>1.25"</td>
<td>Calcite</td>
<td>1.5%</td>
<td>1%</td>
<td>Increase in E. part, rock has high red oxide content. Increased Cu. in radial veins.</td>
</tr>
<tr>
<td>233</td>
<td>ND</td>
<td>36° 21"</td>
<td>1.4" 2"</td>
<td>Clay veins</td>
<td>6%</td>
<td>1%</td>
<td>Strong increase in E. part, rock has high red oxide content. Increased Cu. in radial veins.</td>
</tr>
<tr>
<td>234</td>
<td>ND</td>
<td>36° 19"</td>
<td>1.2"</td>
<td>Quartz</td>
<td>1.2%</td>
<td>1%</td>
<td>Increased Cu. in E. part, rock has high red oxide content.</td>
</tr>
<tr>
<td>235</td>
<td>ND</td>
<td>35° 51"</td>
<td>1.2"</td>
<td>Pyrite</td>
<td>2.5%</td>
<td>0.5%</td>
<td>Increased Cu. in E. part, rock has high red oxide content.</td>
</tr>
<tr>
<td>236</td>
<td>ND</td>
<td>35° 25"</td>
<td>3.5"</td>
<td>Chl-clay</td>
<td>1.5%</td>
<td>6%</td>
<td>Strong increase in E. part, rock has high red oxide content.</td>
</tr>
<tr>
<td>237</td>
<td>ND</td>
<td>35° 34"</td>
<td>2.4"</td>
<td>Chl-clay</td>
<td>1%</td>
<td>6%</td>
<td>Strong increase in E. part, rock has high red oxide content.</td>
</tr>
<tr>
<td>238</td>
<td>ND</td>
<td>35° 34"</td>
<td>2.4"</td>
<td>Chl-clay</td>
<td>1%</td>
<td>6%</td>
<td>Strong increase in E. part, rock has high red oxide content.</td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Ag</th>
<th>% Au</th>
<th>% Zn</th>
<th>% Ni</th>
<th>% Co</th>
<th>% Mo</th>
<th>% Pb</th>
<th>% Cd</th>
<th>% As</th>
<th>% Sb</th>
<th>% Sn</th>
<th>% Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>85441</td>
<td>0.45</td>
<td>0.1</td>
<td>0.25</td>
<td>0.01</td>
<td>5.81</td>
<td>0.1</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85442</td>
<td>0.36</td>
<td>0.1</td>
<td>0.26</td>
<td>0.01</td>
<td>3.79</td>
<td>0.1</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85443</td>
<td>0.16</td>
<td>0.1</td>
<td>0.19</td>
<td>0.01</td>
<td>5.58</td>
<td>0.1</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85444</td>
<td>0.30</td>
<td>0.1</td>
<td>0.19</td>
<td>0.01</td>
<td>5.58</td>
<td>0.1</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85445</td>
<td>0.25</td>
<td>0.1</td>
<td>0.19</td>
<td>0.01</td>
<td>4.66</td>
<td>0.1</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85446</td>
<td>0.37</td>
<td>0.1</td>
<td>0.30</td>
<td>0.01</td>
<td>4.43</td>
<td>0.1</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85447</td>
<td>0.48</td>
<td>0.1</td>
<td>0.30</td>
<td>0.01</td>
<td>4.15</td>
<td>0.1</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85448</td>
<td>0.22</td>
<td>0.1</td>
<td>0.23</td>
<td>0.01</td>
<td>2.84</td>
<td>0.1</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 47°</td>
<td></td>
<td></td>
<td>2.32</td>
<td>< 0.2%</td>
<td></td>
<td>292</td>
<td>98</td>
<td>0.10</td>
<td>0.08</td>
<td>0.01</td>
<td>3.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 27°</td>
<td></td>
<td></td>
<td>2.2%</td>
<td>< 0.2%</td>
<td></td>
<td>307</td>
<td>972</td>
<td>0.18</td>
<td>0.12</td>
<td>0.01</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 27°</td>
<td></td>
<td></td>
<td>2.32</td>
<td>< 0.2%</td>
<td></td>
<td>307</td>
<td>972</td>
<td>0.28</td>
<td>0.21</td>
<td>0.01</td>
<td>3.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 0°</td>
<td></td>
<td></td>
<td>2.2%</td>
<td>2.5%</td>
<td></td>
<td>310</td>
<td>962</td>
<td>0.25</td>
<td>0.14</td>
<td>0.01</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 3°</td>
<td></td>
<td></td>
<td>2.32</td>
<td>2.0%</td>
<td></td>
<td>317</td>
<td>976</td>
<td>0.15</td>
<td>0.05</td>
<td>0.05</td>
<td>3.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 0°</td>
<td></td>
<td></td>
<td>2.32</td>
<td>< 1%</td>
<td></td>
<td>317</td>
<td>976</td>
<td>0.15</td>
<td>0.06</td>
<td>0.02</td>
<td>3.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 0°</td>
<td></td>
<td></td>
<td>2.32</td>
<td>1.7%</td>
<td></td>
<td>317</td>
<td>976</td>
<td>0.11</td>
<td>0.07</td>
<td>0.01</td>
<td>3.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 1°</td>
<td></td>
<td></td>
<td>2.32</td>
<td>< 1%</td>
<td></td>
<td>317</td>
<td>976</td>
<td>0.09</td>
<td>0.05</td>
<td>0.10</td>
<td>3.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 5°</td>
<td></td>
<td></td>
<td>2.32</td>
<td>< 1%</td>
<td></td>
<td>317</td>
<td>976</td>
<td>0.38</td>
<td>0.22</td>
<td>0.01</td>
<td>3.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 0°</td>
<td></td>
<td></td>
<td>2.32</td>
<td>< 1%</td>
<td></td>
<td>317</td>
<td>976</td>
<td>0.29</td>
<td>0.14</td>
<td>0.01</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 3°</td>
<td></td>
<td></td>
<td>2.32</td>
<td>< 1%</td>
<td></td>
<td>317</td>
<td>976</td>
<td>0.20</td>
<td>0.14</td>
<td>0.01</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. 0°</td>
<td></td>
<td></td>
<td>2.32</td>
<td>< 1%</td>
<td></td>
<td>317</td>
<td>976</td>
<td>0.43</td>
<td>0.32</td>
<td>0.01</td>
<td>2.77</td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Bottom Depths

<table>
<thead>
<tr>
<th>Depth</th>
<th>Location</th>
<th>Structure (Vein) Width</th>
<th>Structure (Vein) Width</th>
<th>Mineralization</th>
<th>Est % Mag</th>
<th>Est % Py</th>
<th>R.Q.D.</th>
<th>Sample Number</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>0.1 % As</th>
<th>% Sn</th>
<th>% Bi</th>
<th>% Sb</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td>360</td>
<td>Na. 1112 X 3/8 "</td>
<td>Na. 1112 X 3/8 "</td>
<td>Na. 1112 X 3/8 "</td>
<td>3.2</td>
<td>2.3</td>
<td>100</td>
<td>8548</td>
<td>.08</td>
<td>.02</td>
<td>.14</td>
<td>.04</td>
<td>3.30</td>
<td>.02</td>
<td>.38</td>
</tr>
<tr>
<td>355</td>
<td>360</td>
<td>Fr. 32 X 1/8 "</td>
<td>Na. 1112 X 3/8 "</td>
<td>Na. 1112 X 3/8 "</td>
<td>3.3</td>
<td>3.3</td>
<td>98.2</td>
<td>8549</td>
<td>.17</td>
<td>.01</td>
<td>.11</td>
<td>.02</td>
<td>4.91</td>
<td>.01</td>
<td>.25</td>
</tr>
<tr>
<td>365</td>
<td>360</td>
<td>SI. 2/3 X 3/8 "</td>
<td>SI. 2/3 X 3/8 "</td>
<td>SI. 2/3 X 3/8 "</td>
<td>5.5</td>
<td>5.5</td>
<td>98.2</td>
<td>8548</td>
<td>.27</td>
<td>.01</td>
<td>.16</td>
<td>.01</td>
<td>6.77</td>
<td>.01</td>
<td>.70</td>
</tr>
<tr>
<td>370</td>
<td>360</td>
<td>Vn. 1 X 1112 "</td>
<td>Vn. 1 X 1112 "</td>
<td>Vn. 1 X 1112 "</td>
<td>4.4</td>
<td>4.4</td>
<td>65.4</td>
<td>8548</td>
<td>.22</td>
<td>.01</td>
<td>.14</td>
<td>.01</td>
<td>4.20</td>
<td>.01</td>
<td>.35</td>
</tr>
<tr>
<td>380</td>
<td>360</td>
<td>Fr. 33 X 3/8 "</td>
<td>Fr. 33 X 3/8 "</td>
<td>Fr. 33 X 3/8 "</td>
<td>5.7-7.2</td>
<td>5.7-7.2</td>
<td>321.1</td>
<td>8548</td>
<td>.31</td>
<td>.01</td>
<td>.26</td>
<td>.01</td>
<td>5.32</td>
<td>.01</td>
<td>.70</td>
</tr>
<tr>
<td>385</td>
<td>360</td>
<td>SI. 3/8 X 3/8 "</td>
<td>SI. 3/8 X 3/8 "</td>
<td>SI. 3/8 X 3/8 "</td>
<td>3.7-2.2</td>
<td>3.7-2.2</td>
<td>382.7</td>
<td>8548</td>
<td>.52</td>
<td>.01</td>
<td>.37</td>
<td>.02</td>
<td>3.39</td>
<td>.01</td>
<td>.40</td>
</tr>
<tr>
<td>390</td>
<td>360</td>
<td>Vn. 37 X 3/8 "</td>
<td>Vn. 37 X 3/8 "</td>
<td>Vn. 37 X 3/8 "</td>
<td>2.3</td>
<td>2.3</td>
<td>100</td>
<td>8548</td>
<td>.01</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>2.87</td>
<td>.01</td>
<td>.70</td>
</tr>
<tr>
<td>395</td>
<td>360</td>
<td>Vn. 37 X 3/8 "</td>
<td>Vn. 37 X 3/8 "</td>
<td>Vn. 37 X 3/8 "</td>
<td>2.3</td>
<td>2.3</td>
<td>100</td>
<td>8548</td>
<td>.01</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>2.87</td>
<td>.01</td>
<td>.70</td>
</tr>
<tr>
<td>400</td>
<td>360</td>
<td>Vn. 27 X 3/8 "</td>
<td>Vn. 27 X 3/8 "</td>
<td>Vn. 27 X 3/8 "</td>
<td>3.4</td>
<td>3.4</td>
<td>100</td>
<td>8548</td>
<td>.01</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>2.87</td>
<td>.01</td>
<td>.70</td>
</tr>
<tr>
<td>405</td>
<td>360</td>
<td>Vn. 40 X 3/8 "</td>
<td>Vn. 40 X 3/8 "</td>
<td>Vn. 40 X 3/8 "</td>
<td>3.4</td>
<td>3.4</td>
<td>100</td>
<td>8548</td>
<td>.01</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>2.87</td>
<td>.01</td>
<td>.70</td>
</tr>
<tr>
<td>410</td>
<td>360</td>
<td>Vn. 30 X 3/8 "</td>
<td>Vn. 30 X 3/8 "</td>
<td>Vn. 30 X 3/8 "</td>
<td>3.4</td>
<td>3.4</td>
<td>100</td>
<td>8548</td>
<td>.01</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>2.87</td>
<td>.01</td>
<td>.70</td>
</tr>
</tbody>
</table>

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>0.1 % As</th>
<th>% Sn</th>
<th>% Bi</th>
<th>% Sb</th>
</tr>
</thead>
<tbody>
<tr>
<td>8548</td>
<td>.01</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>2.87</td>
<td>.01</td>
<td>.70</td>
</tr>
<tr>
<td>8549</td>
<td>.01</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>2.87</td>
<td>.01</td>
<td>.70</td>
</tr>
<tr>
<td>8548</td>
<td>.01</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>2.87</td>
<td>.01</td>
<td>.70</td>
</tr>
<tr>
<td>8548</td>
<td>.01</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>2.87</td>
<td>.01</td>
<td>.70</td>
</tr>
<tr>
<td>8548</td>
<td>.01</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>2.87</td>
<td>.01</td>
<td>.70</td>
</tr>
</tbody>
</table>

Remarks

- 357 in SI. 2/3 X 3/8 " Na. 1112 X 3/8 " may be correct. Further examination needed.
- 357 in SI. 2/3 X 3/8 " Na. 1112 X 3/8 " may be correct. Further examination needed.
- 357 in SI. 2/3 X 3/8 " Na. 1112 X 3/8 " may be correct. Further examination needed.
- 357 in SI. 2/3 X 3/8 " Na. 1112 X 3/8 " may be correct. Further examination needed.
- 357 in SI. 2/3 X 3/8 " Na. 1112 X 3/8 " may be correct. Further examination needed.
| ROCK TYPES and ALTERATION | GRAPHIC LOG | Structure (vein) | Width of Structure (vein) | Mineralization | Est. % Mag | Est. % Py | Leach Cap | R.O.B. | Sample Number | TCu | OxCu | As | Cu | Fe | Co | Sn | Zn | Au | Ag | As % | % | % | | | | |
|---|
| ND | 410 | | | Py | 4.5% | 0.0% | | 100% | 85480 | .23 | .01 | .21 | .02 | .24 | .01 | .23 | | | 85481 | .07 | <.01 | .09 | .01 | .09 | .01 | .18 |
| ND | 420 | Vv 37° 15° | mag - P3 - Co | | 9.5% | <.3% | | | 85482 | .23 | .01 | .12 | .01 | .23 | .01 | .25 | | | 85483 | .22 | <.01 | .15 | .01 | .17 | .01 | .25 |
| ND | 430 | Vv 39° 48° | sappy | | 9.5% | <.6% | | | 99% | | | | | | | | | | | 422 | 73 | | | | | |
| ND | 435 | Vv 39° < 44° | Abt - tod | | 4.5% | <.5% | | | 98% | | 85489 | .23 | .01 | .19 | .01 | 3.99 | .01 | .36 | | | | | | | |

Remarks
- Calcite - 35% - Higher on bottom of interval. Rare large drusy cavities.
- Slightly less cp. locally in veins or remnants. Increase in Zn on p.p. (porphyrite).
- cp common in microcline. cp closely associated.
- High asymmetric, fine ve. shal. with calcite - strong Abt. Remnants present with hematite, possible filler or fault zone at bottom 422 - 430.

Bottom Depths
- Footage Blocks
- Sufficient
- Remaining
- % Cu
- % Au
- % Ag
- % Zn
- % Pb

Assay Results
- Sample Number
- TCu
- OxCu
- As
- Cu
- Fe
- Co
- Sn
- Zn
- Au
- Ag
- As %
- % Cu
- % Au
- % Ag
- % Zn
- % Pb

Signature: Ron Johnson
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Location: Central Zone
Date Collected: June 17, 1994
Length: 577'
Latitude: 2265.46
Longitude: 21 86.04
Scale of Log: 1" = 10'
Date Completed: June 19, 1994
Date Logged: July 18, 1994

Rock Types and Alteration Symbols

- **Intrusion Breccia**: 1. Augite Porphyry Dyke
- **Syenodiorite**: 2. K-feldspar Alt'N
- **Mafic Dyke**: 3. Patchy K-feld Alt'N

Assay Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>85601</td>
<td>2.3</td>
<td>22</td>
<td>45</td>
<td>0.3</td>
<td>50</td>
<td>0.1</td>
</tr>
<tr>
<td>85602</td>
<td>2.0</td>
<td>20</td>
<td>95</td>
<td>0.3</td>
<td>305</td>
<td>1.1</td>
</tr>
<tr>
<td>85603</td>
<td>3.3</td>
<td>27</td>
<td>96</td>
<td>0.6</td>
<td>13</td>
<td>1.1</td>
</tr>
<tr>
<td>85604</td>
<td>2.9</td>
<td>26</td>
<td>60</td>
<td>0.3</td>
<td>36</td>
<td>1.1</td>
</tr>
<tr>
<td>85605</td>
<td>4.3</td>
<td>35</td>
<td>59</td>
<td>0.5</td>
<td>502</td>
<td>0.1</td>
</tr>
<tr>
<td>85606</td>
<td>4.6</td>
<td>42</td>
<td>77</td>
<td>0.1</td>
<td>3.7</td>
<td>1.1</td>
</tr>
<tr>
<td>85607</td>
<td>3.7</td>
<td>33</td>
<td>46</td>
<td>0.6</td>
<td>7.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Geological Description

- **Intrusion Breccia (N-114)**
 - Variable K-feldspar alteration
 - Mafic biotite (melt) (ch) infilling fractures
 - Inertals of less altered rock is syenodiorite
 - ~5% phyllices
 - ~15% phyllices
 -~5% k-feld

Assay Results

- Lim on fracture surfaces

Remarks

- C Malic Td 14
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (vein) < to core axis</th>
<th>Width of Structure (vein)</th>
<th>Mineralization</th>
<th>Est. %</th>
<th>Est. Mag</th>
<th>Est. Fy</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1'</td>
<td></td>
<td>bre-c-mat-MnO₂</td>
<td>2.0</td>
<td>2</td>
<td>tr</td>
<td>blebs of kiesite+ag (ep)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2'</td>
<td></td>
<td>bre-c-mat-MnO₂</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5'</td>
<td></td>
<td>bre-c-mat-lim</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1'-20</td>
<td>5'</td>
<td>bre-c-MnO₂</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1'</td>
<td>1'</td>
<td>bre-c-MnO₂</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>90</td>
<td>bre-c-MnO₂</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>v. weak diss ep</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>20</td>
<td>bre-c-MnO₂</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>v. weak diss ep</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>bre-c-MnO₂</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>TCu</th>
<th>OxCu</th>
<th>As</th>
<th>Ni</th>
<th>Cu</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>85608</td>
<td>0.29</td>
<td>0.26</td>
<td>0.68</td>
<td>0.03</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>85609</td>
<td>0.36</td>
<td>0.32</td>
<td>0.73</td>
<td>0.04</td>
<td>0.01</td>
<td>0.15</td>
</tr>
<tr>
<td>85610</td>
<td>0.40</td>
<td>0.37</td>
<td>1.38</td>
<td>0.06</td>
<td>0.23</td>
<td>0.10</td>
</tr>
<tr>
<td>85611</td>
<td>0.35</td>
<td>0.28</td>
<td>0.61</td>
<td>0.04</td>
<td>0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>85612</td>
<td>0.36</td>
<td>0.31</td>
<td>1.83</td>
<td>0.04</td>
<td>0.44</td>
<td>0.10</td>
</tr>
<tr>
<td>85613</td>
<td>0.34</td>
<td>0.28</td>
<td>0.81</td>
<td>0.03</td>
<td>0.45</td>
<td>0.05</td>
</tr>
<tr>
<td>85614</td>
<td>0.46</td>
<td>0.39</td>
<td>0.82</td>
<td>0.08</td>
<td>0.40</td>
<td>0.10</td>
</tr>
<tr>
<td>85615</td>
<td>0.36</td>
<td>0.33</td>
<td>1.15</td>
<td>0.05</td>
<td>0.70</td>
<td>0.10</td>
</tr>
<tr>
<td>85616</td>
<td>0.30</td>
<td>0.31</td>
<td>0.73</td>
<td>0.08</td>
<td>0.72</td>
<td>0.20</td>
</tr>
<tr>
<td>85617</td>
<td>0.43</td>
<td>0.38</td>
<td>1.58</td>
<td>0.05</td>
<td>0.46</td>
<td>0.10</td>
</tr>
<tr>
<td>85618</td>
<td>0.30</td>
<td>0.44</td>
<td>1.32</td>
<td>0.04</td>
<td>0.65</td>
<td>0.15</td>
</tr>
<tr>
<td>85619</td>
<td>0.35</td>
<td>0.35</td>
<td>2.12</td>
<td>0.28</td>
<td>0.71</td>
<td>0.28</td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (vein)</td>
<td>Width of Structure (vein)</td>
<td>Mineralization</td>
<td>Est. % Mag</td>
<td>Est. % Py</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>ND</td>
<td>50-70 kbln</td>
<td></td>
<td></td>
<td>cap on-frost surfaces in a 1' interval mal-lim-(MoO) on fract</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>few small blebs cp</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k-feld alc along fract</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k-feld alc along fract</td>
<td>2.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>calcite infill</td>
<td>3.0</td>
<td>1</td>
</tr>
<tr>
<td>SYENODIORITE</td>
<td>120</td>
<td></td>
<td></td>
<td>highly brecciated albite infill</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>albite-pyrite win w/ k-feld rim</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>calcite infill</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Pb</th>
<th>% Zn</th>
<th>% Fe</th>
<th>% Mn</th>
<th>% Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>85620</td>
<td>.99</td>
<td>.52</td>
<td>1.32</td>
<td>.35</td>
<td>7.25</td>
<td>.14</td>
</tr>
<tr>
<td>85621</td>
<td>.44</td>
<td>.30</td>
<td>.68</td>
<td>.14</td>
<td>6.64</td>
<td>.05</td>
</tr>
<tr>
<td>85622</td>
<td>.14</td>
<td>.10</td>
<td>.24</td>
<td>.10</td>
<td>6.25</td>
<td>.01</td>
</tr>
<tr>
<td>85623</td>
<td>.16</td>
<td>.15</td>
<td>.40</td>
<td>.02</td>
<td>6.39</td>
<td>.01</td>
</tr>
<tr>
<td>85624</td>
<td>.25</td>
<td>.22</td>
<td>.17</td>
<td>.04</td>
<td>6.55</td>
<td>.01</td>
</tr>
<tr>
<td>85625</td>
<td>.20</td>
<td>.13</td>
<td>.18</td>
<td>.04</td>
<td>4.43</td>
<td>.01</td>
</tr>
<tr>
<td>85626</td>
<td>.08</td>
<td>.05</td>
<td>.25</td>
<td>.02</td>
<td>5.47</td>
<td>.01</td>
</tr>
<tr>
<td>85627</td>
<td>.04</td>
<td>.03</td>
<td>.06</td>
<td>.02</td>
<td>4.58</td>
<td>.01</td>
</tr>
<tr>
<td>85628</td>
<td>.04</td>
<td>.02</td>
<td>.04</td>
<td>.02</td>
<td>4.58</td>
<td>.01</td>
</tr>
<tr>
<td>85629</td>
<td>.03</td>
<td>.02</td>
<td>.06</td>
<td>.01</td>
<td>5.18</td>
<td>.01</td>
</tr>
<tr>
<td>85630</td>
<td>.03</td>
<td>.01</td>
<td>.06</td>
<td>.01</td>
<td>4.73</td>
<td>.01</td>
</tr>
<tr>
<td>85631</td>
<td>.06</td>
<td>.06</td>
<td>.05</td>
<td>.01</td>
<td>5.02</td>
<td>.01</td>
</tr>
</tbody>
</table>

Hole No. 94-107 **Page 3 of 10**
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Rock Types and Alteration

<table>
<thead>
<tr>
<th>Hole No.</th>
<th>Assay Results</th>
<th>Sample Number</th>
<th>TCu</th>
<th>CoCu</th>
<th>An</th>
<th>Cu</th>
<th>Fe</th>
<th>AsFe</th>
<th>CuFe</th>
</tr>
</thead>
<tbody>
<tr>
<td>94-107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95632</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.01</td>
<td>4.16</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95633</td>
<td>0.07</td>
<td>0.07</td>
<td>0.10</td>
<td>0.01</td>
<td>4.44</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95634</td>
<td>0.08</td>
<td>0.08</td>
<td>0.17</td>
<td>0.01</td>
<td>5.32</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95635</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
<td>0.01</td>
<td>5.04</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95636</td>
<td>0.04</td>
<td>0.04</td>
<td>0.09</td>
<td>0.02</td>
<td>4.70</td>
<td>0.01</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95637</td>
<td>0.06</td>
<td>0.06</td>
<td>0.08</td>
<td>0.01</td>
<td>4.40</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95638</td>
<td>0.06</td>
<td>0.06</td>
<td>0.08</td>
<td>0.01</td>
<td>4.31</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95639</td>
<td>0.07</td>
<td>0.07</td>
<td>0.12</td>
<td>0.01</td>
<td>4.86</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95640</td>
<td>0.11</td>
<td>0.10</td>
<td>0.14</td>
<td>0.01</td>
<td>4.98</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95641</td>
<td>0.26</td>
<td>0.26</td>
<td>0.28</td>
<td>0.03</td>
<td>5.30</td>
<td>0.01</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95642</td>
<td>0.10</td>
<td>0.09</td>
<td>0.13</td>
<td>0.01</td>
<td>4.42</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95643</td>
<td>0.12</td>
<td>0.10</td>
<td>0.23</td>
<td>0.03</td>
<td>4.46</td>
<td>0.01</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geological Log

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Structure (vein)</th>
<th>Width of Structure (vein)</th>
<th>Mineralization</th>
<th>Est. %</th>
<th>Est. % Mag</th>
<th>R.Q.D.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>1</td>
<td>1'</td>
<td>bre-him-(MnO) (hem)</td>
<td>0.5</td>
<td>0</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>2</td>
<td>2'</td>
<td>bre-him-(MnO) (hem)</td>
<td>0.5</td>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>3</td>
<td>3'</td>
<td>bre-gg-him-hem alb vein w/feld rim</td>
<td>0.5</td>
<td>0</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>30-40</td>
<td>4</td>
<td>4'</td>
<td>veins of feld alb-him</td>
<td>0.5</td>
<td>0</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>40-50</td>
<td>5</td>
<td>5'</td>
<td>alb feld bre-MnO (lim)</td>
<td>0.5</td>
<td>0</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>50-60</td>
<td>6</td>
<td>6'</td>
<td>cal-(lim) feld bre</td>
<td>0.5</td>
<td>0</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>60-70</td>
<td>7</td>
<td>7'</td>
<td>hen-gg-(mal) chr on fract hen-(alb)</td>
<td>0.5</td>
<td>0</td>
<td>217</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- **1st Interval of patchy K-feld alb-him**
- **3rd Interval of patchy K-feld alb-him**
- **Patchy K-feld alb, clasts may be small interval of intrusive breccia.**
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins) < 10 core axis</th>
<th>Mineralization</th>
<th>Est. %</th>
<th>Eq. %</th>
<th>Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRUSION BRECCIA</td>
<td>210</td>
<td>1/4"</td>
<td>lim-MnO₂-mal on fract</td>
<td>0.8</td>
<td>0.5</td>
<td></td>
<td>v. weak dis cp (py)</td>
</tr>
<tr>
<td>Same as above INTRUSION BRECCIA</td>
<td>250</td>
<td>5/8"</td>
<td>chips, blebs of biotite</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAFIC DYKE 372'-380'</td>
<td>260</td>
<td>5/8"</td>
<td>alb-ker(fld)-(chr) str chr on fract</td>
<td>0.8</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUGITE PORPHYRY DYKE 500'-516'</td>
<td>270</td>
<td>5/8"</td>
<td>lim-MnO₂ on fract</td>
<td>1.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>330</td>
<td>7/16"</td>
<td>cup on fract surface</td>
<td>1.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>9/16"</td>
<td>brx-gy-gh-(lim)-(MnO₂)</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOTTOM DEPTHS</th>
<th>Aquifer</th>
<th>Est. %</th>
<th>Eq. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leach Cap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leachable Ox.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lim. Zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supergen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R.O.D.</th>
<th>Sample Number</th>
<th>TCa</th>
<th>OxO</th>
<th>Au</th>
<th>Ag</th>
<th>Ni</th>
<th>Cu</th>
<th>Ni%</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>85644</td>
<td>1.46</td>
<td>0.35</td>
<td>0.16</td>
<td>0.43</td>
<td>1.06</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>85645</td>
<td>1.42</td>
<td>0.32</td>
<td>0.57</td>
<td>0.49</td>
<td>1.04</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>85646</td>
<td>1.44</td>
<td>0.36</td>
<td>0.26</td>
<td>0.56</td>
<td>0.94</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>85647</td>
<td>1.44</td>
<td>0.36</td>
<td>0.26</td>
<td>0.56</td>
<td>0.94</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>85648</td>
<td>1.44</td>
<td>0.36</td>
<td>0.26</td>
<td>0.56</td>
<td>0.94</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>85649</td>
<td>1.44</td>
<td>0.36</td>
<td>0.26</td>
<td>0.56</td>
<td>0.94</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>85650</td>
<td>1.44</td>
<td>0.36</td>
<td>0.26</td>
<td>0.56</td>
<td>0.94</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>85651</td>
<td>1.44</td>
<td>0.36</td>
<td>0.26</td>
<td>0.56</td>
<td>0.94</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>85652</td>
<td>1.44</td>
<td>0.36</td>
<td>0.26</td>
<td>0.56</td>
<td>0.94</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>85653</td>
<td>1.44</td>
<td>0.36</td>
<td>0.26</td>
<td>0.56</td>
<td>0.94</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS
<table>
<thead>
<tr>
<th>Rock Types & Alteration</th>
<th>Graphic Log</th>
<th>Structure (veins) ± 50 core axis</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Leachable Cus</th>
<th>Leachable Zn</th>
<th>Lin. Zone</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>diss cp + blebs of cp assoc wt secondary biotite</td>
<td>1.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>mad on fract surfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v. fine grained diss cp large blebs of calcite biotite + (py) infill</td>
<td>1.0</td>
<td>Tr</td>
<td></td>
<td></td>
<td></td>
<td>397</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>diss + small blebs cp (py?)</td>
<td>0.8</td>
<td>tr</td>
<td></td>
<td></td>
<td></td>
<td>307</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v. fine grained diss cp (py?)</td>
<td>1.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>307</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>calcite diss cp (py?) well brecciated with secondary biotite + (py)</td>
<td>2.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>317</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>alb - (gthy)</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>327</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>alb - (ch) &</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>327</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>chr - (alb) stringers</td>
<td>1.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>327</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>brecciated (py)</td>
<td>2.0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>337</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>brecciated (py)</td>
<td>4.5</td>
<td>tr</td>
<td></td>
<td></td>
<td></td>
<td>347</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>brecciated (py)</td>
<td>4.0</td>
<td>tr</td>
<td></td>
<td></td>
<td></td>
<td>347</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bottom Depths</th>
<th>Footeage Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R.Q.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R.Q.D.</th>
<th>Sample Number</th>
<th>Assay Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>85656</td>
<td>Cu 0.16</td>
</tr>
<tr>
<td>53</td>
<td>85657</td>
<td>Cu 0.23</td>
</tr>
<tr>
<td>43</td>
<td>85658</td>
<td>Cu 0.21</td>
</tr>
<tr>
<td>43</td>
<td>85659</td>
<td>Cu 0.19</td>
</tr>
<tr>
<td>98</td>
<td>85660</td>
<td>Cu 0.21</td>
</tr>
<tr>
<td>30</td>
<td>85661</td>
<td>Cu 0.22</td>
</tr>
<tr>
<td>50</td>
<td>85662</td>
<td>Cu 0.24</td>
</tr>
<tr>
<td>90</td>
<td>85663</td>
<td>Cu 0.18</td>
</tr>
<tr>
<td>43</td>
<td>85664</td>
<td>Cu 0.21</td>
</tr>
<tr>
<td>63</td>
<td>85665</td>
<td>Cu 0.24</td>
</tr>
<tr>
<td>90</td>
<td>85666</td>
<td>Cu 0.15</td>
</tr>
<tr>
<td>63</td>
<td>85667</td>
<td>Cu 0.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cu</th>
<th>Zn</th>
<th>As</th>
<th>Mo</th>
<th>Ni</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.04</td>
<td>1.01</td>
<td>0.15</td>
<td>0.31</td>
<td>0.15</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Gibraltar Mines Limited (Mount Polley Property) Diamond Drill Log

Hole No. 94-102 Page 7 of 15

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (vein) < 10 cm < anisotropy (vein)</th>
<th>Width of Structure (vein)</th>
<th>Mineralization</th>
<th>Est. % Mag</th>
<th>Est. % Py</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnetic
- no Ca mineralization
- very fine grained
- no (vein core axis) contacts

MAFIC/ Dyke
- CP: biotite (mag)
- Lim: (moly) (moly)
- Cal: biotite (mag)
- Cal: stringers

Bottom Depths

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Zn</th>
<th>% As</th>
<th>% Ag</th>
<th>% Pb</th>
<th>% Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>85668</td>
<td>0.28</td>
<td>0.07</td>
<td>0.29</td>
<td>0.09</td>
<td>4.00</td>
<td>0.04</td>
</tr>
<tr>
<td>85669</td>
<td>0.24</td>
<td>0.02</td>
<td>0.29</td>
<td>0.04</td>
<td>6.37</td>
<td>0.02</td>
</tr>
<tr>
<td>85670</td>
<td>0.24</td>
<td>0.04</td>
<td>0.40</td>
<td>0.06</td>
<td>11.8</td>
<td>0.03</td>
</tr>
<tr>
<td>85671</td>
<td>0.12</td>
<td>0.04</td>
<td>0.40</td>
<td>0.06</td>
<td>11.9</td>
<td>0.03</td>
</tr>
<tr>
<td>85672</td>
<td>0.14</td>
<td>0.01</td>
<td>0.18</td>
<td>0.01</td>
<td>5.14</td>
<td>0.01</td>
</tr>
<tr>
<td>85673</td>
<td>0.10</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>5.24</td>
<td>0.01</td>
</tr>
<tr>
<td>85674</td>
<td>0.29</td>
<td>0.03</td>
<td>0.30</td>
<td>0.06</td>
<td>3.46</td>
<td>0.03</td>
</tr>
<tr>
<td>85675</td>
<td>0.29</td>
<td>0.16</td>
<td>0.32</td>
<td>0.09</td>
<td>5.69</td>
<td>0.04</td>
</tr>
<tr>
<td>85676</td>
<td>0.15</td>
<td>0.31</td>
<td>0.15</td>
<td>0.04</td>
<td>0.75</td>
<td>0.04</td>
</tr>
<tr>
<td>85677</td>
<td>0.30</td>
<td>0.37</td>
<td>0.37</td>
<td>0.07</td>
<td>7.36</td>
<td>0.09</td>
</tr>
<tr>
<td>85678</td>
<td>0.30</td>
<td>0.17</td>
<td>0.30</td>
<td>0.05</td>
<td>6.88</td>
<td>0.05</td>
</tr>
<tr>
<td>85679</td>
<td>0.39</td>
<td>0.14</td>
<td>0.14</td>
<td>0.28</td>
<td>6.40</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Leach Cap

- Leachable Cu
- Lens Zone
- Supergene
GIBRALTAR MINES LIMITED (MOUNT POLLEY PROPERTY) DIAMOND DRILL LOG

ROCK TYPES and ALTERATION

<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (veins)</th>
<th>Width of Structure (veins)</th>
<th>Mineralization</th>
<th>Est. %</th>
<th>Est. %</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>64</td>
<td>62</td>
<td>60×2</td>
<td>diss cap</td>
<td>2.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>64</td>
<td>62</td>
<td>60×2</td>
<td>diss cap</td>
<td>2.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>64</td>
<td>62</td>
<td>60×2</td>
<td>diss cap</td>
<td>2.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>64</td>
<td>62</td>
<td>60×2</td>
<td>diss cap</td>
<td>2.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>64</td>
<td>62</td>
<td>60×2</td>
<td>diss cap</td>
<td>2.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>64</td>
<td>62</td>
<td>60×2</td>
<td>diss cap</td>
<td>2.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>64</td>
<td>62</td>
<td>60×2</td>
<td>diss cap</td>
<td>2.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>64</td>
<td>62</td>
<td>60×2</td>
<td>diss cap</td>
<td>2.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>64</td>
<td>62</td>
<td>60×2</td>
<td>diss cap</td>
<td>2.0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

BOTTOM DEPTHS

<table>
<thead>
<tr>
<th>RQD</th>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Zn</th>
<th>% Ag</th>
<th>% Au</th>
<th>% Co</th>
<th>% Ni</th>
<th>% As</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>85689</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85681</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85628</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85683</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85684</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85685</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85686</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85687</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSAY RESULTS

<table>
<thead>
<tr>
<th>RQD</th>
<th>Sample Number</th>
<th>% Cu</th>
<th>% Zn</th>
<th>% Ag</th>
<th>% Au</th>
<th>% Co</th>
<th>% Ni</th>
<th>% As</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>85689</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85681</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85628</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85683</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85684</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85685</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85686</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>85687</td>
<td>5.6</td>
<td>6.5</td>
<td>4.93</td>
<td>0.06</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- The table details the locations, mineralizations, and assay results from a diamond drill log for Gibraltar Mines Limited at Mount Polley Property.
- The data includes rock types, alteration, and percentages for copper (Cu), zinc (Zn), silver (Ag), gold (Au), and other elements.
- The table provides depth and rock quality designation (RQD) information for each sample.
<table>
<thead>
<tr>
<th>ROCK TYPES and ALTERATION</th>
<th>GRAPHIC LOG</th>
<th>Structure (vals)</th>
<th>Width of Structure (vals)</th>
<th>Mineralization</th>
<th>Est % Mag</th>
<th>Est % Fy</th>
<th>R.Q.D.</th>
<th>Sample Number</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ROCK TYPES and ALTERATION</td>
<td>GRAPHIC LOG</td>
<td>Structure (vein) < to core axis</td>
<td>Width of Structure (vein)</td>
<td>Mineralization</td>
<td>Est, % Mag</td>
<td>Est, % Py</td>
<td>BOTTOM DEPTHS</td>
<td>Footage Blocks</td>
<td>R.Q.D.</td>
<td>SAMPLE NUMBER</td>
<td>TCu</td>
<td>ZnCu</td>
<td>As</td>
<td>% Cu</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------</td>
<td>---------------</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>ND</td>
<td>940</td>
<td>10</td>
<td>1/4</td>
<td>Cal cp-(py)-(py) (p)</td>
<td>4.0</td>
<td>0</td>
<td></td>
<td></td>
<td>1603</td>
<td>85704</td>
<td>.15</td>
<td>.04</td>
<td>.30</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>550</td>
<td>60</td>
<td>3/4</td>
<td>Cal cp (py)</td>
<td>5.0</td>
<td>0.5</td>
<td>Weak Lim. MoO₃ on Fractures</td>
<td></td>
<td>523</td>
<td>85705</td>
<td>.13</td>
<td>.03</td>
<td>.17</td>
<td>.03</td>
</tr>
<tr>
<td></td>
<td>560</td>
<td>60</td>
<td>3/4</td>
<td>Cal cp (py)</td>
<td>4.0</td>
<td>0</td>
<td></td>
<td></td>
<td>543</td>
<td>85706</td>
<td>.11</td>
<td>.01</td>
<td>.16</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>560</td>
<td>60</td>
<td>3/4</td>
<td>Cal</td>
<td>2.0</td>
<td>0</td>
<td></td>
<td></td>
<td>567</td>
<td>85707</td>
<td>.11</td>
<td>.01</td>
<td>.17</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>560</td>
<td>60</td>
<td>3/4</td>
<td>Cal</td>
<td>2.0</td>
<td>0</td>
<td></td>
<td></td>
<td>567</td>
<td>85708</td>
<td>.05</td>
<td>.01</td>
<td>.06</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>560</td>
<td>60</td>
<td>3/4</td>
<td>Cal cp</td>
<td>2.0</td>
<td>0</td>
<td></td>
<td></td>
<td>567</td>
<td>85709</td>
<td>.11</td>
<td>.01</td>
<td>.23</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>570</td>
<td>50</td>
<td>3/4</td>
<td>Cal</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
<td>567</td>
<td>85710</td>
<td>.07</td>
<td>.03</td>
<td>.11</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>570</td>
<td>50</td>
<td>3/4</td>
<td>Bx-xg-lm-MoO₃</td>
<td>0.5</td>
<td>0</td>
<td></td>
<td></td>
<td>567</td>
<td>85711</td>
<td>.07</td>
<td>.05</td>
<td>.14</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>572</td>
<td>50</td>
<td>3/4</td>
<td>Bx-xg-lm-MoO₃</td>
<td>0.5</td>
<td>0</td>
<td></td>
<td></td>
<td>567</td>
<td>85712</td>
<td>.10</td>
<td>.07</td>
<td>.12</td>
<td>.01</td>
</tr>
</tbody>
</table>

E.O.H. 572'

Manager:

[Signature]
APPENDIX II

Analytical Data
GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

Date: 27th June, 1994

EXPLORATION (MT. POLLEY)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoS₂</th>
<th>% A.S. Fe</th>
<th>% Cu</th>
<th>Au</th>
<th>g/T Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.001</td>
<td>0.16</td>
<td>0.19</td>
<td>0.02</td>
<td>6.74</td>
<td>0.02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>0.08</td>
<td>0.12</td>
<td>0.01</td>
<td>5.67</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>0.11</td>
<td>0.14</td>
<td>0.02</td>
<td>5.67</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>0.11</td>
<td>0.16</td>
<td>0.01</td>
<td>5.88</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>0.15</td>
<td>0.19</td>
<td>0.01</td>
<td>5.96</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>0.15</td>
<td>0.23</td>
<td>0.01</td>
<td>4.40</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>0.15</td>
<td>0.19</td>
<td>0.01</td>
<td>5.56</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>0.16</td>
<td>0.22</td>
<td>0.02</td>
<td>5.56</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>0.21</td>
<td>0.29</td>
<td>0.02</td>
<td>4.38</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.09</td>
<td>0.19</td>
<td>0.03</td>
<td>5.60</td>
<td>0.02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.07</td>
<td>0.12</td>
<td>0.01</td>
<td>5.19</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.10</td>
<td>0.15</td>
<td>0.01</td>
<td>4.97</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.05</td>
<td>0.10</td>
<td>0.01</td>
<td>5.36</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.06</td>
<td>0.10</td>
<td>0.01</td>
<td>4.17</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.14</td>
<td>0.18</td>
<td>0.02</td>
<td>4.35</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.12</td>
<td>0.17</td>
<td>0.02</td>
<td>4.20</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.13</td>
<td>0.18</td>
<td>0.04</td>
<td>4.45</td>
<td>0.02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.12</td>
<td>0.16</td>
<td>0.02</td>
<td>5.07</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.13</td>
<td>0.17</td>
<td>0.02</td>
<td>5.36</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.09</td>
<td>0.15</td>
<td>0.01</td>
<td>5.68</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.23</td>
<td>0.32</td>
<td>0.05</td>
<td>5.43</td>
<td>0.02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.07</td>
<td>0.12</td>
<td>0.02</td>
<td>4.96</td>
<td>0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.24</td>
<td>0.34</td>
<td>0.06</td>
<td>5.55</td>
<td>0.02</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.33</td>
<td>0.46</td>
<td>0.09</td>
<td>5.84</td>
<td>0.04</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.29</td>
<td>0.55</td>
<td>0.16</td>
<td>5.12</td>
<td>0.10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.41</td>
<td>0.74</td>
<td>0.33</td>
<td>5.16</td>
<td>0.22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.20</td>
<td>1.21</td>
<td>0.52</td>
<td>4.62</td>
<td>0.39</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.27</td>
<td>1.39</td>
<td>0.58</td>
<td>4.70</td>
<td>0.40</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

C: Assay Lab.

Assayer: ________________________________
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoS₂</th>
<th>% A. S. Fe</th>
<th>Cu % Ox. Res.</th>
<th>g/T Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5029</td>
<td>0.29</td>
<td>0.39</td>
<td>0.07</td>
<td>3.02</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0.88</td>
<td>1.04</td>
<td>0.12</td>
<td>4.25</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>0.47</td>
<td>0.57</td>
<td>0.04</td>
<td>4.18</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>0.20</td>
<td>0.59</td>
<td>0.22</td>
<td>5.65</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>0.23</td>
<td>0.31</td>
<td>0.04</td>
<td>5.09</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>0.21</td>
<td>0.27</td>
<td>0.03</td>
<td>4.60</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>0.10</td>
<td>0.13</td>
<td>0.01</td>
<td>3.54</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td>0.23</td>
<td>0.34</td>
<td>0.08</td>
<td>3.97</td>
<td>0.04</td>
<td>-</td>
</tr>
<tr>
<td>37</td>
<td>0.05</td>
<td>0.36</td>
<td>0.05</td>
<td>4.30</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>38</td>
<td>0.05</td>
<td>0.09</td>
<td>0.01</td>
<td>2.69</td>
<td><0.01</td>
<td>-</td>
</tr>
<tr>
<td>39</td>
<td>0.02</td>
<td>0.06</td>
<td><0.01</td>
<td>2.98</td>
<td><0.01</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>0.04</td>
<td>0.08</td>
<td>0.01</td>
<td>2.22</td>
<td><0.01</td>
<td>-</td>
</tr>
<tr>
<td>41</td>
<td>0.03</td>
<td>0.04</td>
<td><0.01</td>
<td>2.32</td>
<td><0.01</td>
<td>-</td>
</tr>
<tr>
<td>42</td>
<td>0.02</td>
<td>0.04</td>
<td><0.01</td>
<td>1.73</td>
<td><0.01</td>
<td>-</td>
</tr>
<tr>
<td>43</td>
<td>0.06</td>
<td>0.08</td>
<td>0.01</td>
<td>2.60</td>
<td><0.01</td>
<td>-</td>
</tr>
<tr>
<td>44</td>
<td>0.14</td>
<td>0.18</td>
<td>0.01</td>
<td>2.76</td>
<td><0.01</td>
<td>-</td>
</tr>
<tr>
<td>45</td>
<td>0.06</td>
<td>0.10</td>
<td>0.01</td>
<td>3.91</td>
<td><0.01</td>
<td>-</td>
</tr>
<tr>
<td>46</td>
<td>0.04</td>
<td>0.08</td>
<td>0.01</td>
<td>2.44</td>
<td><0.01</td>
<td>-</td>
</tr>
<tr>
<td>47</td>
<td>0.89</td>
<td>1.14</td>
<td>0.47</td>
<td>2.80</td>
<td>0.16</td>
<td>-</td>
</tr>
<tr>
<td>48</td>
<td>0.26</td>
<td>0.51</td>
<td>0.24</td>
<td>3.84</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td>49</td>
<td>0.29</td>
<td>0.44</td>
<td>0.12</td>
<td>4.26</td>
<td>0.06</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>0.23</td>
<td>0.51</td>
<td>0.18</td>
<td>3.85</td>
<td>0.10</td>
<td>-</td>
</tr>
<tr>
<td>51</td>
<td>0.07</td>
<td>0.86</td>
<td>0.15</td>
<td>3.14</td>
<td>0.10</td>
<td>-</td>
</tr>
<tr>
<td>52</td>
<td>0.06</td>
<td>3.63</td>
<td>0.44</td>
<td>4.49</td>
<td>0.41</td>
<td>-</td>
</tr>
<tr>
<td>53</td>
<td>0.34</td>
<td>0.76</td>
<td>0.21</td>
<td>3.69</td>
<td>0.11</td>
<td>-</td>
</tr>
<tr>
<td>54</td>
<td>0.36</td>
<td>0.40</td>
<td>0.02</td>
<td>3.38</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>55</td>
<td>0.35</td>
<td>0.71</td>
<td>0.17</td>
<td>4.14</td>
<td>0.11</td>
<td>-</td>
</tr>
<tr>
<td>56</td>
<td>0.26</td>
<td>0.44</td>
<td>0.13</td>
<td>4.47</td>
<td>0.08</td>
<td>-</td>
</tr>
</tbody>
</table>

cc: Assay Lab.
GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoSi</th>
<th>% A.S. Fe</th>
<th>Cu on Ox. Res.</th>
<th>g/T Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>85 57</td>
<td>.13</td>
<td>.21</td>
<td>.01</td>
<td>6.93</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>.5</td>
<td>.27</td>
<td>.04</td>
<td>6.98</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>.19</td>
<td>.23</td>
<td>.04</td>
<td>6.25</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>.18</td>
<td>.26</td>
<td>.04</td>
<td>4.62</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>.29</td>
<td>.14</td>
<td>.01</td>
<td>3.32</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>.05</td>
<td>.08</td>
<td>.01</td>
<td>3.86</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>.11</td>
<td>.15</td>
<td>.02</td>
<td>4.70</td>
<td>.4</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>.08</td>
<td>.24</td>
<td>.07</td>
<td>5.44</td>
<td>.4</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>.2</td>
<td>.23</td>
<td>.03</td>
<td>5.20</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>.15</td>
<td>.27</td>
<td>.01</td>
<td>5.03</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>.22</td>
<td>.29</td>
<td>.02</td>
<td>5.30</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>.11</td>
<td>.31</td>
<td>.04</td>
<td>4.81</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>.2</td>
<td>.22</td>
<td>.02</td>
<td>5.02</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>.01</td>
<td>.21</td>
<td>.02</td>
<td>5.12</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>.02</td>
<td>.15</td>
<td>.04</td>
<td>4.43</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>.01</td>
<td>.14</td>
<td>.01</td>
<td>5.45</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>.03</td>
<td>.15</td>
<td>.02</td>
<td>3.17</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>.06</td>
<td>.11</td>
<td>.02</td>
<td>2.99</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>.10</td>
<td>.13</td>
<td>.01</td>
<td>3.11</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>.14</td>
<td>.34</td>
<td>.09</td>
<td>5.20</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td><0.1</td>
<td>.12</td>
<td><0.1</td>
<td>2.42</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td><0.1</td>
<td>.14</td>
<td><0.1</td>
<td>5.25</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td><0.1</td>
<td>.15</td>
<td><0.1</td>
<td>4.34</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td><0.1</td>
<td>.24</td>
<td><0.1</td>
<td>3.87</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td><0.1</td>
<td>.12</td>
<td><0.1</td>
<td>4.61</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td><0.1</td>
<td>.11</td>
<td><0.1</td>
<td>4.26</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td><0.1</td>
<td>.13</td>
<td><0.1</td>
<td>5.29</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td><0.1</td>
<td>.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C: Assay Lab.

Assayer: ..

Date: 30 June, 1974
Assay Certificate

GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoS₂</th>
<th>% A.S. Fe</th>
<th>Cu % Ox. Res. g/T Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.01</td>
<td>4.02</td>
<td>< 0.1</td>
</tr>
<tr>
<td>86</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>2.42</td>
<td>< 0.1</td>
</tr>
<tr>
<td>87</td>
<td>0.4</td>
<td>0.4</td>
<td>< 0.1</td>
<td>4.57</td>
<td>0.1</td>
</tr>
<tr>
<td>88</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.01</td>
<td>4.91</td>
<td>< 0.1</td>
</tr>
<tr>
<td>89</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.01</td>
<td>4.32</td>
<td>0.1</td>
</tr>
<tr>
<td>90</td>
<td>< 0.1</td>
<td>1.3</td>
<td>< 0.1</td>
<td>5.37</td>
<td>0.1</td>
</tr>
<tr>
<td>91</td>
<td>< 0.1</td>
<td>0.22</td>
<td>< 0.1</td>
<td>7.28</td>
<td>< 0.1</td>
</tr>
<tr>
<td>92</td>
<td>< 0.1</td>
<td>0.5</td>
<td>< 0.1</td>
<td>6.83</td>
<td>< 0.1</td>
</tr>
<tr>
<td>93</td>
<td>0.1</td>
<td>0.42</td>
<td>0.02</td>
<td>2.32</td>
<td>< 0.1</td>
</tr>
<tr>
<td>94</td>
<td>0.1</td>
<td>0.23</td>
<td>0.01</td>
<td>3.47</td>
<td>< 0.1</td>
</tr>
<tr>
<td>95</td>
<td>0.1</td>
<td>0.34</td>
<td>0.03</td>
<td>4.98</td>
<td>< 0.1</td>
</tr>
<tr>
<td>96</td>
<td>0.1</td>
<td>0.42</td>
<td>0.02</td>
<td>3.13</td>
<td>< 0.1</td>
</tr>
<tr>
<td>97</td>
<td>0.1</td>
<td>0.25</td>
<td>0.02</td>
<td>2.66</td>
<td>< 0.1</td>
</tr>
<tr>
<td>98</td>
<td>0.1</td>
<td>0.42</td>
<td>0.03</td>
<td>4.07</td>
<td>< 0.1</td>
</tr>
<tr>
<td>99</td>
<td>0.1</td>
<td>0.25</td>
<td>0.01</td>
<td>4.07</td>
<td>< 0.1</td>
</tr>
<tr>
<td>85100</td>
<td>< 0.1</td>
<td>2.5</td>
<td>0.01</td>
<td>7.30</td>
<td>< 0.1</td>
</tr>
<tr>
<td>01</td>
<td>< 0.1</td>
<td>0.17</td>
<td>0.01</td>
<td>6.15</td>
<td>< 0.1</td>
</tr>
<tr>
<td>02</td>
<td>< 0.1</td>
<td>0.33</td>
<td>0.01</td>
<td>4.45</td>
<td>< 0.1</td>
</tr>
<tr>
<td>03</td>
<td>< 0.1</td>
<td>0.22</td>
<td>< 0.1</td>
<td>3.94</td>
<td>< 0.1</td>
</tr>
<tr>
<td>04</td>
<td>< 0.1</td>
<td>0.25</td>
<td>< 0.1</td>
<td>4.22</td>
<td>< 0.1</td>
</tr>
<tr>
<td>05</td>
<td>< 0.1</td>
<td>0.4</td>
<td>< 0.1</td>
<td>3.20</td>
<td>< 0.1</td>
</tr>
<tr>
<td>06</td>
<td>0.1</td>
<td>0.18</td>
<td>0.02</td>
<td>4.17</td>
<td>< 0.1</td>
</tr>
<tr>
<td>07</td>
<td>< 0.1</td>
<td>0.12</td>
<td>0.01</td>
<td>4.97</td>
<td>< 0.1</td>
</tr>
<tr>
<td>08</td>
<td>< 0.1</td>
<td>0.5</td>
<td>0.01</td>
<td>4.15</td>
<td>< 0.1</td>
</tr>
<tr>
<td>09</td>
<td>< 0.1</td>
<td>0.15</td>
<td>< 0.1</td>
<td>3.56</td>
<td>< 0.1</td>
</tr>
<tr>
<td>10</td>
<td>< 0.1</td>
<td>0.4</td>
<td>< 0.1</td>
<td>3.80</td>
<td>< 0.1</td>
</tr>
<tr>
<td>11</td>
<td>< 0.1</td>
<td>0.38</td>
<td>0.01</td>
<td>3.94</td>
<td>< 0.1</td>
</tr>
<tr>
<td>12</td>
<td>< 0.1</td>
<td>0.27</td>
<td>0.01</td>
<td>4.25</td>
<td>< 0.1</td>
</tr>
<tr>
<td>13</td>
<td>< 0.1</td>
<td>0.27</td>
<td>0.01</td>
<td>4.61</td>
<td>< 0.1</td>
</tr>
<tr>
<td>14</td>
<td>< 0.1</td>
<td>0.26</td>
<td>< 0.1</td>
<td>4.33</td>
<td>< 0.1</td>
</tr>
<tr>
<td>15</td>
<td>< 0.1</td>
<td>0.06</td>
<td>0.01</td>
<td>2.50</td>
<td>< 0.1</td>
</tr>
<tr>
<td>16</td>
<td>< 0.1</td>
<td>0.07</td>
<td>0.01</td>
<td>3.56</td>
<td>< 0.1</td>
</tr>
</tbody>
</table>

Assay Lab.

Assayer:
Assay Certificate

Company: GIBRALTAR MINES LTD.
Project:
Attn: Ron Graden

We hereby certify the following Assay of 226 pulp samples submitted JUL-28-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85001</td>
<td>0.14</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85002</td>
<td>0.05</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85003</td>
<td>0.07</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85004</td>
<td>0.07</td>
<td>0.002</td>
<td>0.08</td>
<td>0.002</td>
</tr>
<tr>
<td>85005</td>
<td>0.10</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85006</td>
<td>0.14</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85007</td>
<td>0.11</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85008</td>
<td>0.15</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85009</td>
<td>0.27</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85010</td>
<td>0.27</td>
<td>0.008</td>
<td>0.27</td>
<td>0.008</td>
</tr>
<tr>
<td>85011</td>
<td>0.13</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85012</td>
<td>0.15</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85013</td>
<td>0.29</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85014</td>
<td>0.14</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85015</td>
<td>0.24</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85016</td>
<td>0.20</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85017</td>
<td>0.26</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85018</td>
<td>0.19</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85019</td>
<td>0.23</td>
<td>0.007</td>
<td>0.26</td>
<td>0.008</td>
</tr>
<tr>
<td>85020</td>
<td>0.22</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85021</td>
<td>0.46</td>
<td>0.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85022</td>
<td>0.16</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85023</td>
<td>0.39</td>
<td>0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85024</td>
<td>0.48</td>
<td>0.014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD | 0.26 | 0.008 | | |
BLK | 0.01 | 0.001 | | |

Certified by
MIN-EN LABORATORIES
Assay Certificate

Company: **GIBRALTAR MINES LTD.**
Project:
Attn: Ron Graden

We hereby certify the following Assay of 226 pulp samples submitted JUL-28-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85025</td>
<td>.62</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85026</td>
<td>1.04</td>
<td>.030</td>
<td>.96</td>
<td>.028</td>
</tr>
<tr>
<td>85027</td>
<td>1.52</td>
<td>.044</td>
<td>1.44</td>
<td>.042</td>
</tr>
<tr>
<td>85028</td>
<td>1.91</td>
<td>.056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85029</td>
<td>.81</td>
<td>.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85030</td>
<td>2.93</td>
<td>.085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85031</td>
<td>1.22</td>
<td>.036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85032</td>
<td>.82</td>
<td>.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85033</td>
<td>.46</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85034</td>
<td>.36</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85035</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85036</td>
<td>.33</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85037</td>
<td>.49</td>
<td>.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85038</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85039</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85040</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85041</td>
<td>.05</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85042</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85043</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85044</td>
<td>.28</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85045</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85046</td>
<td>.16</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85047</td>
<td>2.40</td>
<td>.070</td>
<td>2.08</td>
<td>.061</td>
</tr>
<tr>
<td>85048</td>
<td>.68</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| STD | .27 | .008 |
| BLK | .01 | .001 |

Certified by

[Signature]

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES LTD.

Project: McLeese Lake, B.C.

Atttn: Ron Graden

Date: AUG-04-94

Copy 1. Gibraltar Mines, McLeese Lake, B.C.

We hereby certify the following Assay of 24 pulp samples submitted JUL-28-94 by R. Graden.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85049</td>
<td>.74</td>
<td>.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85050</td>
<td>.97</td>
<td>.028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85051</td>
<td>2.02</td>
<td>.059</td>
<td>1.90</td>
<td>.055</td>
</tr>
<tr>
<td>85052</td>
<td>12.01</td>
<td>.350</td>
<td>11.18</td>
<td>.326</td>
</tr>
<tr>
<td>85053</td>
<td>1.31</td>
<td>.038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85054</td>
<td>.53</td>
<td></td>
<td>.015</td>
<td></td>
</tr>
<tr>
<td>85055</td>
<td>.73</td>
<td></td>
<td>.021</td>
<td></td>
</tr>
<tr>
<td>85056</td>
<td>.38</td>
<td></td>
<td>.011</td>
<td></td>
</tr>
<tr>
<td>85057</td>
<td>.24</td>
<td></td>
<td>.007</td>
<td></td>
</tr>
<tr>
<td>85058</td>
<td>.23</td>
<td></td>
<td>.007</td>
<td></td>
</tr>
<tr>
<td>85059</td>
<td>.30</td>
<td></td>
<td>.009</td>
<td></td>
</tr>
<tr>
<td>85060</td>
<td>.38</td>
<td></td>
<td>.011</td>
<td></td>
</tr>
<tr>
<td>85061</td>
<td>.19</td>
<td></td>
<td>.006</td>
<td></td>
</tr>
<tr>
<td>85062</td>
<td>.11</td>
<td></td>
<td>.003</td>
<td></td>
</tr>
<tr>
<td>85063</td>
<td>.24</td>
<td></td>
<td>.007</td>
<td></td>
</tr>
<tr>
<td>85064</td>
<td>.27</td>
<td></td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td>85065</td>
<td>.24</td>
<td></td>
<td>.007</td>
<td></td>
</tr>
<tr>
<td>85066</td>
<td>.31</td>
<td></td>
<td>.009</td>
<td></td>
</tr>
<tr>
<td>85067</td>
<td>.66</td>
<td>.019</td>
<td>.62</td>
<td>.018</td>
</tr>
<tr>
<td>85068</td>
<td>.54</td>
<td></td>
<td>.016</td>
<td></td>
</tr>
<tr>
<td>85069</td>
<td>.33</td>
<td></td>
<td>.010</td>
<td></td>
</tr>
<tr>
<td>85070</td>
<td>.41</td>
<td></td>
<td>.012</td>
<td></td>
</tr>
<tr>
<td>85071</td>
<td>.26</td>
<td></td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td>85072</td>
<td>.23</td>
<td></td>
<td>.007</td>
<td></td>
</tr>
</tbody>
</table>

STD .26 .008
BLK .01 .001

Certified by [Signature]

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES LTD.

Project:

Attn: Ron Graden

We hereby certify the following Assay of 24 pulp samples submitted JUL-28-94 by R. Graden.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85073</td>
<td>.27</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85074</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85075</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85076</td>
<td>.63</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85077</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85078</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85079</td>
<td>.24</td>
<td>.007</td>
<td>.26</td>
<td>.008</td>
</tr>
<tr>
<td>85080</td>
<td>.20</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85081</td>
<td>.51</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85082</td>
<td>.21</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85083</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85084</td>
<td>.21</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85085</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85086</td>
<td>.16</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85087</td>
<td>.32</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85088</td>
<td>.37</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85089</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85090</td>
<td>.31</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85091</td>
<td>.58</td>
<td>.017</td>
<td>.55</td>
<td>.016</td>
</tr>
<tr>
<td>85092</td>
<td>.46</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85093</td>
<td>.53</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85094</td>
<td>.41</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85095</td>
<td>.52</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85096</td>
<td>.82</td>
<td>.024</td>
<td>.79</td>
<td>.023</td>
</tr>
</tbody>
</table>

STD | .25 | .007 | | |
BLK | .01 | .001 | | |

Certified by [Signature]

MIN-EN LABORATORIES
Assay Certificate

Company: **GIBRALTAR MINES LTD.**
Project:
Attn: **Ron Graden**

We hereby certify the following Assay of 24 pulp samples submitted JUL-28-94 by R. Graden.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85097</td>
<td>.48</td>
<td>.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85098</td>
<td>.85</td>
<td>.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85099</td>
<td>.41</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85100</td>
<td>.40</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85101</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85102</td>
<td>.41</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85103</td>
<td>.30</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85104</td>
<td>.42</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85105</td>
<td>.25</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85106</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85107</td>
<td>.20</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85108</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85109</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85110</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85111</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85112</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85113</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85114</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85115</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85116</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85117</td>
<td>.41</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85118</td>
<td>.92</td>
<td>.027</td>
<td>.97</td>
<td>.028</td>
</tr>
<tr>
<td>85119</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85120</td>
<td>.67</td>
<td>.020</td>
<td>.72</td>
<td>.021</td>
</tr>
</tbody>
</table>

STD
BLK

Certified by

MIN-EN LABORATORIES
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu</th>
<th>Total Cu</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>35119</td>
<td>0.12</td>
<td>0.15</td>
<td>0.03</td>
<td>5.26</td>
<td>0.01</td>
</tr>
<tr>
<td>18</td>
<td>0.19</td>
<td>0.24</td>
<td>0.04</td>
<td>7.05</td>
<td>0.01</td>
</tr>
<tr>
<td>19</td>
<td>0.06</td>
<td>0.07</td>
<td>0.01</td>
<td>5.38</td>
<td><0.01</td>
</tr>
<tr>
<td>20</td>
<td>0.27</td>
<td>0.29</td>
<td>0.14</td>
<td>12.8</td>
<td>0.01</td>
</tr>
<tr>
<td>21</td>
<td>0.35</td>
<td>0.52</td>
<td>0.21</td>
<td>15.1</td>
<td>0.06</td>
</tr>
<tr>
<td>22</td>
<td>0.24</td>
<td>0.34</td>
<td>0.10</td>
<td>7.60</td>
<td>0.04</td>
</tr>
<tr>
<td>23</td>
<td>0.16</td>
<td>0.40</td>
<td>0.17</td>
<td>8.48</td>
<td>0.08</td>
</tr>
<tr>
<td>24</td>
<td>0.12</td>
<td>0.28</td>
<td>0.10</td>
<td>8.48</td>
<td>0.03</td>
</tr>
<tr>
<td>25</td>
<td>0.05</td>
<td>0.20</td>
<td>0.05</td>
<td>6.94</td>
<td>0.02</td>
</tr>
<tr>
<td>26</td>
<td>0.29</td>
<td>0.39</td>
<td>0.18</td>
<td>8.50</td>
<td>0.04</td>
</tr>
<tr>
<td>27</td>
<td>0.09</td>
<td>0.16</td>
<td>0.05</td>
<td>3.89</td>
<td>0.02</td>
</tr>
<tr>
<td>28</td>
<td>0.11</td>
<td>0.16</td>
<td>0.16</td>
<td>5.91</td>
<td>0.09</td>
</tr>
<tr>
<td>29</td>
<td>0.10</td>
<td>0.19</td>
<td>0.09</td>
<td>4.15</td>
<td>0.13</td>
</tr>
<tr>
<td>30</td>
<td>0.08</td>
<td>0.50</td>
<td>0.16</td>
<td>4.80</td>
<td>0.09</td>
</tr>
<tr>
<td>31</td>
<td>0.26</td>
<td>0.36</td>
<td>0.21</td>
<td>3.04</td>
<td>0.06</td>
</tr>
<tr>
<td>32</td>
<td>0.16</td>
<td>0.29</td>
<td>0.13</td>
<td>5.24</td>
<td>0.05</td>
</tr>
<tr>
<td>33</td>
<td>0.08</td>
<td>0.14</td>
<td>0.03</td>
<td>4.75</td>
<td>0.01</td>
</tr>
<tr>
<td>34</td>
<td>0.07</td>
<td>0.20</td>
<td>0.06</td>
<td>5.75</td>
<td>0.03</td>
</tr>
<tr>
<td>35</td>
<td>0.05</td>
<td>0.23</td>
<td>0.05</td>
<td>4.88</td>
<td>0.02</td>
</tr>
<tr>
<td>36</td>
<td>0.14</td>
<td>0.33</td>
<td>0.08</td>
<td>5.47</td>
<td>0.03</td>
</tr>
<tr>
<td>37</td>
<td>0.10</td>
<td>0.27</td>
<td>0.06</td>
<td>3.28</td>
<td>0.02</td>
</tr>
<tr>
<td>38</td>
<td>0.06</td>
<td>0.27</td>
<td>0.09</td>
<td>4.05</td>
<td>0.05</td>
</tr>
<tr>
<td>39</td>
<td>0.05</td>
<td>0.40</td>
<td>0.07</td>
<td>3.27</td>
<td>0.03</td>
</tr>
<tr>
<td>40</td>
<td>0.02</td>
<td>0.14</td>
<td>0.03</td>
<td>3.88</td>
<td>0.02</td>
</tr>
<tr>
<td>41</td>
<td>0.01</td>
<td>0.16</td>
<td>0.03</td>
<td>3.44</td>
<td>0.02</td>
</tr>
<tr>
<td>42</td>
<td>0.16</td>
<td>0.28</td>
<td>0.10</td>
<td>3.81</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Assay Lab.

Assayer: D.A.W.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% Mo6S1</th>
<th>A.S. Fe</th>
<th>% CN- ed. Cu</th>
<th>% CN- ed. Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>85145</td>
<td>.05</td>
<td>.46</td>
<td>.12</td>
<td>4.05</td>
<td>.86</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>.03</td>
<td>.43</td>
<td>.05</td>
<td>4.50</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td><.01</td>
<td>.02</td>
<td>.01</td>
<td>4.92</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>.01</td>
<td>.21</td>
<td>.01</td>
<td>4.54</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>.02</td>
<td>.27</td>
<td>.04</td>
<td>4.29</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>.02</td>
<td>.15</td>
<td>.03</td>
<td>4.12</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>.01</td>
<td>.09</td>
<td>.01</td>
<td>3.26</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td><.01</td>
<td>.01</td>
<td><.01</td>
<td>3.52</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>.01</td>
<td>.04</td>
<td><.01</td>
<td>2.21</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>.02</td>
<td>.09</td>
<td>.01</td>
<td>3.86</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td><.01</td>
<td>.23</td>
<td>.01</td>
<td>5.34</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>.04</td>
<td>.35</td>
<td>.05</td>
<td>5.87</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>.01</td>
<td>.44</td>
<td>.02</td>
<td>5.56</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>.01</td>
<td>.30</td>
<td>.04</td>
<td>5.03</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>.02</td>
<td>.21</td>
<td>.05</td>
<td>5.02</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>.03</td>
<td>.39</td>
<td>.08</td>
<td>5.54</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>.01</td>
<td>.33</td>
<td>.02</td>
<td>3.81</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>.01</td>
<td>.20</td>
<td>.02</td>
<td>4.51</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>.06</td>
<td>.41</td>
<td>.12</td>
<td>6.37</td>
<td>.06</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>.08</td>
<td>.57</td>
<td>.19</td>
<td>6.80</td>
<td>.09</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>.11</td>
<td>.60</td>
<td>.24</td>
<td>5.88</td>
<td>.12</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>.01</td>
<td>.04</td>
<td>.01</td>
<td>3.15</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>.01</td>
<td>.07</td>
<td>.01</td>
<td>3.02</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>.01</td>
<td>.18</td>
<td>.03</td>
<td>2.70</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>.02</td>
<td>.16</td>
<td>.03</td>
<td>2.70</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>.02</td>
<td>.31</td>
<td>.04</td>
<td>3.38</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>.01</td>
<td>.13</td>
<td>.02</td>
<td>2.32</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>.01</td>
<td>.06</td>
<td>.01</td>
<td>3.30</td>
<td>.01</td>
<td></td>
</tr>
</tbody>
</table>
Assay Certificate

Gibraltar Mines Limited

Exploration (Mt. Polley)

Assay Certificate

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Cu</th>
<th>% Mo</th>
<th>% Sb</th>
<th>As</th>
<th>% Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>85173</td>
<td>0.01</td>
<td>0.8</td>
<td>0.02</td>
<td>4.14</td>
<td>0.01</td>
</tr>
<tr>
<td>74</td>
<td>0.01</td>
<td>0.7</td>
<td>0.03</td>
<td>4.52</td>
<td>0.02</td>
</tr>
<tr>
<td>75</td>
<td>< 0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>4.53</td>
<td>0.01</td>
</tr>
<tr>
<td>76</td>
<td>0.04</td>
<td>0.51</td>
<td>0.09</td>
<td>4.78</td>
<td>0.05</td>
</tr>
<tr>
<td>77</td>
<td>0.04</td>
<td>0.20</td>
<td>0.07</td>
<td>4.65</td>
<td>0.04</td>
</tr>
<tr>
<td>78</td>
<td>0.03</td>
<td>0.18</td>
<td>0.05</td>
<td>4.47</td>
<td>0.04</td>
</tr>
<tr>
<td>79</td>
<td>0.01</td>
<td>0.22</td>
<td>0.03</td>
<td>5.88</td>
<td>0.01</td>
</tr>
<tr>
<td>80</td>
<td>0.01</td>
<td>0.43</td>
<td>0.02</td>
<td>5.33</td>
<td>0.01</td>
</tr>
<tr>
<td>81</td>
<td>0.01</td>
<td>0.24</td>
<td>0.02</td>
<td>5.08</td>
<td>0.01</td>
</tr>
<tr>
<td>82</td>
<td>0.01</td>
<td>0.20</td>
<td>0.02</td>
<td>5.62</td>
<td>0.01</td>
</tr>
<tr>
<td>83</td>
<td>0.02</td>
<td>0.48</td>
<td>0.06</td>
<td>5.45</td>
<td>0.03</td>
</tr>
<tr>
<td>84</td>
<td>0.01</td>
<td>0.20</td>
<td>0.04</td>
<td>4.41</td>
<td>0.02</td>
</tr>
<tr>
<td>85</td>
<td>0.02</td>
<td>0.32</td>
<td>0.07</td>
<td>4.20</td>
<td>0.04</td>
</tr>
<tr>
<td>86</td>
<td>0.01</td>
<td>0.25</td>
<td>0.03</td>
<td>4.45</td>
<td>0.03</td>
</tr>
<tr>
<td>87</td>
<td>0.02</td>
<td>0.27</td>
<td>0.05</td>
<td>3.80</td>
<td>0.03</td>
</tr>
<tr>
<td>88</td>
<td>0.02</td>
<td>0.28</td>
<td>0.06</td>
<td>4.65</td>
<td>0.03</td>
</tr>
<tr>
<td>89</td>
<td>0.04</td>
<td>0.34</td>
<td>0.11</td>
<td>5.14</td>
<td>0.06</td>
</tr>
<tr>
<td>90</td>
<td>0.04</td>
<td>0.26</td>
<td>0.10</td>
<td>5.55</td>
<td>0.05</td>
</tr>
<tr>
<td>91</td>
<td>0.04</td>
<td>0.38</td>
<td>0.10</td>
<td>5.86</td>
<td>0.05</td>
</tr>
<tr>
<td>92</td>
<td>0.02</td>
<td>0.23</td>
<td>0.07</td>
<td>5.34</td>
<td>0.03</td>
</tr>
<tr>
<td>93</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>3.60</td>
<td>0.01</td>
</tr>
<tr>
<td>94</td>
<td>0.01</td>
<td>0.23</td>
<td>0.11</td>
<td>1.56</td>
<td>< 0.1</td>
</tr>
<tr>
<td>95</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>1.86</td>
<td>< 0.1</td>
</tr>
<tr>
<td>96</td>
<td>0.01</td>
<td>0.05</td>
<td>0.01</td>
<td>2.55</td>
<td>0.01</td>
</tr>
<tr>
<td>97</td>
<td>0.06</td>
<td>0.19</td>
<td>0.10</td>
<td>5.21</td>
<td>0.05</td>
</tr>
<tr>
<td>98</td>
<td>0.02</td>
<td>0.24</td>
<td>0.07</td>
<td>3.91</td>
<td>0.04</td>
</tr>
<tr>
<td>99</td>
<td>0.02</td>
<td>0.29</td>
<td>0.05</td>
<td>5.28</td>
<td>0.02</td>
</tr>
<tr>
<td>85200</td>
<td>0.04</td>
<td>0.61</td>
<td>0.09</td>
<td>5.14</td>
<td>0.05</td>
</tr>
</tbody>
</table>

C: Assay Lab.

Assayer: D.A.W.
Gibraltar Mines Limited

Assay Certificate

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu</th>
<th>Total Cu</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85201</td>
<td>0.04</td>
<td>0.56</td>
<td>0.08</td>
<td>7.69</td>
<td>0.05</td>
</tr>
<tr>
<td>82</td>
<td>0.03</td>
<td>0.41</td>
<td>0.06</td>
<td>6.47</td>
<td>0.04</td>
</tr>
<tr>
<td>03</td>
<td>0.06</td>
<td>0.37</td>
<td>0.15</td>
<td>4.49</td>
<td>0.09</td>
</tr>
<tr>
<td>04</td>
<td>0.06</td>
<td>0.42</td>
<td>0.14</td>
<td>7.08</td>
<td>0.08</td>
</tr>
<tr>
<td>05</td>
<td>0.02</td>
<td>0.21</td>
<td>0.05</td>
<td>3.92</td>
<td>0.03</td>
</tr>
<tr>
<td>06</td>
<td>0.03</td>
<td>0.15</td>
<td>0.04</td>
<td>3.74</td>
<td>0.03</td>
</tr>
<tr>
<td>07</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>3.78</td>
<td>0.01</td>
</tr>
<tr>
<td>08</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>3.43</td>
<td>0.01</td>
</tr>
<tr>
<td>09</td>
<td><0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>2.12</td>
<td>0.01</td>
</tr>
<tr>
<td>10</td>
<td><0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>1.93</td>
<td>0.01</td>
</tr>
<tr>
<td>11</td>
<td>0.01</td>
<td>0.06</td>
<td>0.02</td>
<td>2.15</td>
<td>0.02</td>
</tr>
<tr>
<td>12</td>
<td><0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>2.11</td>
<td>0.01</td>
</tr>
<tr>
<td>13</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
<td>1.83</td>
<td>0.02</td>
</tr>
<tr>
<td>14</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>1.91</td>
<td>0.01</td>
</tr>
<tr>
<td>15</td>
<td>0.02</td>
<td>0.07</td>
<td>0.03</td>
<td>1.87</td>
<td>0.03</td>
</tr>
<tr>
<td>16</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>2.32</td>
<td>0.02</td>
</tr>
<tr>
<td>17</td>
<td>0.02</td>
<td>0.07</td>
<td>0.03</td>
<td>2.23</td>
<td>0.02</td>
</tr>
<tr>
<td>18</td>
<td>0.02</td>
<td>0.14</td>
<td>0.06</td>
<td>1.89</td>
<td>0.04</td>
</tr>
<tr>
<td>19</td>
<td>0.01</td>
<td>0.07</td>
<td>0.03</td>
<td>1.99</td>
<td>0.02</td>
</tr>
<tr>
<td>20</td>
<td>0.02</td>
<td>0.18</td>
<td>0.05</td>
<td>1.84</td>
<td>0.04</td>
</tr>
<tr>
<td>21</td>
<td>0.01</td>
<td>0.08</td>
<td>0.02</td>
<td>1.72</td>
<td>0.01</td>
</tr>
<tr>
<td>22</td>
<td><0.01</td>
<td>0.01</td>
<td><0.01</td>
<td>4.08</td>
<td><0.01</td>
</tr>
<tr>
<td>23</td>
<td><0.01</td>
<td>0.03</td>
<td><0.01</td>
<td>2.62</td>
<td><0.01</td>
</tr>
<tr>
<td>24</td>
<td><0.01</td>
<td>0.04</td>
<td><0.01</td>
<td>1.83</td>
<td><0.01</td>
</tr>
<tr>
<td>25</td>
<td><0.01</td>
<td>0.05</td>
<td><0.01</td>
<td>1.90</td>
<td><0.01</td>
</tr>
<tr>
<td>26</td>
<td><0.01</td>
<td>0.02</td>
<td><0.01</td>
<td>2.23</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*856.01 22 23 0.03 5.20 0.01
 02 20 20 0.03 3.85 0.01*

C: Assay Lab.

Assayer: D.A.W.
Assay Certificate

Company: **GIBRALTAR MINES LTD.**
Date: **AUG-04-94**
Copy 1. Gibraltar Mines, McLeese Lake, B.C.

Project:
Atttn: **Ron Graden**

We hereby certify the following Assay of 24 pulp samples submitted JUL-28-94 by R. Graden.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire Au-Fire Au-Fire Au-Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/tonne oz/ton g/tonne oz/ton</td>
</tr>
<tr>
<td>85097</td>
<td>.48 .014</td>
</tr>
<tr>
<td>85098</td>
<td>.85 .025</td>
</tr>
<tr>
<td>85099</td>
<td>.41 .012</td>
</tr>
<tr>
<td>85100</td>
<td>.40 .012</td>
</tr>
<tr>
<td>85101</td>
<td>.24 .007</td>
</tr>
<tr>
<td>85102</td>
<td>.41 .012</td>
</tr>
<tr>
<td>85103</td>
<td>.30 .009</td>
</tr>
<tr>
<td>85104</td>
<td>.42 .012</td>
</tr>
<tr>
<td>85105</td>
<td>.25 .007</td>
</tr>
<tr>
<td>85106</td>
<td>.23 .007</td>
</tr>
<tr>
<td>85107</td>
<td>.20 .006</td>
</tr>
<tr>
<td>85108</td>
<td>.23 .007</td>
</tr>
<tr>
<td>85109</td>
<td>.11 .003</td>
</tr>
<tr>
<td>85110</td>
<td>.06 .002</td>
</tr>
<tr>
<td>85111</td>
<td>.11 .003</td>
</tr>
<tr>
<td>85112</td>
<td>.08 .002</td>
</tr>
<tr>
<td>85113</td>
<td>.11 .003</td>
</tr>
<tr>
<td>85114</td>
<td>.11 .003</td>
</tr>
<tr>
<td>85115</td>
<td>.08 .002</td>
</tr>
<tr>
<td>85116</td>
<td>.09 .003</td>
</tr>
<tr>
<td>85117</td>
<td>.41 .012</td>
</tr>
<tr>
<td>85118</td>
<td>.92 .027</td>
</tr>
<tr>
<td>85119</td>
<td>.24 .007</td>
</tr>
<tr>
<td>85120</td>
<td>.67 .020</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>.25 .007</td>
</tr>
<tr>
<td>BLK</td>
<td>.01 .001</td>
</tr>
</tbody>
</table>

Certified by
MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES LTD.

Project:

Attn: Ron Graden

Date: AUG-04-94

Copy 1: Gibraltar Mines, McLeese Lake, B.C.

We hereby certify the following Assay of 24 pulp samples submitted JUL-28-94 by R. Graden.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85121</td>
<td>1.40</td>
<td>.041</td>
<td>1.52</td>
<td>.044</td>
</tr>
<tr>
<td>85122</td>
<td>.94</td>
<td>.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85123</td>
<td>.69</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85124</td>
<td>.77</td>
<td>.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85125</td>
<td>.31</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85126</td>
<td>1.15</td>
<td>.034</td>
<td>1.21</td>
<td>.035</td>
</tr>
<tr>
<td>85127</td>
<td>.20</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85128</td>
<td>.32</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85129</td>
<td>.35</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85130</td>
<td>.81</td>
<td>.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85131</td>
<td>.93</td>
<td>.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85132</td>
<td>1.24</td>
<td>.036</td>
<td>1.22</td>
<td>.036</td>
</tr>
<tr>
<td>85133</td>
<td>1.22</td>
<td>.036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85134</td>
<td>.60</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85135</td>
<td>.31</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85136</td>
<td>.83</td>
<td>.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85137</td>
<td>.41</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85138</td>
<td>.68</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85139</td>
<td>.46</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85140</td>
<td>.50</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85141</td>
<td>.65</td>
<td>.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85142</td>
<td>.25</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85143</td>
<td>.26</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85144</td>
<td>.68</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD

| .26 | .008 |

BLK

| .01 | .001 |

Certified by

[Signature]

MIN-EN LABORATORIES
Assay Certificate

Company: **GIBRALTAR MINES LTD.**
Project:
Attn: Ron Graden

We hereby certify the following Assay of 24 pulp samples submitted JUL-28-94 by R. Graden.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85145</td>
<td>.77</td>
<td>.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85146</td>
<td>1.03</td>
<td>.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85147</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85148</td>
<td>.28</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85149</td>
<td>.59</td>
<td>.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85150</td>
<td>.38</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85151</td>
<td>.22</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85152</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85153</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85154</td>
<td>.20</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85155</td>
<td>.83</td>
<td>.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85156</td>
<td>1.17</td>
<td>.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85157</td>
<td>1.45</td>
<td>.042</td>
<td>1.41</td>
<td>.041</td>
</tr>
<tr>
<td>85158</td>
<td>.68</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85159</td>
<td>.65</td>
<td>.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85160</td>
<td>.79</td>
<td>.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85161</td>
<td>.68</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85162</td>
<td>.41</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85163</td>
<td>.85</td>
<td>.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85164</td>
<td>1.53</td>
<td>.045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85165</td>
<td>1.66</td>
<td>.048</td>
<td>1.68</td>
<td>.049</td>
</tr>
<tr>
<td>85166</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85167</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85168</td>
<td>.35</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD .25 .007
BLK .01 .001

Certified by **[Signature]**
MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES LTD.
Project:
Attn: Ron Graden
Date: AUG-04-94
Copy: Gibraltar Mines, McLeese Lake, B.C.

4V-0722-RA8

We hereby certify the following Assay of 24 pulp samples submitted JUL-28-94 by R. Graden.

| Sample Number | Au-Fire g/tonne | Au-Fire oz/ton | Au-Fire g/tonne | Au-Fire oz/ton |
|---------------|----------------|
| 85169 | .29 | .008 |
| 85170 | .55 | .016 |
| 85171 | .21 | .006 |
| 85172 | .12 | .004 |
| 85173 | .16 | .005 |
| 85174 | .17 | .005 |
| 85175 | .06 | .002 |
| 85176 | 1.01 | .029 |
| 85177 | .44 | .013 |
| 85178 | .37 | .011 |
| 85179 | .38 | .011 |
| 85180 | .68 | .020 |
| 85181 | .49 | .014 |
| 85182 | .40 | .012 |
| 85183 | 1.08 | .032 |
| 85184 | .49 | .014 |
| 85185 | .71 | .021 |
| 85186 | .53 | .015 |
| 85187 | .60 | .018 |
| 85188 | .50 | .015 |
| 85189 | .77 | .022 |
| 85190 | .53 | .015 |
| 85191 | .75 | .022 |
| 85192 | .48 | .014 |

| STD | .25 | .007 |
| BLK | .01 | .001 |

Certified by [Signature]

MIN-EN LABORATORIES
Assay Certificate

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85193</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85194</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85195</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85196</td>
<td>.07</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85197</td>
<td>.35</td>
<td>.010</td>
<td>.32</td>
<td>.009</td>
</tr>
<tr>
<td>85198</td>
<td>.49</td>
<td>.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85199</td>
<td>.47</td>
<td>.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85200</td>
<td>.84</td>
<td>.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85201</td>
<td>.97</td>
<td>.028</td>
<td>.92</td>
<td>.027</td>
</tr>
<tr>
<td>85202</td>
<td>.83</td>
<td>.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85203</td>
<td>.74</td>
<td>.022</td>
<td>.71</td>
<td>.021</td>
</tr>
<tr>
<td>85204</td>
<td>.58</td>
<td>.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85205</td>
<td>.32</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85206</td>
<td>.21</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85207</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85208</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85209</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85210</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85211</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85212</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85213</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85214</td>
<td>.05</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85215</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85216</td>
<td>.07</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLK</td>
<td>.25</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We hereby certify the following Assay of 24 pulp samples submitted JUL-28-94 by R. Graden.

Certified by [Signature]

MIN-EN LABORATORIES
Company: GIBRALTAR MINES LTD.
Project: McLeese Lake, B.C.
Att: Ron Graden

We hereby certify the following Assay of 10 pulp samples submitted JUL-28-94 by R. Graden.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85217</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85218</td>
<td>.22</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85219</td>
<td>.07</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85220</td>
<td>.29</td>
<td>.008</td>
<td>.31</td>
<td>.009</td>
</tr>
<tr>
<td>85221</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85222</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85223</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85224</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85225</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85226</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD | .27 | .008 |
BLK | .01 | .001 |

Certified by [Signature]

MIN-EN LABORATORIES
GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

EXPLORATION (MT. POLLEY)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu</th>
<th>Total Cu</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>% on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85940</td>
<td>.31</td>
<td>.15</td>
<td>.03</td>
<td>3.27</td>
<td>.01</td>
</tr>
<tr>
<td>41</td>
<td>.04</td>
<td>.57</td>
<td>.14</td>
<td>3.85</td>
<td>.06</td>
</tr>
<tr>
<td>42</td>
<td>.07</td>
<td>.57</td>
<td>.20</td>
<td>3.66</td>
<td>.10</td>
</tr>
<tr>
<td>43</td>
<td>.03</td>
<td>.28</td>
<td>.08</td>
<td>4.37</td>
<td>.04</td>
</tr>
<tr>
<td>85229</td>
<td>.16</td>
<td>.18</td>
<td>.01</td>
<td>3.24</td>
<td><.01</td>
</tr>
<tr>
<td>30</td>
<td>.14</td>
<td>.16</td>
<td>.02</td>
<td>3.21</td>
<td><.01</td>
</tr>
<tr>
<td>31</td>
<td>.14</td>
<td>.20</td>
<td>.06</td>
<td>2.96</td>
<td>.02</td>
</tr>
<tr>
<td>32</td>
<td>.14</td>
<td>.18</td>
<td>.03</td>
<td>4.22</td>
<td>.01</td>
</tr>
<tr>
<td>33</td>
<td>.04</td>
<td>.08</td>
<td>.01</td>
<td>4.26</td>
<td><.01</td>
</tr>
<tr>
<td>34</td>
<td>.09</td>
<td>.12</td>
<td>.01</td>
<td>4.94</td>
<td><.01</td>
</tr>
<tr>
<td>35</td>
<td>.14</td>
<td>.17</td>
<td>.01</td>
<td>4.84</td>
<td><.01</td>
</tr>
<tr>
<td>36</td>
<td>.17</td>
<td>.21</td>
<td>.02</td>
<td>5.63</td>
<td><.01</td>
</tr>
<tr>
<td>37</td>
<td>.20</td>
<td>.23</td>
<td>.02</td>
<td>4.33</td>
<td><.01</td>
</tr>
<tr>
<td>38</td>
<td>.20</td>
<td>.23</td>
<td>.02</td>
<td>4.44</td>
<td><.01</td>
</tr>
<tr>
<td>39</td>
<td>.20</td>
<td>.23</td>
<td>.02</td>
<td>3.75</td>
<td><.01</td>
</tr>
<tr>
<td>40</td>
<td>.25</td>
<td>.29</td>
<td>.02</td>
<td>5.02</td>
<td><.01</td>
</tr>
<tr>
<td>41</td>
<td>.34</td>
<td>.42</td>
<td>.05</td>
<td>4.45</td>
<td>.01</td>
</tr>
<tr>
<td>42</td>
<td>.11</td>
<td>.16</td>
<td>.02</td>
<td>3.98</td>
<td>.01</td>
</tr>
<tr>
<td>43</td>
<td>.04</td>
<td>.11</td>
<td>.03</td>
<td>3.16</td>
<td>.01</td>
</tr>
<tr>
<td>44</td>
<td>.06</td>
<td>.14</td>
<td>.05</td>
<td>2.98</td>
<td>.02</td>
</tr>
<tr>
<td>45</td>
<td>.07</td>
<td>.12</td>
<td>.03</td>
<td>4.28</td>
<td>.01</td>
</tr>
<tr>
<td>46</td>
<td>.03</td>
<td>.13</td>
<td>.03</td>
<td>2.76</td>
<td>.02</td>
</tr>
<tr>
<td>47</td>
<td>.03</td>
<td>.11</td>
<td>.04</td>
<td>3.71</td>
<td>.02</td>
</tr>
<tr>
<td>48</td>
<td>.03</td>
<td>.13</td>
<td>.04</td>
<td>3.62</td>
<td>.02</td>
</tr>
<tr>
<td>49</td>
<td>.11</td>
<td>.27</td>
<td>.12</td>
<td>4.46</td>
<td>.05</td>
</tr>
<tr>
<td>50</td>
<td>.20</td>
<td>.43</td>
<td>.24</td>
<td>4.13</td>
<td>.10</td>
</tr>
<tr>
<td>51</td>
<td>.20</td>
<td>.37</td>
<td>.11</td>
<td>4.23</td>
<td>.06</td>
</tr>
<tr>
<td>52</td>
<td>.14</td>
<td>.38</td>
<td>.13</td>
<td>5.56</td>
<td>.06</td>
</tr>
</tbody>
</table>

c: Assay Lab.

Assayer: D.A.W.
GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

EXPLORATION (MT. POLLEY)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>Cu on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85,2,53</td>
<td>0.18</td>
<td>0.22</td>
<td>0.03</td>
<td>6.27</td>
<td>0.01</td>
</tr>
<tr>
<td>54</td>
<td>0.26</td>
<td>0.29</td>
<td>0.05</td>
<td>9.60</td>
<td><0.01</td>
</tr>
<tr>
<td>55</td>
<td>0.23</td>
<td>0.27</td>
<td>0.09</td>
<td>11.72</td>
<td>0.01</td>
</tr>
<tr>
<td>56</td>
<td>0.13</td>
<td>0.27</td>
<td>0.11</td>
<td>7.62</td>
<td>0.05</td>
</tr>
<tr>
<td>57</td>
<td>0.08</td>
<td>0.27</td>
<td>0.11</td>
<td>6.91</td>
<td>0.05</td>
</tr>
<tr>
<td>58</td>
<td>0.15</td>
<td>0.28</td>
<td>0.14</td>
<td>5.58</td>
<td>0.04</td>
</tr>
<tr>
<td>59</td>
<td>0.05</td>
<td>0.23</td>
<td>0.08</td>
<td>6.16</td>
<td>0.09</td>
</tr>
<tr>
<td>60</td>
<td>0.22</td>
<td>0.46</td>
<td>0.17</td>
<td>8.38</td>
<td>0.07</td>
</tr>
<tr>
<td>61</td>
<td>0.15</td>
<td>0.17</td>
<td>0.03</td>
<td>5.15</td>
<td><0.01</td>
</tr>
<tr>
<td>62</td>
<td>0.12</td>
<td>0.28</td>
<td>0.05</td>
<td>8.84</td>
<td><0.01</td>
</tr>
<tr>
<td>63</td>
<td>0.28</td>
<td>0.44</td>
<td>0.19</td>
<td>7.06</td>
<td>0.07</td>
</tr>
<tr>
<td>64</td>
<td>0.31</td>
<td>0.36</td>
<td>0.13</td>
<td>6.47</td>
<td><0.01</td>
</tr>
<tr>
<td>65</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>3.87</td>
<td><0.01</td>
</tr>
<tr>
<td>66</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>4.06</td>
<td><0.01</td>
</tr>
<tr>
<td>67</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>4.07</td>
<td><0.01</td>
</tr>
<tr>
<td>68</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>4.49</td>
<td><0.01</td>
</tr>
<tr>
<td>69</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>4.33</td>
<td><0.01</td>
</tr>
<tr>
<td>70</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>3.45</td>
<td><0.01</td>
</tr>
<tr>
<td>71</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>3.90</td>
<td><0.01</td>
</tr>
<tr>
<td>72</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>4.06</td>
<td><0.01</td>
</tr>
<tr>
<td>73</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>3.77</td>
<td><0.01</td>
</tr>
<tr>
<td>74</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>4.28</td>
<td><0.01</td>
</tr>
<tr>
<td>75</td>
<td>0.03</td>
<td>0.04</td>
<td>0.01</td>
<td>4.80</td>
<td><0.01</td>
</tr>
<tr>
<td>76</td>
<td>0.16</td>
<td>0.30</td>
<td>0.08</td>
<td>4.69</td>
<td>0.03</td>
</tr>
<tr>
<td>77</td>
<td>0.02</td>
<td>0.44</td>
<td>0.03</td>
<td>4.73</td>
<td><0.01</td>
</tr>
<tr>
<td>78</td>
<td>0.19</td>
<td>0.49</td>
<td>0.13</td>
<td>5.91</td>
<td><0.01</td>
</tr>
<tr>
<td>79</td>
<td>0.01</td>
<td>0.27</td>
<td>0.02</td>
<td>4.99</td>
<td><0.01</td>
</tr>
<tr>
<td>80</td>
<td>0.02</td>
<td>0.29</td>
<td>0.03</td>
<td>6.13</td>
<td><0.01</td>
</tr>
</tbody>
</table>

X: Assay Lab.

Date: Aug 08, 1994
Exploration (Mt. Polley)

Assay Certificate

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% Mo</th>
<th>A.S. Fe</th>
<th>Cu on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>852B1</td>
<td>.09</td>
<td>.24</td>
<td>.08</td>
<td>5.22</td>
<td>.04</td>
</tr>
<tr>
<td>82</td>
<td>.22</td>
<td>.35</td>
<td>.09</td>
<td>5.86</td>
<td>.05</td>
</tr>
<tr>
<td>83</td>
<td>.21</td>
<td>.26</td>
<td>.02</td>
<td>5.80</td>
<td><.01</td>
</tr>
<tr>
<td>84</td>
<td>.15</td>
<td>.19</td>
<td>.01</td>
<td>5.50</td>
<td><.01</td>
</tr>
<tr>
<td>85</td>
<td>.14</td>
<td>.16</td>
<td>.01</td>
<td>4.43</td>
<td><.01</td>
</tr>
<tr>
<td>86</td>
<td>.02</td>
<td>.03</td>
<td><.01</td>
<td>4.57</td>
<td><.01</td>
</tr>
<tr>
<td>87</td>
<td>.23</td>
<td>.27</td>
<td>.01</td>
<td>5.62</td>
<td><.01</td>
</tr>
<tr>
<td>88</td>
<td>.17</td>
<td>.20</td>
<td>.01</td>
<td>5.02</td>
<td><.01</td>
</tr>
<tr>
<td>89</td>
<td>.11</td>
<td>.15</td>
<td>.01</td>
<td>4.00</td>
<td><.01</td>
</tr>
<tr>
<td>90</td>
<td>.11</td>
<td>.14</td>
<td>.01</td>
<td>4.88</td>
<td><.01</td>
</tr>
<tr>
<td>91</td>
<td>.01</td>
<td>.15</td>
<td>.01</td>
<td>2.59</td>
<td><.01</td>
</tr>
<tr>
<td>92</td>
<td>.15</td>
<td>.19</td>
<td>.01</td>
<td>4.16</td>
<td><.01</td>
</tr>
<tr>
<td>93</td>
<td>.02</td>
<td>.17</td>
<td>.03</td>
<td>4.72</td>
<td>.02</td>
</tr>
<tr>
<td>94</td>
<td>.02</td>
<td>.16</td>
<td>.02</td>
<td>3.45</td>
<td>.01</td>
</tr>
<tr>
<td>95</td>
<td>.02</td>
<td>.13</td>
<td>.02</td>
<td>3.41</td>
<td>.02</td>
</tr>
<tr>
<td>96</td>
<td>.14</td>
<td>.18</td>
<td>.01</td>
<td>4.41</td>
<td>.01</td>
</tr>
<tr>
<td>97</td>
<td>.10</td>
<td>.14</td>
<td>.02</td>
<td>3.65</td>
<td>.01</td>
</tr>
<tr>
<td>98</td>
<td>.01</td>
<td>.14</td>
<td>.01</td>
<td>4.03</td>
<td>.01</td>
</tr>
<tr>
<td>99</td>
<td>.01</td>
<td>.17</td>
<td>.02</td>
<td>4.10</td>
<td>.01</td>
</tr>
<tr>
<td>85360</td>
<td>.02</td>
<td>.19</td>
<td>.01</td>
<td>4.46</td>
<td>.01</td>
</tr>
<tr>
<td>81</td>
<td>.04</td>
<td>.17</td>
<td>.01</td>
<td>3.63</td>
<td>.01</td>
</tr>
<tr>
<td>82</td>
<td>.01</td>
<td>.24</td>
<td>.01</td>
<td>4.43</td>
<td>.01</td>
</tr>
<tr>
<td>83</td>
<td>.01</td>
<td>.11</td>
<td>.02</td>
<td>3.51</td>
<td>.01</td>
</tr>
<tr>
<td>84</td>
<td>.01</td>
<td>.10</td>
<td>.03</td>
<td>2.83</td>
<td>.01</td>
</tr>
<tr>
<td>85</td>
<td>.05</td>
<td>.13</td>
<td>.03</td>
<td>4.00</td>
<td>.02</td>
</tr>
<tr>
<td>86</td>
<td>.03</td>
<td>.08</td>
<td>.01</td>
<td>4.46</td>
<td>.01</td>
</tr>
<tr>
<td>87</td>
<td>.02</td>
<td>.12</td>
<td>.01</td>
<td>3.47</td>
<td><.01</td>
</tr>
<tr>
<td>88</td>
<td>.02</td>
<td>.14</td>
<td>.02</td>
<td>4.10</td>
<td>.01</td>
</tr>
</tbody>
</table>

C: Assay Lab.

Assayer: [Signature]
Exploration (Mt. Polley) Assay Certificate

Gibraltar Mines Limited

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Cu.</th>
<th>Total Cu.</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85309</td>
<td>.01</td>
<td>.23</td>
<td>.02</td>
<td>4.62</td>
<td>.01</td>
</tr>
<tr>
<td>10</td>
<td>.01</td>
<td>.24</td>
<td>.02</td>
<td>5.47</td>
<td>.01</td>
</tr>
<tr>
<td>11</td>
<td>.03</td>
<td>.07</td>
<td>.01</td>
<td>4.80</td>
<td><.01</td>
</tr>
<tr>
<td>12</td>
<td>.10</td>
<td>.13</td>
<td>.01</td>
<td>4.84</td>
<td><.01</td>
</tr>
<tr>
<td>13</td>
<td>.07</td>
<td>.16</td>
<td>.01</td>
<td>5.79</td>
<td><.01</td>
</tr>
<tr>
<td>14</td>
<td>.03</td>
<td>.10</td>
<td>.03</td>
<td>4.61</td>
<td>.01</td>
</tr>
<tr>
<td>15</td>
<td>.01</td>
<td>.15</td>
<td>.01</td>
<td>2.91</td>
<td>.01</td>
</tr>
<tr>
<td>16</td>
<td><.01</td>
<td>.13</td>
<td><.01</td>
<td>4.12</td>
<td><.01</td>
</tr>
<tr>
<td>17</td>
<td>.01</td>
<td>.07</td>
<td>.01</td>
<td>4.79</td>
<td>.01</td>
</tr>
<tr>
<td>18</td>
<td>.01</td>
<td>.12</td>
<td>.01</td>
<td>4.39</td>
<td>.01</td>
</tr>
<tr>
<td>19</td>
<td>.01</td>
<td>.29</td>
<td>.01</td>
<td>3.64</td>
<td>.01</td>
</tr>
<tr>
<td>20</td>
<td><.01</td>
<td>.26</td>
<td>.01</td>
<td>3.93</td>
<td><.01</td>
</tr>
<tr>
<td>21</td>
<td>.01</td>
<td>.20</td>
<td>.01</td>
<td>3.78</td>
<td>.01</td>
</tr>
<tr>
<td>22</td>
<td>.01</td>
<td>.20</td>
<td>.02</td>
<td>3.56</td>
<td>.01</td>
</tr>
<tr>
<td>23</td>
<td>.01</td>
<td>.15</td>
<td>.01</td>
<td>4.33</td>
<td>.01</td>
</tr>
<tr>
<td>24</td>
<td>.01</td>
<td>.30</td>
<td>.03</td>
<td>5.00</td>
<td>.01</td>
</tr>
<tr>
<td>25</td>
<td>.01</td>
<td>.20</td>
<td>.01</td>
<td>6.07</td>
<td>.01</td>
</tr>
<tr>
<td>26</td>
<td>.01</td>
<td>.12</td>
<td>.01</td>
<td>4.57</td>
<td>.01</td>
</tr>
<tr>
<td>27</td>
<td>.01</td>
<td>.13</td>
<td>.02</td>
<td>4.32</td>
<td>.01</td>
</tr>
<tr>
<td>28</td>
<td>.01</td>
<td>.18</td>
<td>.03</td>
<td>5.23</td>
<td>.01</td>
</tr>
<tr>
<td>29</td>
<td>.01</td>
<td>.11</td>
<td><.01</td>
<td>3.75</td>
<td><.01</td>
</tr>
<tr>
<td>30</td>
<td>.01</td>
<td>.08</td>
<td>.01</td>
<td>2.88</td>
<td><.01</td>
</tr>
<tr>
<td>31</td>
<td><.01</td>
<td>.07</td>
<td><.01</td>
<td>5.18</td>
<td><.01</td>
</tr>
<tr>
<td>32</td>
<td>.01</td>
<td>.11</td>
<td>.02</td>
<td>4.44</td>
<td>.01</td>
</tr>
<tr>
<td>33</td>
<td>.01</td>
<td>.07</td>
<td>.02</td>
<td>3.54</td>
<td>.01</td>
</tr>
<tr>
<td>34</td>
<td><.01</td>
<td>.03</td>
<td>.01</td>
<td>3.10</td>
<td><.01</td>
</tr>
<tr>
<td>35</td>
<td>.01</td>
<td>.04</td>
<td>.01</td>
<td>3.33</td>
<td>.01</td>
</tr>
<tr>
<td>36</td>
<td>.01</td>
<td>.07</td>
<td>.02</td>
<td>3.90</td>
<td>.01</td>
</tr>
</tbody>
</table>

cc: Assay Lab.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoMo</th>
<th>A.S. Fe</th>
<th>Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85337</td>
<td>0.01</td>
<td>0.06</td>
<td>0.02</td>
<td>4.15</td>
<td>0.01</td>
</tr>
<tr>
<td>38</td>
<td><0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>4.58</td>
<td><0.01</td>
</tr>
<tr>
<td>39</td>
<td><0.01</td>
<td>0.13</td>
<td><0.01</td>
<td>3.29</td>
<td><0.01</td>
</tr>
<tr>
<td>40</td>
<td>0.01</td>
<td>0.24</td>
<td>0.01</td>
<td>4.88</td>
<td><0.01</td>
</tr>
<tr>
<td>41</td>
<td><0.01</td>
<td>0.12</td>
<td><0.01</td>
<td>1.67</td>
<td><0.01</td>
</tr>
<tr>
<td>42</td>
<td><0.01</td>
<td>0.12</td>
<td><0.01</td>
<td>3.09</td>
<td><0.01</td>
</tr>
<tr>
<td>43</td>
<td>0.01</td>
<td>0.20</td>
<td>0.01</td>
<td>3.45</td>
<td><0.01</td>
</tr>
<tr>
<td>44</td>
<td>0.01</td>
<td>0.17</td>
<td>0.02</td>
<td>3.54</td>
<td><0.01</td>
</tr>
<tr>
<td>45</td>
<td>0.01</td>
<td>0.33</td>
<td>0.01</td>
<td>3.76</td>
<td><0.01</td>
</tr>
<tr>
<td>46</td>
<td>0.01</td>
<td>0.08</td>
<td>0.02</td>
<td>1.87</td>
<td><0.01</td>
</tr>
<tr>
<td>47</td>
<td>0.01</td>
<td>0.10</td>
<td>0.01</td>
<td>1.98</td>
<td><0.01</td>
</tr>
</tbody>
</table>

c: Assay Lab.
Assay Certificate

Company: GIBRALTAR MINES
Project:
Assn: Ron Graden

We hereby certify the following Assay of 24 pulp samples submitted AUG-15-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85941</td>
<td>0.75</td>
<td>0.022</td>
<td>0.72</td>
<td>0.021</td>
</tr>
<tr>
<td>85942</td>
<td>0.60</td>
<td>0.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85943</td>
<td>0.41</td>
<td>0.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85229</td>
<td>0.21</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85230</td>
<td>0.23</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85231</td>
<td>0.21</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85232</td>
<td>0.28</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85233</td>
<td>0.09</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85234</td>
<td>0.18</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85235</td>
<td>0.19</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85236</td>
<td>0.24</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85237</td>
<td>0.34</td>
<td>0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85238</td>
<td>0.31</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85239</td>
<td>0.37</td>
<td>0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85240</td>
<td>0.50</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85241</td>
<td>0.64</td>
<td>0.019</td>
<td>0.59</td>
<td>0.017</td>
</tr>
<tr>
<td>85242</td>
<td>0.25</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85243</td>
<td>0.17</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85244</td>
<td>0.26</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85245</td>
<td>0.25</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85246</td>
<td>0.18</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85247</td>
<td>0.18</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85248</td>
<td>0.22</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85249</td>
<td>0.31</td>
<td>0.015</td>
<td>0.49</td>
<td>0.014</td>
</tr>
</tbody>
</table>

STD
0.26
0.008

BLK
0.01
0.001

Certified by

MIN-EN LABORATORIES
Assay Certificate

Company: **GIBRALTAR MINES**
Project:
Attn: Ron Graden

We hereby certify the following Assay of 24 pulp samples submitted AUG-15-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85250</td>
<td>.64</td>
<td>.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85251</td>
<td>.53</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85252</td>
<td>.70</td>
<td>.020</td>
<td>.75</td>
<td>.022</td>
</tr>
<tr>
<td>85253</td>
<td>.59</td>
<td>.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85254</td>
<td>.71</td>
<td>.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85255</td>
<td>.43</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85256</td>
<td>.52</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85257</td>
<td>.65</td>
<td>.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85258</td>
<td>.48</td>
<td>.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85259</td>
<td>.70</td>
<td>.020</td>
<td>.72</td>
<td>.021</td>
</tr>
<tr>
<td>85260</td>
<td>.46</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85261</td>
<td>.38</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85262</td>
<td>.50</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85263</td>
<td>.82</td>
<td>.024</td>
<td>.78</td>
<td>.023</td>
</tr>
<tr>
<td>85264</td>
<td>.68</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85265</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85266</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85267</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85268</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85269</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85270</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85271</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85272</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85273</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD
.25 .007

BLK
.01 .001

Certified by

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES
Project: Ron Graden

We hereby certify the following Assay of 24 pulp samples submitted AUG-15-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85274</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85275</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85276</td>
<td>.51</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85277</td>
<td>.76</td>
<td>.022</td>
<td>.80</td>
<td>.023</td>
</tr>
<tr>
<td>85278</td>
<td>.60</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85279</td>
<td>.53</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85280</td>
<td>.61</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85281</td>
<td>.51</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85282</td>
<td>.64</td>
<td>.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85283</td>
<td>.57</td>
<td>.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85284</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85285</td>
<td>.26</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85286</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85287</td>
<td>.34</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85288</td>
<td>.27</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85289</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85290</td>
<td>.26</td>
<td>.008</td>
<td>.26</td>
<td>.008</td>
</tr>
<tr>
<td>85291</td>
<td>.16</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85292</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85293</td>
<td>.56</td>
<td>.016</td>
<td>.54</td>
<td>.016</td>
</tr>
<tr>
<td>85294</td>
<td>.25</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85295</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85296</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85297</td>
<td>.20</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD | .24 | .007 | | |
BLK | .01 | .001 | | |

Certified by [Signature]

MIN-EN LABORATORIES
Assay Certificate

Company: **GIBRALTAR MINES**
Project:
Attm: Ron Graden

We hereby certify the following Assay of 24 pulp samples submitted AUG-15-94 by **GIBRALTAR MINES**.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85298</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85299</td>
<td>.27</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85300</td>
<td>.27</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85301</td>
<td>.22</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85302</td>
<td>.54</td>
<td>.016</td>
<td>.71</td>
<td>.021</td>
</tr>
<tr>
<td>85303</td>
<td>.20</td>
<td>.006</td>
<td>.20</td>
<td>.006</td>
</tr>
<tr>
<td>85304</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85305</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85306</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85307</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85308</td>
<td>.15</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85309</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85310</td>
<td>.27</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85311</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85312</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85313</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85314</td>
<td>.15</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85315</td>
<td>.17</td>
<td>.005</td>
<td>.45</td>
<td>.013</td>
</tr>
<tr>
<td>85316</td>
<td>.15</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85317</td>
<td>.16</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85318</td>
<td>.44</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85319</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85320</td>
<td>.29</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85321</td>
<td>.31</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD
BLK

Certified by

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES
Project:
Atn: Ron Graden

We hereby certify the following Assay of 24 pulp samples submitted AUG-15-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85322</td>
<td>.26</td>
<td>.008</td>
<td>.25</td>
<td>.007</td>
</tr>
<tr>
<td>85323</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85324</td>
<td>.35</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85325</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85326</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85327</td>
<td>.20</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85328</td>
<td>.28</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85329</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85330</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85331</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85332</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85333</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85334</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85335</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85336</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85337</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85338</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85339</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85340</td>
<td>.27</td>
<td>.008</td>
<td>.26</td>
<td>.008</td>
</tr>
<tr>
<td>85341</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85342</td>
<td>.16</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85343</td>
<td>.22</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85344</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85345</td>
<td>.52</td>
<td>.015</td>
<td>.46</td>
<td>.013</td>
</tr>
<tr>
<td>STD</td>
<td>.26</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLK</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Certified by [Signature]

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES
Project:
Analyst: Ron Graden

We hereby certify the following Assay of 2 pulp samples submitted AUG-15-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85346</td>
<td>0.13</td>
<td>0.004</td>
<td>0.12</td>
<td>0.004</td>
</tr>
<tr>
<td>85347</td>
<td>0.14</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Certified by

MIN-EN LABORATORIES
Exploration (Mt. Polley)

Assay Certificate

<table>
<thead>
<tr>
<th>Sample No</th>
<th>% Ox. Cu</th>
<th>Total Cu</th>
<th>% MoO₃</th>
<th>A.S. Fe</th>
<th>% Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85459</td>
<td>0.01</td>
<td>0.25</td>
<td>0.01</td>
<td>2.68</td>
<td>0.01</td>
</tr>
<tr>
<td>8560</td>
<td>0.02</td>
<td>0.15</td>
<td>0.05</td>
<td>3.84</td>
<td>0.03</td>
</tr>
<tr>
<td>8541</td>
<td>0.01</td>
<td>0.15</td>
<td>0.02</td>
<td>3.51</td>
<td>0.01</td>
</tr>
<tr>
<td>8542</td>
<td><0.01</td>
<td>0.11</td>
<td><0.01</td>
<td>3.36</td>
<td><0.01</td>
</tr>
<tr>
<td>8543</td>
<td><0.01</td>
<td>0.09</td>
<td><0.01</td>
<td>3.40</td>
<td><0.01</td>
</tr>
<tr>
<td>8544</td>
<td><0.01</td>
<td>0.38</td>
<td>0.01</td>
<td>3.68</td>
<td><0.01</td>
</tr>
<tr>
<td>8545</td>
<td><0.01</td>
<td>0.29</td>
<td>0.01</td>
<td>3.50</td>
<td><0.01</td>
</tr>
<tr>
<td>8546</td>
<td><0.01</td>
<td>0.20</td>
<td>0.01</td>
<td>3.60</td>
<td><0.01</td>
</tr>
<tr>
<td>8547</td>
<td><0.01</td>
<td>0.43</td>
<td>0.01</td>
<td>2.77</td>
<td><0.01</td>
</tr>
<tr>
<td>8548</td>
<td><0.01</td>
<td>0.18</td>
<td>0.04</td>
<td>3.80</td>
<td><0.02</td>
</tr>
<tr>
<td>8549</td>
<td><0.01</td>
<td>0.17</td>
<td>0.02</td>
<td>4.91</td>
<td><0.01</td>
</tr>
<tr>
<td>8561</td>
<td><0.01</td>
<td>0.27</td>
<td>0.01</td>
<td>4.17</td>
<td><0.01</td>
</tr>
<tr>
<td>8562</td>
<td><0.01</td>
<td>0.22</td>
<td><0.01</td>
<td>4.27</td>
<td><0.01</td>
</tr>
<tr>
<td>8563</td>
<td><0.01</td>
<td>0.31</td>
<td>0.01</td>
<td>5.32</td>
<td><0.01</td>
</tr>
<tr>
<td>8564</td>
<td><0.01</td>
<td>0.52</td>
<td>0.02</td>
<td>3.80</td>
<td><0.01</td>
</tr>
<tr>
<td>8565</td>
<td><0.01</td>
<td>0.10</td>
<td>0.01</td>
<td>2.87</td>
<td><0.01</td>
</tr>
<tr>
<td>8566</td>
<td><0.01</td>
<td>0.14</td>
<td><0.01</td>
<td>2.80</td>
<td><0.01</td>
</tr>
<tr>
<td>8567</td>
<td><0.01</td>
<td>0.19</td>
<td>0.01</td>
<td>3.67</td>
<td><0.01</td>
</tr>
<tr>
<td>8568</td>
<td><0.01</td>
<td>0.10</td>
<td><0.01</td>
<td>3.35</td>
<td><0.01</td>
</tr>
<tr>
<td>8569</td>
<td><0.01</td>
<td>0.11</td>
<td>0.01</td>
<td>2.69</td>
<td><0.01</td>
</tr>
<tr>
<td>8570</td>
<td><0.01</td>
<td>0.21</td>
<td>0.01</td>
<td>3.02</td>
<td><0.01</td>
</tr>
<tr>
<td>8571</td>
<td><0.01</td>
<td>0.27</td>
<td>0.01</td>
<td>2.92</td>
<td><0.01</td>
</tr>
<tr>
<td>8572</td>
<td><0.01</td>
<td>0.07</td>
<td><0.01</td>
<td>2.09</td>
<td><0.01</td>
</tr>
<tr>
<td>8573</td>
<td><0.01</td>
<td>0.23</td>
<td>0.01</td>
<td>2.32</td>
<td><0.01</td>
</tr>
<tr>
<td>8574</td>
<td><0.01</td>
<td>0.22</td>
<td>0.01</td>
<td>1.17</td>
<td>0.01</td>
</tr>
<tr>
<td>8575</td>
<td><0.01</td>
<td>0.27</td>
<td>0.01</td>
<td>3.99</td>
<td>0.01</td>
</tr>
<tr>
<td>8576</td>
<td><0.01</td>
<td>0.24</td>
<td><0.01</td>
<td>3.32</td>
<td>0.01</td>
</tr>
</tbody>
</table>

94-104

cc: Assay Lab.

Assayer: D. A. W.

Date: 29 July, 1994

Footnote: No. Mill - 1
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>CN⁻ ed. Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>85715</td>
<td>.34</td>
<td>.37</td>
<td>.07</td>
<td>7.20</td>
<td><.01</td>
</tr>
<tr>
<td>16</td>
<td>.53</td>
<td>.55</td>
<td>.09</td>
<td>4.88</td>
<td><.01</td>
</tr>
<tr>
<td>17</td>
<td>.25</td>
<td>.28</td>
<td>.04</td>
<td>4.21</td>
<td><.01</td>
</tr>
<tr>
<td>18</td>
<td>.11</td>
<td>.21</td>
<td>.03</td>
<td>4.27</td>
<td><.01</td>
</tr>
<tr>
<td>19</td>
<td>.07</td>
<td>.14</td>
<td>.02</td>
<td>5.62</td>
<td><.01</td>
</tr>
<tr>
<td>20</td>
<td>.14</td>
<td>.23</td>
<td>.03</td>
<td>4.52</td>
<td><.01</td>
</tr>
<tr>
<td>21</td>
<td>.22</td>
<td>.32</td>
<td>.04</td>
<td>5.15</td>
<td><.01</td>
</tr>
<tr>
<td>22</td>
<td>.14</td>
<td>.22</td>
<td>.04</td>
<td>4.34</td>
<td><.01</td>
</tr>
<tr>
<td>23</td>
<td>.14</td>
<td>.20</td>
<td>.03</td>
<td>4.45</td>
<td><.01</td>
</tr>
<tr>
<td>24</td>
<td>.13</td>
<td>.21</td>
<td>.03</td>
<td>4.44</td>
<td><.01</td>
</tr>
<tr>
<td>25</td>
<td>.19</td>
<td>.23</td>
<td>.03</td>
<td>4.11</td>
<td><.01</td>
</tr>
<tr>
<td>26</td>
<td>.19</td>
<td>.23</td>
<td>.02</td>
<td>4.06</td>
<td><.01</td>
</tr>
<tr>
<td>27</td>
<td>.20</td>
<td>.27</td>
<td>.02</td>
<td>3.62</td>
<td><.01</td>
</tr>
<tr>
<td>28</td>
<td>.20</td>
<td>.24</td>
<td>.02</td>
<td>3.05</td>
<td><.01</td>
</tr>
<tr>
<td>29</td>
<td>.27</td>
<td>.33</td>
<td>.02</td>
<td>2.41</td>
<td><.01</td>
</tr>
<tr>
<td>30</td>
<td>.13</td>
<td>.19</td>
<td>.02</td>
<td>3.56</td>
<td><.01</td>
</tr>
<tr>
<td>31</td>
<td>.24</td>
<td>.29</td>
<td>.03</td>
<td>3.68</td>
<td><.01</td>
</tr>
<tr>
<td>32</td>
<td>.18</td>
<td>.30</td>
<td>.10</td>
<td>4.77</td>
<td><.01</td>
</tr>
<tr>
<td>33</td>
<td>.22</td>
<td>.42</td>
<td>.13</td>
<td>6.14</td>
<td><.01</td>
</tr>
<tr>
<td>34</td>
<td>.44</td>
<td>.57</td>
<td>.24</td>
<td>5.55</td>
<td>.03</td>
</tr>
<tr>
<td>35</td>
<td>.08</td>
<td>.67</td>
<td>.18</td>
<td>4.59</td>
<td>.10</td>
</tr>
<tr>
<td>36</td>
<td>.36</td>
<td>.56</td>
<td>.19</td>
<td>5.30</td>
<td>.05</td>
</tr>
<tr>
<td>37</td>
<td>.09</td>
<td>.29</td>
<td>.09</td>
<td>3.82</td>
<td>.03</td>
</tr>
<tr>
<td>38</td>
<td>.09</td>
<td>.53</td>
<td>.10</td>
<td>5.48</td>
<td>.05</td>
</tr>
<tr>
<td>39</td>
<td>.07</td>
<td>.47</td>
<td>.10</td>
<td>7.01</td>
<td>.05</td>
</tr>
<tr>
<td>40</td>
<td>.17</td>
<td>.44</td>
<td>.17</td>
<td>6.60</td>
<td>.07</td>
</tr>
<tr>
<td>41</td>
<td>.11</td>
<td>.29</td>
<td>.11</td>
<td>4.06</td>
<td>.03</td>
</tr>
<tr>
<td>42</td>
<td>.14</td>
<td>.38</td>
<td>.13</td>
<td>4.23</td>
<td>.06</td>
</tr>
</tbody>
</table>
Assay Certificate

GIBRALTAR MINES LIMITED

EXPLORATION (MT. POLLEY)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoO₃</th>
<th>A.S. Fe</th>
<th>C.N. sd. Cu</th>
<th>C.N. sd. Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>85743</td>
<td>0.04</td>
<td>0.14</td>
<td>0.03</td>
<td>5.42</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.21</td>
<td>0.33</td>
<td>0.10</td>
<td>3.85</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0.20</td>
<td>0.55</td>
<td>0.23</td>
<td>3.26</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>0.19</td>
<td>0.57</td>
<td>0.19</td>
<td>5.05</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>0.25</td>
<td>0.63</td>
<td>0.21</td>
<td>4.62</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0.08</td>
<td>0.58</td>
<td>0.12</td>
<td>6.11</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>0.01</td>
<td>0.27</td>
<td>0.02</td>
<td>3.94</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.01</td>
<td>0.30</td>
<td>0.03</td>
<td>4.76</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>0.01</td>
<td>0.19</td>
<td>0.03</td>
<td>5.48</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.03</td>
<td>0.23</td>
<td>0.07</td>
<td>4.99</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>0.02</td>
<td>0.59</td>
<td>0.05</td>
<td>5.76</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>0.03</td>
<td>0.40</td>
<td>0.08</td>
<td>4.92</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>0.04</td>
<td>0.55</td>
<td>0.10</td>
<td>4.51</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>0.08</td>
<td>1.03</td>
<td>0.19</td>
<td>6.92</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>0.02</td>
<td>0.33</td>
<td>0.06</td>
<td>4.61</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0.03</td>
<td>0.33</td>
<td>0.07</td>
<td>4.85</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>0.04</td>
<td>0.77</td>
<td>0.09</td>
<td>6.13</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.03</td>
<td>0.63</td>
<td>0.07</td>
<td>3.68</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>0.03</td>
<td>0.37</td>
<td>0.07</td>
<td>4.00</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>0.03</td>
<td>0.33</td>
<td>0.07</td>
<td>3.44</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>0.03</td>
<td>0.58</td>
<td>0.07</td>
<td>5.34</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>0.05</td>
<td>0.48</td>
<td>0.11</td>
<td>4.59</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>0.01</td>
<td>0.05</td>
<td>0.03</td>
<td>5.09</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>5.13</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>4.19</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>0.09</td>
<td>0.69</td>
<td>0.18</td>
<td>5.74</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>0.19</td>
<td>1.47</td>
<td>0.39</td>
<td>5.40</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0.09</td>
<td>0.97</td>
<td>0.22</td>
<td>5.11</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

cc: Assay Lab.

Assayer: D.A.W.
Assay Certificate

Gibraltar Mines Limited

Assay Certificate

Exploration (Mt. Polley)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoO₃</th>
<th>A.S. Fe</th>
<th>CN₇₂₄ Cu</th>
<th>CN₇₂₄ Cu₂O₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>85771</td>
<td>.05</td>
<td>.86</td>
<td>.15</td>
<td>5.58</td>
<td>.06</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>.08</td>
<td>.66</td>
<td>.17</td>
<td>6.04</td>
<td>.09</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>.01</td>
<td>.30</td>
<td>.02</td>
<td>4.98</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>.01</td>
<td>.54</td>
<td>.02</td>
<td>7.28</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>.09</td>
<td>.47</td>
<td>.11</td>
<td>6.45</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>.43</td>
<td>.65</td>
<td>.20</td>
<td>6.79</td>
<td>.06</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>.09</td>
<td>.46</td>
<td>.16</td>
<td>4.60</td>
<td>.08</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>.10</td>
<td>.84</td>
<td>.29</td>
<td>6.91</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>.35</td>
<td>1.71</td>
<td>.74</td>
<td>6.49</td>
<td>.41</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>.55</td>
<td>2.58</td>
<td>.98</td>
<td>7.26</td>
<td>.70</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>.33</td>
<td>2.04</td>
<td>.82</td>
<td>5.71</td>
<td>.52</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>.30</td>
<td>1.59</td>
<td>.78</td>
<td>4.97</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>.23</td>
<td>1.68</td>
<td>.75</td>
<td>4.03</td>
<td>.58</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>.40</td>
<td>2.40</td>
<td>.91</td>
<td>6.40</td>
<td>.64</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>.48</td>
<td>2.31</td>
<td>.87</td>
<td>6.90</td>
<td>.57</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>.29</td>
<td>1.24</td>
<td>.45</td>
<td>5.97</td>
<td>.35</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>.26</td>
<td>1.59</td>
<td>.57</td>
<td>7.14</td>
<td>.30</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>.04</td>
<td>.43</td>
<td>.10</td>
<td>4.81</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>.04</td>
<td>.48</td>
<td>.09</td>
<td>4.22</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>.24</td>
<td>2.03</td>
<td>.62</td>
<td>5.09</td>
<td>.36</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>.20</td>
<td>2.88</td>
<td>.83</td>
<td>4.46</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>.04</td>
<td>1.20</td>
<td>.17</td>
<td>5.50</td>
<td>.08</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>.10</td>
<td>.98</td>
<td>.28</td>
<td>5.89</td>
<td>.14</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>.10</td>
<td>.75</td>
<td>.28</td>
<td>7.37</td>
<td>.14</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>.05</td>
<td>.52</td>
<td>.13</td>
<td>4.81</td>
<td>.06</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>.26</td>
<td>1.75</td>
<td>.57</td>
<td>7.35</td>
<td>.30</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>.18</td>
<td>1.63</td>
<td>.43</td>
<td>8.16</td>
<td>.22</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>.23</td>
<td>1.22</td>
<td>.56</td>
<td>6.39</td>
<td>.27</td>
<td></td>
</tr>
</tbody>
</table>

cc: Assay Lab.

Assayer: D. A. W.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoO₃</th>
<th>A.S. Fe</th>
<th>on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85799</td>
<td>.05</td>
<td>.31</td>
<td>.14</td>
<td>5.13</td>
<td>.07</td>
</tr>
<tr>
<td>35800</td>
<td>.17</td>
<td>1.09</td>
<td>.52</td>
<td>6.64</td>
<td>.24</td>
</tr>
<tr>
<td>01</td>
<td>.25</td>
<td>1.35</td>
<td>.63</td>
<td>7.24</td>
<td>.31</td>
</tr>
<tr>
<td>02</td>
<td>.20</td>
<td>1.24</td>
<td>.65</td>
<td>4.73</td>
<td>.34</td>
</tr>
<tr>
<td>03</td>
<td>.09</td>
<td>.66</td>
<td>.27</td>
<td>4.88</td>
<td>.12</td>
</tr>
<tr>
<td>04</td>
<td>.08</td>
<td>.70</td>
<td>.22</td>
<td>7.32</td>
<td>.10</td>
</tr>
<tr>
<td>05</td>
<td>.16</td>
<td>1.63</td>
<td>.43</td>
<td>7.64</td>
<td>.21</td>
</tr>
<tr>
<td>06</td>
<td>.07</td>
<td>.73</td>
<td>.20</td>
<td>6.04</td>
<td>.09</td>
</tr>
<tr>
<td>07</td>
<td>.05</td>
<td>.96</td>
<td>.13</td>
<td>5.85</td>
<td>.06</td>
</tr>
<tr>
<td>08</td>
<td>.08</td>
<td>.64</td>
<td>.26</td>
<td>4.95</td>
<td>.11</td>
</tr>
<tr>
<td>09</td>
<td>.08</td>
<td>.73</td>
<td>.25</td>
<td>4.22</td>
<td>.12</td>
</tr>
<tr>
<td>10</td>
<td>.06</td>
<td>.72</td>
<td>.17</td>
<td>5.68</td>
<td>.08</td>
</tr>
<tr>
<td>11</td>
<td>.01</td>
<td>.11</td>
<td>.02</td>
<td>4.98</td>
<td>.01</td>
</tr>
<tr>
<td>12</td>
<td>.12</td>
<td>1.84</td>
<td>.36</td>
<td>6.45</td>
<td>.17</td>
</tr>
<tr>
<td>13</td>
<td>.14</td>
<td>1.73</td>
<td>.42</td>
<td>5.53</td>
<td>.20</td>
</tr>
<tr>
<td>14</td>
<td>.32</td>
<td>1.50</td>
<td>.74</td>
<td>5.27</td>
<td>.45</td>
</tr>
<tr>
<td>15</td>
<td>.27</td>
<td>1.61</td>
<td>.63</td>
<td>4.77</td>
<td>.38</td>
</tr>
<tr>
<td>16</td>
<td>.05</td>
<td>1.00</td>
<td>.12</td>
<td>6.04</td>
<td>.08</td>
</tr>
<tr>
<td>17</td>
<td>.09</td>
<td>1.04</td>
<td>.22</td>
<td>5.70</td>
<td>.10</td>
</tr>
<tr>
<td>18</td>
<td>.07</td>
<td>1.24</td>
<td>.18</td>
<td>6.57</td>
<td>.09</td>
</tr>
<tr>
<td>19</td>
<td>1.09</td>
<td>1.89</td>
<td>.26</td>
<td>5.90</td>
<td>.12</td>
</tr>
<tr>
<td>85821</td>
<td>.04</td>
<td>.07</td>
<td>.01</td>
<td>4.37</td>
<td><.01</td>
</tr>
<tr>
<td>22</td>
<td>.05</td>
<td>.08</td>
<td>.01</td>
<td>4.92</td>
<td><.01</td>
</tr>
<tr>
<td>23</td>
<td>.30</td>
<td>.34</td>
<td>.12</td>
<td>4.62</td>
<td><.01</td>
</tr>
<tr>
<td>24</td>
<td>.27</td>
<td>.30</td>
<td>.09</td>
<td>4.68</td>
<td><.01</td>
</tr>
<tr>
<td>25</td>
<td>.25</td>
<td>.29</td>
<td>.08</td>
<td>4.26</td>
<td><.01</td>
</tr>
<tr>
<td>26</td>
<td>.06</td>
<td>.07</td>
<td>.01</td>
<td>4.50</td>
<td><.01</td>
</tr>
<tr>
<td>27</td>
<td>.01</td>
<td>.02</td>
<td><.01</td>
<td>4.51</td>
<td><.01</td>
</tr>
</tbody>
</table>

cc: Assay Lab.

Assayer: D. A. W.
Assay Certificate

Company: **GIBRALTAR MINES LTD**
Project:
Attn: **Ron Graden**

We hereby certify the following Assay of 24 pulp samples submitted AUG-11-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85713</td>
<td>.22</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85714</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85715</td>
<td>.21</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85716</td>
<td>.37</td>
<td>.011</td>
<td>.34</td>
<td>.010</td>
</tr>
<tr>
<td>85717</td>
<td>.15</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85718</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85719</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85720</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85721</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85722</td>
<td>.07</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85723</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85724</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85725</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85726</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85727</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85728</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85729</td>
<td>.14</td>
<td>.004</td>
<td>.14</td>
<td>.004</td>
</tr>
<tr>
<td>85730</td>
<td>.07</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85731</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85732</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85733</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85734</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85735</td>
<td>.25</td>
<td>.007</td>
<td>.27</td>
<td>.008</td>
</tr>
<tr>
<td>85736</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD | .27 | .008 | | |
BLK | .01 | .001 | | |

Certified by _[Signature]_

MIN-EN LABORATORIES
We hereby certify the following Assay of 24 pulp samples submitted AUG-11-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire Au</th>
<th>Au-Fire Au</th>
<th>Au-Fire Au</th>
<th>Au-Fire Au</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/tonne</td>
<td>oz/ton</td>
<td>g/tonne</td>
<td>oz/ton</td>
</tr>
<tr>
<td>85737</td>
<td>.10</td>
<td>.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85738</td>
<td>.13</td>
<td>.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85739</td>
<td>.17</td>
<td>.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85740</td>
<td>.14</td>
<td>.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85741</td>
<td>.05</td>
<td>.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85742</td>
<td>.06</td>
<td>.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85743</td>
<td>.07</td>
<td>.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85744</td>
<td>.23</td>
<td>.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85745</td>
<td>.49</td>
<td>.14</td>
<td>.47</td>
<td>.014</td>
</tr>
<tr>
<td>85746</td>
<td>.27</td>
<td>.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85747</td>
<td>.35</td>
<td>.10</td>
<td>.37</td>
<td>.011</td>
</tr>
<tr>
<td>85748</td>
<td>.31</td>
<td>.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85749</td>
<td>.16</td>
<td>.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85750</td>
<td>.13</td>
<td>.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85751</td>
<td>.08</td>
<td>.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85752</td>
<td>.12</td>
<td>.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85753</td>
<td>.21</td>
<td>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85754</td>
<td>.12</td>
<td>.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85755</td>
<td>.22</td>
<td>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85756</td>
<td>.33</td>
<td>.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85757</td>
<td>.10</td>
<td>.03</td>
<td>.21</td>
<td>.006</td>
</tr>
<tr>
<td>85758</td>
<td>.22</td>
<td>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85759</td>
<td>.34</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85760</td>
<td>.21</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD .25 .007
BLK .01 .001

Certified by [Signature]
Assay Certificate

Company: GIBRALTAR MINES LTD
Project:
Attn: Ron Graden

We hereby certify the following Assay of 24 pulp samples submitted AUG-11-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85761</td>
<td>0.24</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85762</td>
<td>0.21</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85763</td>
<td>0.46</td>
<td>0.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85764</td>
<td>0.02</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85765</td>
<td>0.04</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85766</td>
<td>0.02</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85767</td>
<td>0.53</td>
<td>0.015</td>
<td>0.49</td>
<td>0.014</td>
</tr>
<tr>
<td>85768</td>
<td>0.75</td>
<td>0.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85769</td>
<td>2.01</td>
<td>0.059</td>
<td>1.94</td>
<td>0.057</td>
</tr>
<tr>
<td>85770</td>
<td>0.80</td>
<td>0.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85771</td>
<td>0.55</td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85772</td>
<td>0.47</td>
<td>0.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85773</td>
<td>0.16</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85774</td>
<td>0.25</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85775</td>
<td>0.28</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85776</td>
<td>0.22</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85777</td>
<td>0.31</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85778</td>
<td>0.52</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85779</td>
<td>1.37</td>
<td>0.040</td>
<td>1.31</td>
<td>0.038</td>
</tr>
<tr>
<td>85780</td>
<td>1.16</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85781</td>
<td>0.91</td>
<td>0.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85782</td>
<td>1.13</td>
<td>0.033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85783</td>
<td>0.50</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85784</td>
<td>0.84</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD
BLK

Certified by [Signature]

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES LTD
Project:
Anm: Ron Graden
Date: AUG-18-94
Copy: Gibraltar Mines, McLeese Lake, B.C.

We hereby certify the following Assay of 24 pulp samples submitted AUG-11-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85785</td>
<td>.75</td>
<td>.022</td>
<td>.75</td>
<td>.022</td>
</tr>
<tr>
<td>85786</td>
<td>.70</td>
<td>.020</td>
<td>.70</td>
<td>.020</td>
</tr>
<tr>
<td>85787</td>
<td>.42</td>
<td>.012</td>
<td>.42</td>
<td>.012</td>
</tr>
<tr>
<td>85788</td>
<td>.15</td>
<td>.004</td>
<td>.15</td>
<td>.004</td>
</tr>
<tr>
<td>85789</td>
<td>.16</td>
<td>.005</td>
<td>.16</td>
<td>.005</td>
</tr>
<tr>
<td>85790</td>
<td>.99</td>
<td>.029</td>
<td>.99</td>
<td>.029</td>
</tr>
<tr>
<td>85791</td>
<td>2.05</td>
<td>.060</td>
<td>2.18</td>
<td>.064</td>
</tr>
<tr>
<td>85792</td>
<td>.67</td>
<td>.020</td>
<td>.67</td>
<td>.020</td>
</tr>
<tr>
<td>85793</td>
<td>.52</td>
<td>.016</td>
<td>.52</td>
<td>.015</td>
</tr>
<tr>
<td>85794</td>
<td>.31</td>
<td>.009</td>
<td>.31</td>
<td>.009</td>
</tr>
<tr>
<td>85795</td>
<td>.21</td>
<td>.006</td>
<td>.21</td>
<td>.006</td>
</tr>
<tr>
<td>85796</td>
<td>.54</td>
<td>.016</td>
<td>.54</td>
<td>.016</td>
</tr>
<tr>
<td>85797</td>
<td>.69</td>
<td>.020</td>
<td>.69</td>
<td>.020</td>
</tr>
<tr>
<td>85798</td>
<td>.53</td>
<td>.015</td>
<td>.53</td>
<td>.015</td>
</tr>
<tr>
<td>85799</td>
<td>.14</td>
<td>.004</td>
<td>.14</td>
<td>.004</td>
</tr>
<tr>
<td>85800</td>
<td>.35</td>
<td>.010</td>
<td>.35</td>
<td>.010</td>
</tr>
<tr>
<td>85801</td>
<td>.40</td>
<td>.012</td>
<td>.40</td>
<td>.012</td>
</tr>
<tr>
<td>85802</td>
<td>.85</td>
<td>.025</td>
<td>.85</td>
<td>.025</td>
</tr>
<tr>
<td>85803</td>
<td>.25</td>
<td>.007</td>
<td>.25</td>
<td>.007</td>
</tr>
<tr>
<td>85804</td>
<td>.22</td>
<td>.006</td>
<td>.22</td>
<td>.006</td>
</tr>
<tr>
<td>85805</td>
<td>.58</td>
<td>.017</td>
<td>.58</td>
<td>.017</td>
</tr>
<tr>
<td>85806</td>
<td>.38</td>
<td>.011</td>
<td>.38</td>
<td>.011</td>
</tr>
<tr>
<td>85807</td>
<td>.32</td>
<td>.009</td>
<td>.32</td>
<td>.009</td>
</tr>
<tr>
<td>85808</td>
<td>.28</td>
<td>.008</td>
<td>.28</td>
<td>.008</td>
</tr>
</tbody>
</table>

STD
.25 .007

BLK
.01 .001

Certified by
[Signature]

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES LTD
Project: Gibraltar Mine, McLeese Lake, B.C.
Att.: Ron Graden

We hereby certify the following Assay of 11 pulp samples submitted AUG-11-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85809</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85810</td>
<td>.17</td>
<td>.005</td>
<td>21</td>
<td>.006</td>
</tr>
<tr>
<td>85811</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85812</td>
<td>.53</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85813</td>
<td>.51</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85814</td>
<td>.60</td>
<td>.018</td>
<td>68</td>
<td>.020</td>
</tr>
<tr>
<td>85815</td>
<td>.79</td>
<td>.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85816</td>
<td>.22</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85817</td>
<td>.39</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85818</td>
<td>.29</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85819</td>
<td>.43</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample No.</td>
<td>% Ox. Cu.</td>
<td>Total Cu.</td>
<td>% MoS₂</td>
<td>A.S. Fe</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>85795</td>
<td>.05</td>
<td>.31</td>
<td>.14</td>
<td>5.13</td>
</tr>
<tr>
<td>5800</td>
<td>.17</td>
<td>1.09</td>
<td>.52</td>
<td>6.14</td>
</tr>
<tr>
<td>01</td>
<td>.25</td>
<td>1.35</td>
<td>.63</td>
<td>7.24</td>
</tr>
<tr>
<td>02</td>
<td>.20</td>
<td>1.24</td>
<td>.65</td>
<td>4.73</td>
</tr>
<tr>
<td>03</td>
<td>.09</td>
<td>.66</td>
<td>.27</td>
<td>4.88</td>
</tr>
<tr>
<td>04</td>
<td>.08</td>
<td>.70</td>
<td>.22</td>
<td>7.32</td>
</tr>
<tr>
<td>05</td>
<td>.16</td>
<td>1.63</td>
<td>.43</td>
<td>7.64</td>
</tr>
<tr>
<td>06</td>
<td>.07</td>
<td>.73</td>
<td>.20</td>
<td>6.04</td>
</tr>
<tr>
<td>07</td>
<td>.05</td>
<td>.96</td>
<td>.13</td>
<td>5.85</td>
</tr>
<tr>
<td>08</td>
<td>.08</td>
<td>.64</td>
<td>.26</td>
<td>4.95</td>
</tr>
<tr>
<td>09</td>
<td>.08</td>
<td>.73</td>
<td>.25</td>
<td>6.22</td>
</tr>
<tr>
<td>10</td>
<td>.06</td>
<td>.72</td>
<td>.17</td>
<td>5.68</td>
</tr>
<tr>
<td>11</td>
<td>.01</td>
<td>.11</td>
<td>.02</td>
<td>4.98</td>
</tr>
<tr>
<td>12</td>
<td>.12</td>
<td>1.84</td>
<td>.36</td>
<td>6.45</td>
</tr>
<tr>
<td>13</td>
<td>.14</td>
<td>1.73</td>
<td>.42</td>
<td>5.53</td>
</tr>
<tr>
<td>14</td>
<td>.32</td>
<td>1.90</td>
<td>.74</td>
<td>5.27</td>
</tr>
<tr>
<td>15</td>
<td>.27</td>
<td>1.41</td>
<td>.63</td>
<td>4.79</td>
</tr>
<tr>
<td>16</td>
<td>.05</td>
<td>1.00</td>
<td>.12</td>
<td>6.04</td>
</tr>
<tr>
<td>17</td>
<td>.09</td>
<td>1.04</td>
<td>.22</td>
<td>5.70</td>
</tr>
<tr>
<td>18</td>
<td>.07</td>
<td>1.24</td>
<td>.18</td>
<td>6.57</td>
</tr>
<tr>
<td>19</td>
<td>.10</td>
<td>1.09</td>
<td>.26</td>
<td>5.90</td>
</tr>
<tr>
<td>85821</td>
<td>.04</td>
<td>.07</td>
<td>.01</td>
<td>4.37</td>
</tr>
<tr>
<td>22</td>
<td>.05</td>
<td>.08</td>
<td>.01</td>
<td>4.92</td>
</tr>
<tr>
<td>33</td>
<td>.30</td>
<td>.34</td>
<td>.12</td>
<td>4.62</td>
</tr>
<tr>
<td>24</td>
<td>.27</td>
<td>.30</td>
<td>.09</td>
<td>4.88</td>
</tr>
<tr>
<td>25</td>
<td>.25</td>
<td>.29</td>
<td>.08</td>
<td>4.26</td>
</tr>
<tr>
<td>26</td>
<td>.06</td>
<td>.07</td>
<td>.01</td>
<td>4.50</td>
</tr>
<tr>
<td>27</td>
<td>.01</td>
<td>.02</td>
<td><.01</td>
<td>4.51</td>
</tr>
<tr>
<td>Sample No.</td>
<td>% Ox. Cu.</td>
<td>Total Cu.</td>
<td>% MoO₃</td>
<td>A.S. Fe</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>85828</td>
<td>.01</td>
<td>.03</td>
<td><.01</td>
<td>4.04</td>
</tr>
<tr>
<td>29</td>
<td>.01</td>
<td>.01</td>
<td><.01</td>
<td>4.24</td>
</tr>
<tr>
<td>30</td>
<td>.22</td>
<td>.35</td>
<td>.10</td>
<td>4.32</td>
</tr>
<tr>
<td>31</td>
<td>.21</td>
<td>.31</td>
<td>.13</td>
<td>4.81</td>
</tr>
<tr>
<td>32</td>
<td>.11</td>
<td>.43</td>
<td>.12</td>
<td>4.26</td>
</tr>
<tr>
<td>33</td>
<td>.09</td>
<td>.64</td>
<td>.13</td>
<td>4.38</td>
</tr>
<tr>
<td>34</td>
<td>.02</td>
<td>.54</td>
<td>.03</td>
<td>4.91</td>
</tr>
<tr>
<td>35</td>
<td>.01</td>
<td>.28</td>
<td>.02</td>
<td>4.76</td>
</tr>
<tr>
<td>36</td>
<td>.01</td>
<td>.20</td>
<td>.01</td>
<td>4.05</td>
</tr>
<tr>
<td>37</td>
<td>.01</td>
<td>.19</td>
<td>.01</td>
<td>4.69</td>
</tr>
<tr>
<td>38</td>
<td>.05</td>
<td>.29</td>
<td>.04</td>
<td>5.32</td>
</tr>
<tr>
<td>39</td>
<td>.22</td>
<td>.28</td>
<td>.08</td>
<td>6.10</td>
</tr>
<tr>
<td>40</td>
<td>.40</td>
<td>.52</td>
<td>.21</td>
<td>6.20</td>
</tr>
<tr>
<td>41</td>
<td>.15</td>
<td>.36</td>
<td>.12</td>
<td>6.75</td>
</tr>
<tr>
<td>42</td>
<td>.03</td>
<td>.13</td>
<td>.04</td>
<td>3.51</td>
</tr>
<tr>
<td>43</td>
<td><.01</td>
<td>.03</td>
<td><.01</td>
<td>3.56</td>
</tr>
<tr>
<td>44</td>
<td>.28</td>
<td>.44</td>
<td>.21</td>
<td>7.03</td>
</tr>
<tr>
<td>45</td>
<td>.16</td>
<td>.71</td>
<td>.25</td>
<td>8.01</td>
</tr>
<tr>
<td>46</td>
<td>.19</td>
<td>.51</td>
<td>.19</td>
<td>8.44</td>
</tr>
<tr>
<td>47</td>
<td>.29</td>
<td>.78</td>
<td>.37</td>
<td>7.15</td>
</tr>
<tr>
<td>48</td>
<td>.08</td>
<td>.30</td>
<td>.08</td>
<td>5.58</td>
</tr>
<tr>
<td>49</td>
<td>.01</td>
<td>.03</td>
<td>.01</td>
<td>3.12</td>
</tr>
<tr>
<td>50</td>
<td>.02</td>
<td>.03</td>
<td><.01</td>
<td>3.76</td>
</tr>
<tr>
<td>51</td>
<td>.03</td>
<td>.04</td>
<td><.01</td>
<td>2.53</td>
</tr>
<tr>
<td>52</td>
<td>.03</td>
<td>.03</td>
<td><.01</td>
<td>3.16</td>
</tr>
<tr>
<td>53</td>
<td>.06</td>
<td>.11</td>
<td>.03</td>
<td>3.34</td>
</tr>
<tr>
<td>54</td>
<td>.01</td>
<td>.02</td>
<td><.01</td>
<td>2.76</td>
</tr>
<tr>
<td>55</td>
<td><.01</td>
<td>.11</td>
<td>.01</td>
<td>4.18</td>
</tr>
</tbody>
</table>

Assay Lab.

Assayer: D.A.W.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>Cu²⁺ ed. Cu</th>
<th>Cu²⁺ ed. Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>95856</td>
<td>.02</td>
<td>.08</td>
<td>.02</td>
<td>4.25</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>.11</td>
<td>.35</td>
<td>.11</td>
<td>6.40</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>.04</td>
<td>.30</td>
<td>.06</td>
<td>4.51</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>.03</td>
<td>.44</td>
<td>.03</td>
<td>7.05</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>.05</td>
<td>.40</td>
<td>.06</td>
<td>5.40</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>.01</td>
<td>.28</td>
<td>.01</td>
<td>5.57</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>.01</td>
<td>.30</td>
<td>.01</td>
<td>5.74</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>.10</td>
<td>.44</td>
<td>.08</td>
<td>5.95</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>.13</td>
<td>.24</td>
<td>.08</td>
<td>5.12</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>.10</td>
<td>.26</td>
<td>.06</td>
<td>5.04</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>.12</td>
<td>.37</td>
<td>.06</td>
<td>5.81</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>.09</td>
<td>.39</td>
<td>.12</td>
<td>4.14</td>
<td>.07</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>.10</td>
<td>.42</td>
<td>.13</td>
<td>4.69</td>
<td>.07</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>.11</td>
<td>.21</td>
<td>.07</td>
<td>4.21</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>.16</td>
<td>.26</td>
<td>.10</td>
<td>2.34</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>.11</td>
<td>.33</td>
<td>.08</td>
<td>3.30</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>.08</td>
<td>.15</td>
<td>.05</td>
<td>4.33</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>.08</td>
<td>.25</td>
<td>.09</td>
<td>5.07</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>.13</td>
<td>.31</td>
<td>.09</td>
<td>5.24</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>.05</td>
<td>.18</td>
<td>.04</td>
<td>4.93</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>.01</td>
<td>.15</td>
<td>.02</td>
<td>4.63</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>.03</td>
<td>.18</td>
<td>.01</td>
<td>4.34</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>.04</td>
<td>.22</td>
<td>.05</td>
<td>2.78</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>.04</td>
<td>.08</td>
<td>.03</td>
<td>4.43</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>.03</td>
<td>.08</td>
<td>.03</td>
<td>4.91</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>.04</td>
<td>.14</td>
<td>.04</td>
<td>3.87</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>.03</td>
<td>.12</td>
<td>.05</td>
<td>4.54</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td><.01</td>
<td>14</td>
<td>.01</td>
<td>4.56</td>
<td><.01</td>
<td></td>
</tr>
</tbody>
</table>

Assay Lab.

Assayer D.A.W.
ASSAY CERTIFICATE

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>% Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8588+</td>
<td>0.03</td>
<td>1.88</td>
<td>0.07</td>
<td>7.38</td>
<td>0.04</td>
</tr>
<tr>
<td>85</td>
<td>0.03</td>
<td>1.38</td>
<td>0.08</td>
<td>6.36</td>
<td>0.05</td>
</tr>
<tr>
<td>86</td>
<td>0.09</td>
<td>1.66</td>
<td>0.29</td>
<td>6.07</td>
<td>0.13</td>
</tr>
<tr>
<td>87</td>
<td>0.35</td>
<td>2.50</td>
<td>0.96</td>
<td>6.31</td>
<td>0.59</td>
</tr>
<tr>
<td>88</td>
<td>0.09</td>
<td>1.93</td>
<td>0.25</td>
<td>0.51</td>
<td>0.14</td>
</tr>
<tr>
<td>89</td>
<td>0.07</td>
<td>2.26</td>
<td>0.24</td>
<td>6.73</td>
<td>0.12</td>
</tr>
<tr>
<td>90</td>
<td>0.10</td>
<td>1.70</td>
<td>0.30</td>
<td>7.54</td>
<td>0.16</td>
</tr>
<tr>
<td>91</td>
<td>0.04</td>
<td>0.99</td>
<td>0.18</td>
<td>6.29</td>
<td>0.04</td>
</tr>
<tr>
<td>92</td>
<td>0.11</td>
<td>0.29</td>
<td>0.13</td>
<td>4.44</td>
<td>0.05</td>
</tr>
<tr>
<td>93</td>
<td>0.25</td>
<td>1.08</td>
<td>0.47</td>
<td>5.01</td>
<td>0.23</td>
</tr>
<tr>
<td>94</td>
<td>0.20</td>
<td>0.94</td>
<td>0.43</td>
<td>4.98</td>
<td>0.23</td>
</tr>
<tr>
<td>95</td>
<td>0.15</td>
<td>0.96</td>
<td>0.28</td>
<td>6.31</td>
<td>0.14</td>
</tr>
<tr>
<td>96</td>
<td>0.02</td>
<td>0.63</td>
<td>0.05</td>
<td>6.99</td>
<td>0.03</td>
</tr>
<tr>
<td>97</td>
<td>0.02</td>
<td>0.36</td>
<td>0.10</td>
<td>5.31</td>
<td>0.02</td>
</tr>
<tr>
<td>98</td>
<td>0.01</td>
<td>0.12</td>
<td>0.02</td>
<td>4.95</td>
<td>0.01</td>
</tr>
<tr>
<td>99</td>
<td>0.10</td>
<td>0.40</td>
<td>0.20</td>
<td>6.49</td>
<td>0.10</td>
</tr>
<tr>
<td>900</td>
<td>0.12</td>
<td>0.71</td>
<td>0.25</td>
<td>4.09</td>
<td>0.14</td>
</tr>
<tr>
<td>901</td>
<td>0.02</td>
<td>0.31</td>
<td>0.07</td>
<td>6.82</td>
<td>0.04</td>
</tr>
<tr>
<td>902</td>
<td>0.03</td>
<td>0.62</td>
<td>0.11</td>
<td>5.98</td>
<td>0.05</td>
</tr>
<tr>
<td>903</td>
<td>0.05</td>
<td>0.50</td>
<td>0.07</td>
<td>5.65</td>
<td>0.04</td>
</tr>
<tr>
<td>904</td>
<td>0.06</td>
<td>0.29</td>
<td>0.07</td>
<td>5.23</td>
<td>0.03</td>
</tr>
<tr>
<td>905</td>
<td>0.01</td>
<td>0.10</td>
<td>0.03</td>
<td>5.19</td>
<td>0.01</td>
</tr>
<tr>
<td>906</td>
<td>0.01</td>
<td>0.33</td>
<td>0.03</td>
<td>5.73</td>
<td>0.02</td>
</tr>
<tr>
<td>907</td>
<td>0.14</td>
<td>0.35</td>
<td>0.19</td>
<td>5.16</td>
<td>0.07</td>
</tr>
<tr>
<td>908</td>
<td>0.03</td>
<td>0.20</td>
<td>0.03</td>
<td>5.31</td>
<td>0.01</td>
</tr>
<tr>
<td>909</td>
<td>0.05</td>
<td>0.09</td>
<td>0.05</td>
<td>5.98</td>
<td>0.01</td>
</tr>
<tr>
<td>910</td>
<td>0.05</td>
<td>0.20</td>
<td>0.07</td>
<td>6.22</td>
<td>0.03</td>
</tr>
<tr>
<td>911</td>
<td>0.01</td>
<td>0.07</td>
<td>0.02</td>
<td>5.45</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Assay Lab.

Assayer
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu</th>
<th>Total Cu</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>% on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85912</td>
<td>0.04</td>
<td>1.17</td>
<td>0.06</td>
<td>6.57</td>
<td>0.03</td>
</tr>
<tr>
<td>13</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>4.84</td>
<td><0.01</td>
</tr>
<tr>
<td>14</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>4.29</td>
<td><0.01</td>
</tr>
<tr>
<td>15</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>4.62</td>
<td><0.01</td>
</tr>
<tr>
<td>16</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>5.97</td>
<td>0.01</td>
</tr>
<tr>
<td>17</td>
<td>0.04</td>
<td>0.07</td>
<td>0.04</td>
<td>5.14</td>
<td>0.01</td>
</tr>
<tr>
<td>18</td>
<td>0.08</td>
<td>0.15</td>
<td>0.10</td>
<td>5.16</td>
<td>0.05</td>
</tr>
<tr>
<td>19</td>
<td>0.33</td>
<td>0.59</td>
<td>0.43</td>
<td>6.85</td>
<td>0.17</td>
</tr>
<tr>
<td>20</td>
<td>0.15</td>
<td>0.36</td>
<td>0.24</td>
<td>5.82</td>
<td><0.01</td>
</tr>
<tr>
<td>21</td>
<td>0.18</td>
<td>0.59</td>
<td>0.34</td>
<td>6.74</td>
<td><0.01</td>
</tr>
<tr>
<td>22</td>
<td>0.13</td>
<td>0.70</td>
<td>0.33</td>
<td>6.24</td>
<td>0.21</td>
</tr>
<tr>
<td>23</td>
<td>0.06</td>
<td>0.38</td>
<td>0.13</td>
<td>6.06</td>
<td>0.10</td>
</tr>
<tr>
<td>24</td>
<td>0.16</td>
<td>0.78</td>
<td>0.34</td>
<td>5.24</td>
<td><0.01</td>
</tr>
<tr>
<td>25</td>
<td>0.03</td>
<td>0.42</td>
<td>0.10</td>
<td>4.43</td>
<td>0.07</td>
</tr>
<tr>
<td>26</td>
<td>0.04</td>
<td>0.36</td>
<td>0.11</td>
<td>3.54</td>
<td>0.08</td>
</tr>
<tr>
<td>27</td>
<td>0.05</td>
<td>0.50</td>
<td>0.22</td>
<td>2.76</td>
<td>0.17</td>
</tr>
<tr>
<td>28</td>
<td>0.05</td>
<td>0.45</td>
<td>0.20</td>
<td>4.47</td>
<td>0.16</td>
</tr>
<tr>
<td>29</td>
<td>0.03</td>
<td>0.29</td>
<td>0.13</td>
<td>4.27</td>
<td>0.10</td>
</tr>
<tr>
<td>30</td>
<td>0.04</td>
<td>0.57</td>
<td>0.18</td>
<td>6.18</td>
<td>0.14</td>
</tr>
<tr>
<td>31</td>
<td>0.07</td>
<td>0.51</td>
<td>0.18</td>
<td>6.32</td>
<td>0.12</td>
</tr>
<tr>
<td>32</td>
<td>0.03</td>
<td>0.24</td>
<td>0.09</td>
<td>4.67</td>
<td>0.07</td>
</tr>
<tr>
<td>33</td>
<td>0.06</td>
<td>0.26</td>
<td>0.10</td>
<td>4.80</td>
<td>0.08</td>
</tr>
<tr>
<td>34</td>
<td>0.06</td>
<td>0.40</td>
<td>0.18</td>
<td>6.78</td>
<td>0.15</td>
</tr>
<tr>
<td>35</td>
<td>0.02</td>
<td>0.25</td>
<td>0.06</td>
<td>5.01</td>
<td>0.04</td>
</tr>
<tr>
<td>36</td>
<td>0.01</td>
<td>0.26</td>
<td>0.03</td>
<td>4.47</td>
<td>0.03</td>
</tr>
<tr>
<td>37</td>
<td>0.02</td>
<td>0.24</td>
<td>0.07</td>
<td>5.65</td>
<td>0.05</td>
</tr>
<tr>
<td>38</td>
<td>0.02</td>
<td>0.32</td>
<td>0.08</td>
<td>5.84</td>
<td>0.06</td>
</tr>
<tr>
<td>39</td>
<td><0.01</td>
<td>0.02</td>
<td><0.01</td>
<td>4.39</td>
<td><0.01</td>
</tr>
<tr>
<td>Sample No.</td>
<td>% Ox. Cu.</td>
<td>Total Cu.</td>
<td>% MoS₂</td>
<td>A.S. Fe</td>
<td>% Acid Res.</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>5940</td>
<td>0.01</td>
<td>0.15</td>
<td>0.03</td>
<td>3.27</td>
<td>0.01</td>
</tr>
<tr>
<td>41</td>
<td>0.04</td>
<td>0.57</td>
<td>0.14</td>
<td>3.85</td>
<td>0.06</td>
</tr>
<tr>
<td>42</td>
<td>0.07</td>
<td>0.57</td>
<td>0.20</td>
<td>3.66</td>
<td>0.10</td>
</tr>
<tr>
<td>43</td>
<td>0.03</td>
<td>0.28</td>
<td>0.08</td>
<td>4.37</td>
<td>0.04</td>
</tr>
<tr>
<td>5229</td>
<td>0.16</td>
<td>0.18</td>
<td>0.03</td>
<td>3.24</td>
<td><0.01</td>
</tr>
<tr>
<td>30</td>
<td>0.14</td>
<td>0.16</td>
<td>0.02</td>
<td>3.21</td>
<td><0.01</td>
</tr>
<tr>
<td>31</td>
<td>0.14</td>
<td>0.20</td>
<td>0.06</td>
<td>2.86</td>
<td>0.02</td>
</tr>
<tr>
<td>32</td>
<td>0.14</td>
<td>0.18</td>
<td>0.03</td>
<td>4.22</td>
<td><0.01</td>
</tr>
<tr>
<td>33</td>
<td>0.04</td>
<td>0.08</td>
<td>0.01</td>
<td>4.36</td>
<td><0.01</td>
</tr>
<tr>
<td>34</td>
<td>0.09</td>
<td>0.12</td>
<td>0.01</td>
<td>4.84</td>
<td><0.01</td>
</tr>
<tr>
<td>35</td>
<td>0.14</td>
<td>0.17</td>
<td>0.01</td>
<td>4.84</td>
<td><0.01</td>
</tr>
<tr>
<td>36</td>
<td>0.17</td>
<td>0.21</td>
<td>0.02</td>
<td>5.63</td>
<td><0.01</td>
</tr>
<tr>
<td>37</td>
<td>0.20</td>
<td>0.22</td>
<td>0.02</td>
<td>4.33</td>
<td><0.01</td>
</tr>
<tr>
<td>38</td>
<td>0.20</td>
<td>0.23</td>
<td>0.02</td>
<td>4.44</td>
<td><0.01</td>
</tr>
<tr>
<td>39</td>
<td>0.20</td>
<td>0.23</td>
<td>0.02</td>
<td>3.75</td>
<td><0.01</td>
</tr>
<tr>
<td>40</td>
<td>0.25</td>
<td>0.29</td>
<td>0.02</td>
<td>5.02</td>
<td><0.01</td>
</tr>
<tr>
<td>41</td>
<td>0.34</td>
<td>0.42</td>
<td>0.05</td>
<td>4.45</td>
<td><0.01</td>
</tr>
<tr>
<td>42</td>
<td>0.11</td>
<td>0.16</td>
<td>0.02</td>
<td>3.98</td>
<td>0.01</td>
</tr>
<tr>
<td>43</td>
<td>0.04</td>
<td>0.11</td>
<td>0.03</td>
<td>3.16</td>
<td>0.01</td>
</tr>
<tr>
<td>44</td>
<td>0.06</td>
<td>0.14</td>
<td>0.05</td>
<td>2.98</td>
<td>0.02</td>
</tr>
<tr>
<td>45</td>
<td>0.07</td>
<td>0.12</td>
<td>0.03</td>
<td>4.28</td>
<td>0.01</td>
</tr>
<tr>
<td>46</td>
<td>0.03</td>
<td>0.13</td>
<td>0.03</td>
<td>2.76</td>
<td>0.02</td>
</tr>
<tr>
<td>47</td>
<td>0.03</td>
<td>0.11</td>
<td>0.04</td>
<td>3.71</td>
<td>0.02</td>
</tr>
<tr>
<td>48</td>
<td>0.03</td>
<td>0.13</td>
<td>0.04</td>
<td>3.62</td>
<td>0.02</td>
</tr>
<tr>
<td>49</td>
<td>0.11</td>
<td>0.27</td>
<td>0.12</td>
<td>4.46</td>
<td>0.05</td>
</tr>
<tr>
<td>50</td>
<td>0.20</td>
<td>0.43</td>
<td>0.24</td>
<td>4.13</td>
<td>0.10</td>
</tr>
<tr>
<td>51</td>
<td>0.06</td>
<td>0.27</td>
<td>0.11</td>
<td>4.23</td>
<td>0.06</td>
</tr>
<tr>
<td>52</td>
<td>0.14</td>
<td>0.38</td>
<td>0.13</td>
<td>5.56</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Assay Certificate

Company: GIBRALTAR MINES
Project: Ron Graden
Submitted by: Gibraltar Mines, Vancouver, B.C.

We hereby certify the following Assay of 24 pulp samples submitted AUG-15-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85821</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85822</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85823</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85824</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85825</td>
<td>.20</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85826</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85827</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85828</td>
<td>.01</td>
<td>.001</td>
<td>.01</td>
<td>.001</td>
</tr>
<tr>
<td>85829</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85830</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85831</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85832</td>
<td>.22</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85833</td>
<td>.44</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85834</td>
<td>.26</td>
<td>.008</td>
<td>.25</td>
<td>.007</td>
</tr>
<tr>
<td>85835</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85836</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85837</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85838</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85839</td>
<td>.26</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85840</td>
<td>.58</td>
<td>.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85841</td>
<td>.37</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85842</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85843</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85844</td>
<td>.53</td>
<td>.015</td>
<td>.55</td>
<td>.016</td>
</tr>
</tbody>
</table>

STD
BLK

Certified by [Signature]

MIN-EN LABORATORIES
We hereby certify the following Assay of 24 pulp samples submitted AUG-15-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85845</td>
<td>.40</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85846</td>
<td>.43</td>
<td>.013</td>
<td>.40</td>
<td>.012</td>
</tr>
<tr>
<td>85847</td>
<td>.64</td>
<td>.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85848</td>
<td>.32</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85849</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85850</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85851</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85852</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85853</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85854</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85855</td>
<td>.52</td>
<td>.015</td>
<td>.48</td>
<td>.014</td>
</tr>
<tr>
<td>85856</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85857</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85858</td>
<td>.32</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85859</td>
<td>.42</td>
<td>.012</td>
<td>.45</td>
<td>.013</td>
</tr>
<tr>
<td>85860</td>
<td>.41</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85861</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85862</td>
<td>.25</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85863</td>
<td>.31</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85864</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85865</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85866</td>
<td>.32</td>
<td>.009</td>
<td>.31</td>
<td>.009</td>
</tr>
<tr>
<td>85867</td>
<td>.41</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85868</td>
<td>.40</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD .26 .008
BLK .01 .001
Assay Certificate

Company: GIBRALTAR MINES
Project: Ron Graden

We hereby certify the following Assay of 24 pulp samples submitted AUG-15-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85869</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85870</td>
<td>.30</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85871</td>
<td>.37</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85872</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85873</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85874</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85875</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85876</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85877</td>
<td>.16</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85878</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85879</td>
<td>.05</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85880</td>
<td>.05</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85881</td>
<td>.07</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85882</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85883</td>
<td>.07</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85884</td>
<td>.77</td>
<td>.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85885</td>
<td>1.44</td>
<td>.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85886</td>
<td>1.37</td>
<td>.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85887</td>
<td>2.33</td>
<td>.068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85888</td>
<td>2.06</td>
<td>.060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85889</td>
<td>2.83</td>
<td>.083</td>
<td>2.95</td>
<td>.086</td>
</tr>
<tr>
<td>85890</td>
<td>2.50</td>
<td>.073</td>
<td>2.58</td>
<td>.075</td>
</tr>
<tr>
<td>85891</td>
<td>.69</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85892</td>
<td>.30</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD
.27 .008
BLK
.01 .001

Certified by

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES
Project: GIBRALTAR MINES
Analyst: Ron Graden
Date: AUG-19-94

We hereby certify the following Assay of 24 pulp samples submitted AUG-15-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire Au</th>
<th>Au-Fire OZ</th>
<th>Au-Fire Au</th>
<th>Au-Fire OZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/tonne</td>
<td>oz/ton</td>
<td>g/tonne</td>
<td>oz/ton</td>
</tr>
<tr>
<td>85893</td>
<td>1.51</td>
<td>.044</td>
<td>1.45</td>
<td>.042</td>
</tr>
<tr>
<td>85894</td>
<td>1.20</td>
<td>.035</td>
<td>1.23</td>
<td>.036</td>
</tr>
<tr>
<td>85895</td>
<td>.79</td>
<td>.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85896</td>
<td>.87</td>
<td>.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85897</td>
<td>.27</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85898</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85899</td>
<td>.43</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85900</td>
<td>.65</td>
<td>.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85901</td>
<td>.35</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85902</td>
<td>.83</td>
<td>.024</td>
<td>.85</td>
<td>.025</td>
</tr>
<tr>
<td>85903</td>
<td>.61</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85904</td>
<td>.15</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85905</td>
<td>.05</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85906</td>
<td>.30</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85907</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85908</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85909</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85910</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85911</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85912</td>
<td>.07</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85913</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85914</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85915</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85916</td>
<td>.05</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Certified by

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES
Project:
Att: Ron Graden

We hereby certify the following Assay of 24 pulp samples submitted AUG-15-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85917</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85918</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85919</td>
<td>1.04</td>
<td>.030</td>
<td>.98</td>
<td>.029</td>
</tr>
<tr>
<td>85920</td>
<td>.47</td>
<td>.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85921</td>
<td>.35</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85922</td>
<td>.49</td>
<td>.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85923</td>
<td>.44</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85924</td>
<td>1.80</td>
<td>.053</td>
<td>1.87</td>
<td>.055</td>
</tr>
<tr>
<td>85925</td>
<td>.57</td>
<td>.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85926</td>
<td>.47</td>
<td>.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85927</td>
<td>.55</td>
<td>.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85928</td>
<td>.61</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85929</td>
<td>.25</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85930</td>
<td>.42</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85931</td>
<td>.44</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85932</td>
<td>.34</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85933</td>
<td>.27</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85934</td>
<td>.40</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85935</td>
<td>.35</td>
<td>.010</td>
<td>.34</td>
<td>.010</td>
</tr>
<tr>
<td>85936</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85937</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85938</td>
<td>.35</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85939</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85940</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD .26 .008
BLK .02 .001

Certified by

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES

Project: ~tm; Ron Graden

Date: AUG-19-94

CODY, Gibraltar Mines, Vancouver, B.C.

We hereby certify the following Assay of 24 pulp samples submitted AUG-15-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85941</td>
<td>.75</td>
<td>.022</td>
<td>.72</td>
<td>.021</td>
</tr>
<tr>
<td>85942</td>
<td>.60</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85943</td>
<td>.41</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85229</td>
<td>.21</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85230</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85231</td>
<td>.21</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85232</td>
<td>.28</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85233</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85234</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85235</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85236</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85237</td>
<td>.34</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85238</td>
<td>.31</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85239</td>
<td>.37</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85240</td>
<td>.50</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85241</td>
<td>.64</td>
<td>.019</td>
<td>.59</td>
<td>.017</td>
</tr>
<tr>
<td>85242</td>
<td>.25</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85243</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85244</td>
<td>.26</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85245</td>
<td>.25</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85246</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85247</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85248</td>
<td>.22</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85249</td>
<td>.51</td>
<td>.015</td>
<td>.49</td>
<td>.014</td>
</tr>
</tbody>
</table>

STD .26 .008
BLK .01 .001

Certified by ____________________________

MIN-EN LABORATORIES
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% Meq.</th>
<th>A.S. Fe</th>
<th>on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15687</td>
<td>.17</td>
<td>.43</td>
<td>.17</td>
<td>2.14</td>
<td>.06</td>
</tr>
<tr>
<td>82</td>
<td>.19</td>
<td>.26</td>
<td>.02</td>
<td>3.69</td>
<td>.02</td>
</tr>
<tr>
<td>89</td>
<td>.09</td>
<td>.36</td>
<td>.03</td>
<td>3.14</td>
<td>.02</td>
</tr>
<tr>
<td>90</td>
<td>.07</td>
<td>.23</td>
<td>.08</td>
<td>3.68</td>
<td>.04</td>
</tr>
<tr>
<td>91</td>
<td>.07</td>
<td>.39</td>
<td>.06</td>
<td>4.77</td>
<td>.04</td>
</tr>
<tr>
<td>92</td>
<td>.09</td>
<td>.13</td>
<td>.03</td>
<td>2.48</td>
<td>.01</td>
</tr>
<tr>
<td>93</td>
<td>.12</td>
<td>.20</td>
<td>.05</td>
<td>2.24</td>
<td>.01</td>
</tr>
<tr>
<td>94</td>
<td>.26</td>
<td>.36</td>
<td>.09</td>
<td>2.64</td>
<td>.06</td>
</tr>
<tr>
<td>95</td>
<td>.09</td>
<td>.23</td>
<td>.05</td>
<td>3.12</td>
<td>.02</td>
</tr>
<tr>
<td>96</td>
<td>.17</td>
<td>.25</td>
<td>.02</td>
<td>4.09</td>
<td>.01</td>
</tr>
<tr>
<td>97</td>
<td>.21</td>
<td>.29</td>
<td>.01</td>
<td>4.31</td>
<td>.01</td>
</tr>
<tr>
<td>98</td>
<td>.03</td>
<td>.08</td>
<td>.01</td>
<td>4.88</td>
<td><0.01</td>
</tr>
<tr>
<td>99</td>
<td>.01</td>
<td>.02</td>
<td><0.01</td>
<td>4.71</td>
<td><0.01</td>
</tr>
<tr>
<td>57801</td>
<td>.02</td>
<td>.04</td>
<td><0.01</td>
<td>4.94</td>
<td><0.01</td>
</tr>
<tr>
<td>01</td>
<td>.15</td>
<td>.24</td>
<td>.02</td>
<td>5.24</td>
<td>.01</td>
</tr>
<tr>
<td>02</td>
<td>.06</td>
<td>.25</td>
<td>.08</td>
<td>5.00</td>
<td>.04</td>
</tr>
<tr>
<td>03</td>
<td>.01</td>
<td>.22</td>
<td>.02</td>
<td>4.59</td>
<td>.01</td>
</tr>
<tr>
<td>04</td>
<td>.01</td>
<td>.15</td>
<td>.01</td>
<td>5.99</td>
<td>.01</td>
</tr>
<tr>
<td>05</td>
<td>.03</td>
<td>.13</td>
<td>.03</td>
<td>5.37</td>
<td>.02</td>
</tr>
<tr>
<td>06</td>
<td>.01</td>
<td>.11</td>
<td>.02</td>
<td>5.70</td>
<td>.01</td>
</tr>
<tr>
<td>07</td>
<td><0.01</td>
<td>.11</td>
<td>.01</td>
<td>4.68</td>
<td><0.01</td>
</tr>
<tr>
<td>08</td>
<td><0.01</td>
<td>.05</td>
<td>.01</td>
<td>4.95</td>
<td><0.01</td>
</tr>
<tr>
<td>09</td>
<td><0.01</td>
<td>.11</td>
<td>.01</td>
<td>3.98</td>
<td><0.01</td>
</tr>
<tr>
<td>10</td>
<td>.03</td>
<td>.07</td>
<td>.01</td>
<td>4.40</td>
<td>.01</td>
</tr>
<tr>
<td>11</td>
<td>.05</td>
<td>.07</td>
<td><0.01</td>
<td>4.84</td>
<td><0.01</td>
</tr>
<tr>
<td>12</td>
<td>.07</td>
<td>.10</td>
<td>.01</td>
<td>3.83</td>
<td>.01</td>
</tr>
</tbody>
</table>

Assay Lab.

Assayer: D.A.W.
GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

EXPLORATION (MT. FOLLEY)

Date: 27. JULY, 1994

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>% Cu. on Acid Res.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>85403</td>
<td>.11</td>
<td>.83</td>
<td>.9</td>
<td>4.98</td>
<td>.02</td>
<td>94-106</td>
</tr>
<tr>
<td>04</td>
<td>.04</td>
<td>.67</td>
<td>.07</td>
<td>4.53</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>.02</td>
<td>1.22</td>
<td>.03</td>
<td>6.87</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>.03</td>
<td>1.53</td>
<td>.04</td>
<td>10.8</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>.03</td>
<td>.90</td>
<td>.06</td>
<td>6.00</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>.01</td>
<td>1.46</td>
<td>.02</td>
<td>7.37</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>.01</td>
<td>.33</td>
<td>.01</td>
<td>6.72</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.01</td>
<td>1.07</td>
<td>.02</td>
<td>6.41</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>.02</td>
<td>3.42</td>
<td>.03</td>
<td>7.22</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>.01</td>
<td>.19</td>
<td><.01</td>
<td>4.44</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>.01</td>
<td>.17</td>
<td><.01</td>
<td>4.57</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>.01</td>
<td>.30</td>
<td><.01</td>
<td>5.09</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>.02</td>
<td>.02</td>
<td><.01</td>
<td>3.18</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td><.01</td>
<td>.05</td>
<td><.01</td>
<td>3.40</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td><.01</td>
<td>.30</td>
<td>.17</td>
<td>3.28</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>.01</td>
<td>.50</td>
<td>.01</td>
<td>3.18</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td><.01</td>
<td>.18</td>
<td><.01</td>
<td>3.43</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td><.01</td>
<td>.14</td>
<td><.01</td>
<td>4.93</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td><.01</td>
<td>.19</td>
<td><.01</td>
<td>4.33</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td><.01</td>
<td>.16</td>
<td><.01</td>
<td>2.52</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td><.01</td>
<td>.06</td>
<td><.01</td>
<td>2.71</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td><.01</td>
<td>.03</td>
<td><.01</td>
<td>2.59</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td><.01</td>
<td>.03</td>
<td><.01</td>
<td>2.61</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td><.01</td>
<td>.01</td>
<td><.01</td>
<td>2.42</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td><.01</td>
<td>.02</td>
<td><.01</td>
<td>2.17</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td><.01</td>
<td>.01</td>
<td><.01</td>
<td>2.31</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>.02</td>
<td>.02</td>
<td><.01</td>
<td>2.32</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td><.01</td>
<td>.01</td>
<td><.01</td>
<td>2.04</td>
<td><.01</td>
<td></td>
</tr>
</tbody>
</table>

cc: Assay Lab.

Assayer: D. A. W.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>% Cu. on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>05431</td>
<td><0.1</td>
<td>0.2</td>
<td><0.1</td>
<td>2.29</td>
<td><0.1</td>
</tr>
<tr>
<td>32</td>
<td><0.1</td>
<td>0.4</td>
<td><0.1</td>
<td>2.74</td>
<td><0.1</td>
</tr>
<tr>
<td>33</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>2.47</td>
<td>0.1</td>
</tr>
<tr>
<td>34</td>
<td><0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>2.92</td>
<td>0.1</td>
</tr>
<tr>
<td>35</td>
<td><0.1</td>
<td>0.2</td>
<td><0.1</td>
<td>2.51</td>
<td><0.1</td>
</tr>
<tr>
<td>36</td>
<td><0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>2.28</td>
<td><0.1</td>
</tr>
<tr>
<td>37</td>
<td><0.1</td>
<td>0.1</td>
<td><0.1</td>
<td>2.38</td>
<td><0.1</td>
</tr>
<tr>
<td>38</td>
<td><0.1</td>
<td>0.2</td>
<td><0.1</td>
<td>2.74</td>
<td><0.1</td>
</tr>
<tr>
<td>39</td>
<td><0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>2.90</td>
<td><0.1</td>
</tr>
<tr>
<td>40</td>
<td><0.1</td>
<td>0.2</td>
<td><0.1</td>
<td>2.36</td>
<td><0.1</td>
</tr>
<tr>
<td>41</td>
<td><0.1</td>
<td>0.2</td>
<td><0.1</td>
<td>2.41</td>
<td><0.1</td>
</tr>
<tr>
<td>42</td>
<td><0.1</td>
<td>0.2</td>
<td><0.1</td>
<td>2.42</td>
<td><0.1</td>
</tr>
<tr>
<td>43</td>
<td><0.1</td>
<td>0.2</td>
<td><0.1</td>
<td>2.70</td>
<td><0.1</td>
</tr>
<tr>
<td>44</td>
<td><0.1</td>
<td>0.5</td>
<td><0.1</td>
<td>2.65</td>
<td><0.1</td>
</tr>
<tr>
<td>45</td>
<td><0.1</td>
<td>0.24</td>
<td>0.1</td>
<td>2.29</td>
<td><0.1</td>
</tr>
<tr>
<td>46</td>
<td><0.1</td>
<td>0.45</td>
<td>0.1</td>
<td>5.92</td>
<td><0.1</td>
</tr>
<tr>
<td>47</td>
<td><0.1</td>
<td>0.36</td>
<td>0.1</td>
<td>3.74</td>
<td><0.1</td>
</tr>
<tr>
<td>48</td>
<td><0.1</td>
<td>0.16</td>
<td><0.1</td>
<td>3.83</td>
<td><0.1</td>
</tr>
<tr>
<td>49</td>
<td><0.1</td>
<td>0.30</td>
<td>0.1</td>
<td>5.58</td>
<td>0.1</td>
</tr>
<tr>
<td>50</td>
<td><0.1</td>
<td>0.25</td>
<td>0.1</td>
<td>6.16</td>
<td>0.1</td>
</tr>
<tr>
<td>51</td>
<td><0.1</td>
<td>0.37</td>
<td>0.1</td>
<td>4.43</td>
<td>0.1</td>
</tr>
<tr>
<td>52</td>
<td><0.1</td>
<td>0.46</td>
<td>0.1</td>
<td>4.13</td>
<td>0.1</td>
</tr>
<tr>
<td>53</td>
<td><0.1</td>
<td>0.14</td>
<td><0.1</td>
<td>2.16</td>
<td><0.1</td>
</tr>
<tr>
<td>54</td>
<td><0.1</td>
<td>0.13</td>
<td>0.1</td>
<td>2.97</td>
<td><0.1</td>
</tr>
<tr>
<td>55</td>
<td><0.1</td>
<td>0.22</td>
<td>0.1</td>
<td>2.84</td>
<td><0.1</td>
</tr>
<tr>
<td>56</td>
<td><0.1</td>
<td>0.10</td>
<td><0.1</td>
<td>3.42</td>
<td><0.1</td>
</tr>
<tr>
<td>57</td>
<td><0.1</td>
<td>0.18</td>
<td>0.1</td>
<td>3.17</td>
<td><0.1</td>
</tr>
<tr>
<td>58</td>
<td><0.1</td>
<td>0.28</td>
<td>0.1</td>
<td>3.04</td>
<td>0.1</td>
</tr>
</tbody>
</table>

cc: Assay Lab.

Assayer: D.A.W.
Assay Certificate

GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

EXPLORATION (MT. POLLEY)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu</th>
<th>Total Cu</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85459</td>
<td>0.1</td>
<td>0.25</td>
<td>0.01</td>
<td>2.68</td>
<td>0.1</td>
</tr>
<tr>
<td>60</td>
<td>0.2</td>
<td>0.15</td>
<td>0.05</td>
<td>3.84</td>
<td>0.3</td>
</tr>
<tr>
<td>61</td>
<td>0.1</td>
<td>0.15</td>
<td>0.02</td>
<td>3.51</td>
<td>0.1</td>
</tr>
<tr>
<td>62</td>
<td><0.1</td>
<td>0.11</td>
<td><0.01</td>
<td>3.36</td>
<td><0.1</td>
</tr>
<tr>
<td>63</td>
<td><0.1</td>
<td>0.09</td>
<td><0.01</td>
<td>3.69</td>
<td><0.1</td>
</tr>
<tr>
<td>64</td>
<td><0.1</td>
<td>0.38</td>
<td><0.01</td>
<td>3.68</td>
<td><0.1</td>
</tr>
<tr>
<td>65</td>
<td><0.1</td>
<td>0.29</td>
<td><0.01</td>
<td>3.50</td>
<td><0.1</td>
</tr>
<tr>
<td>66</td>
<td><0.1</td>
<td>0.20</td>
<td><0.01</td>
<td>3.60</td>
<td><0.1</td>
</tr>
<tr>
<td>67</td>
<td><0.1</td>
<td>0.43</td>
<td><0.01</td>
<td>2.77</td>
<td><0.1</td>
</tr>
<tr>
<td>68</td>
<td><0.1</td>
<td>0.18</td>
<td><0.01</td>
<td>3.30</td>
<td><0.1</td>
</tr>
<tr>
<td>69</td>
<td><0.1</td>
<td>0.17</td>
<td><0.01</td>
<td>4.91</td>
<td><0.1</td>
</tr>
<tr>
<td>70</td>
<td><0.1</td>
<td>0.27</td>
<td><0.01</td>
<td>6.77</td>
<td><0.1</td>
</tr>
<tr>
<td>71</td>
<td><0.1</td>
<td>0.22</td>
<td><0.01</td>
<td>4.27</td>
<td><0.1</td>
</tr>
<tr>
<td>72</td>
<td><0.1</td>
<td>0.31</td>
<td><0.01</td>
<td>5.32</td>
<td><0.1</td>
</tr>
<tr>
<td>73</td>
<td><0.1</td>
<td>0.52</td>
<td><0.01</td>
<td>3.30</td>
<td><0.1</td>
</tr>
<tr>
<td>74</td>
<td><0.1</td>
<td>0.10</td>
<td><0.01</td>
<td>2.87</td>
<td><0.1</td>
</tr>
<tr>
<td>75</td>
<td><0.1</td>
<td>0.14</td>
<td><0.01</td>
<td>2.80</td>
<td><0.1</td>
</tr>
<tr>
<td>76</td>
<td><0.1</td>
<td>0.19</td>
<td><0.01</td>
<td>3.07</td>
<td><0.1</td>
</tr>
<tr>
<td>77</td>
<td><0.1</td>
<td>0.10</td>
<td><0.01</td>
<td>3.35</td>
<td><0.1</td>
</tr>
<tr>
<td>78</td>
<td><0.1</td>
<td>0.11</td>
<td><0.01</td>
<td>2.69</td>
<td><0.1</td>
</tr>
<tr>
<td>79</td>
<td><0.1</td>
<td>0.21</td>
<td><0.01</td>
<td>3.02</td>
<td><0.1</td>
</tr>
<tr>
<td>80</td>
<td><0.1</td>
<td>0.27</td>
<td><0.01</td>
<td>2.92</td>
<td><0.1</td>
</tr>
<tr>
<td>81</td>
<td><0.1</td>
<td>0.07</td>
<td><0.01</td>
<td>2.09</td>
<td><0.1</td>
</tr>
<tr>
<td>82</td>
<td><0.1</td>
<td>0.23</td>
<td><0.01</td>
<td>2.32</td>
<td><0.1</td>
</tr>
<tr>
<td>83</td>
<td><0.1</td>
<td>0.22</td>
<td><0.01</td>
<td>1.17</td>
<td><0.1</td>
</tr>
<tr>
<td>84</td>
<td><0.1</td>
<td>0.27</td>
<td><0.01</td>
<td>3.99</td>
<td><0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu</th>
<th>Total Cu</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85713</td>
<td>0.34</td>
<td>0.42</td>
<td>0.04</td>
<td>6.32</td>
<td>0.1</td>
</tr>
<tr>
<td>14</td>
<td>0.16</td>
<td>0.23</td>
<td>0.03</td>
<td>6.20</td>
<td>0.1</td>
</tr>
</tbody>
</table>

cc: Assay Lab.

Assayer: D. A. W.
Assay Certificate

Company: GIBRALTAR MINES LTD
Project:
Num: Ron Graden

We hereby certify the following Assay of 24 pulp samples submitted AUG-08-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85401</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85402</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85403</td>
<td>.46</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85404</td>
<td>.38</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85405</td>
<td>.82</td>
<td>.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85406</td>
<td>1.02</td>
<td>.030</td>
<td>1.07</td>
<td>.031</td>
</tr>
<tr>
<td>85407</td>
<td>.67</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85408</td>
<td>.94</td>
<td>.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85409</td>
<td>.22</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85410</td>
<td>.67</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85411</td>
<td>2.24</td>
<td>.065</td>
<td>2.47</td>
<td>.072</td>
</tr>
<tr>
<td>85412</td>
<td>.26</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85413</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85414</td>
<td>.26</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85415</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85416</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85417</td>
<td>.16</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85418</td>
<td>.34</td>
<td>.010</td>
<td>.38</td>
<td>.011</td>
</tr>
<tr>
<td>85419</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85420</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85421</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85422</td>
<td>.16</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85423</td>
<td>.05</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85424</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD
.25 .007

BLK
.01 .001

Certified by: [Signature]

MIN-EN LABORATORIES
We hereby certify the following Assay of 24 pulp samples submitted AUG-08-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85425</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85426</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85427</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85428</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85429</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85430</td>
<td>.01</td>
<td>.001</td>
<td>.02</td>
<td>.001</td>
</tr>
<tr>
<td>85431</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85432</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85433</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85434</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85435</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85436</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85437</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85438</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85439</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85440</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85441</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85442</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85443</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85444</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85445</td>
<td>.17</td>
<td>.005</td>
<td>.18</td>
<td>.005</td>
</tr>
<tr>
<td>85446</td>
<td>.25</td>
<td>.007</td>
<td>.26</td>
<td>.008</td>
</tr>
<tr>
<td>85447</td>
<td>.26</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85448</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD | .26 | .008 | | |
BLK | .01 | .001 | | |

Certified by [Signature]
Assay Certificate

Company: GIBRALTAR MINES LTD
Project:
Att.: Ron Graden
Copy 1: Gibraltar Mines, McLeese Lake, B.C.

We hereby certify the following Assay of 24 pulp samples submitted AUG-08-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85449</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85450</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85451</td>
<td>.30</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85452</td>
<td>.30</td>
<td>.009</td>
<td></td>
<td>.31</td>
</tr>
<tr>
<td>85453</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85454</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85455</td>
<td>.16</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85456</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85457</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85458</td>
<td>.21</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85459</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85460</td>
<td>.05</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85461</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85462</td>
<td>.07</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85463</td>
<td>.05</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85464</td>
<td>.22</td>
<td>.006</td>
<td>.24</td>
<td>.007</td>
</tr>
<tr>
<td>85465</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85466</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85467</td>
<td>.32</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85468</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85469</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85470</td>
<td>.16</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85471</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85472</td>
<td>.26</td>
<td>.008</td>
<td>.25</td>
<td>.007</td>
</tr>
</tbody>
</table>

STD
.26 .008

BLK
.01 .001

Certified by [Signature]

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES LTD
Project: Ron Graden
We hereby certify the following Assay of 24 pulp samples submitted AUG-08-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85473</td>
<td>.37</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85474</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85475</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85476</td>
<td>.13</td>
<td>.004</td>
<td>.14</td>
<td>.004</td>
</tr>
<tr>
<td>85477</td>
<td>.07</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85478</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85479</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85480</td>
<td>.21</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85481</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85482</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85483</td>
<td>.15</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85484</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85601</td>
<td>.45</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85602</td>
<td>.45</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85603</td>
<td>.46</td>
<td>.013</td>
<td>.48</td>
<td>.014</td>
</tr>
<tr>
<td>85604</td>
<td>.60</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85605</td>
<td>.59</td>
<td>.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85606</td>
<td>.97</td>
<td>.028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85607</td>
<td>.46</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85608</td>
<td>.68</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85609</td>
<td>.73</td>
<td>.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85610</td>
<td>1.38</td>
<td>.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85611</td>
<td>.61</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85612</td>
<td>1.83</td>
<td>.053</td>
<td>1.79</td>
<td>.052</td>
</tr>
</tbody>
</table>

STD
BLK

.26 .008
.01 .001

Certified by

MIN-EN LABORATORIES
Assay Certificate

Exploration (Mt. Polley)

Assay Lab.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoNi</th>
<th>A.S. Fe</th>
<th>% Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85201</td>
<td>.04</td>
<td>.06</td>
<td>.08</td>
<td>7.09</td>
<td>.05</td>
</tr>
<tr>
<td>02</td>
<td>.03</td>
<td>.04</td>
<td>.06</td>
<td>6.47</td>
<td>.04</td>
</tr>
<tr>
<td>03</td>
<td>.06</td>
<td>.07</td>
<td>.15</td>
<td>4.49</td>
<td>.09</td>
</tr>
<tr>
<td>04</td>
<td>.06</td>
<td>.08</td>
<td>.14</td>
<td>7.08</td>
<td>.08</td>
</tr>
<tr>
<td>05</td>
<td>.02</td>
<td>.21</td>
<td>.05</td>
<td>3.92</td>
<td>.03</td>
</tr>
<tr>
<td>06</td>
<td>.03</td>
<td>.15</td>
<td>.04</td>
<td>3.74</td>
<td>.03</td>
</tr>
<tr>
<td>07</td>
<td>.02</td>
<td>.03</td>
<td>.02</td>
<td>3.78</td>
<td>.01</td>
</tr>
<tr>
<td>08</td>
<td>.01</td>
<td>.03</td>
<td>.01</td>
<td>3.43</td>
<td>.01</td>
</tr>
<tr>
<td>09</td>
<td><.01</td>
<td>.03</td>
<td>.01</td>
<td>2.12</td>
<td>.01</td>
</tr>
<tr>
<td>10</td>
<td><.01</td>
<td>.03</td>
<td>.01</td>
<td>1.93</td>
<td>.01</td>
</tr>
<tr>
<td>11</td>
<td>.01</td>
<td>.06</td>
<td>.02</td>
<td>2.15</td>
<td>.02</td>
</tr>
<tr>
<td>12</td>
<td><.01</td>
<td>.04</td>
<td>.01</td>
<td>2.11</td>
<td>.01</td>
</tr>
<tr>
<td>13</td>
<td>.02</td>
<td>.06</td>
<td>.03</td>
<td>1.83</td>
<td>.02</td>
</tr>
<tr>
<td>14</td>
<td>.01</td>
<td>.04</td>
<td>.01</td>
<td>1.91</td>
<td>.01</td>
</tr>
<tr>
<td>15</td>
<td>.02</td>
<td>.07</td>
<td>.03</td>
<td>1.87</td>
<td>.03</td>
</tr>
<tr>
<td>16</td>
<td>.02</td>
<td>.05</td>
<td>.03</td>
<td>2.32</td>
<td>.02</td>
</tr>
<tr>
<td>17</td>
<td>.02</td>
<td>.07</td>
<td>.03</td>
<td>2.23</td>
<td>.02</td>
</tr>
<tr>
<td>18</td>
<td>.02</td>
<td>.14</td>
<td>.06</td>
<td>1.89</td>
<td>.04</td>
</tr>
<tr>
<td>19</td>
<td>.01</td>
<td>.07</td>
<td>.03</td>
<td>1.99</td>
<td>.02</td>
</tr>
<tr>
<td>20</td>
<td>.02</td>
<td>.18</td>
<td>.05</td>
<td>1.84</td>
<td>.04</td>
</tr>
<tr>
<td>21</td>
<td>.01</td>
<td>.08</td>
<td>.02</td>
<td>1.72</td>
<td>.01</td>
</tr>
<tr>
<td>22</td>
<td><.01</td>
<td>.01</td>
<td><.01</td>
<td>4.08</td>
<td><.01</td>
</tr>
<tr>
<td>23</td>
<td><.01</td>
<td>.03</td>
<td><.01</td>
<td>2.62</td>
<td><.01</td>
</tr>
<tr>
<td>24</td>
<td><.01</td>
<td>.04</td>
<td><.01</td>
<td>1.83</td>
<td><.01</td>
</tr>
<tr>
<td>25</td>
<td>.01</td>
<td>.05</td>
<td><.01</td>
<td>1.90</td>
<td><.01</td>
</tr>
<tr>
<td>26</td>
<td><.01</td>
<td>.02</td>
<td><.01</td>
<td>2.23</td>
<td><.01</td>
</tr>
<tr>
<td>85601</td>
<td>.22</td>
<td>.23</td>
<td>.03</td>
<td>5.20</td>
<td>.01</td>
</tr>
<tr>
<td>02</td>
<td>.20</td>
<td>.20</td>
<td>.03</td>
<td>3.65</td>
<td>.01</td>
</tr>
</tbody>
</table>

Date: 29 July, 1994

Assayer: D.A.W.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu</th>
<th>Total Cu</th>
<th>% Cu</th>
<th>A.S. Fe</th>
<th>% Cu</th>
<th>On Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85603</td>
<td>.27</td>
<td>.32</td>
<td>.03</td>
<td>6.32</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>.26</td>
<td>.29</td>
<td>.03</td>
<td>3.66</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>.35</td>
<td>.43</td>
<td>.05</td>
<td>5.02</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>.42</td>
<td>.46</td>
<td>.11</td>
<td>3.79</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>.33</td>
<td>.37</td>
<td>.06</td>
<td>7.17</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>.26</td>
<td>.29</td>
<td>.03</td>
<td>10.3</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>.32</td>
<td>.36</td>
<td>.04</td>
<td>8.84</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.37</td>
<td>.40</td>
<td>.06</td>
<td>8.73</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>.28</td>
<td>.35</td>
<td>.04</td>
<td>10.2</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>.31</td>
<td>.36</td>
<td>.04</td>
<td>9.64</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>.28</td>
<td>.34</td>
<td>.03</td>
<td>8.45</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>.31</td>
<td>.38</td>
<td>.08</td>
<td>9.00</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>.33</td>
<td>.36</td>
<td>.05</td>
<td>7.70</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>.31</td>
<td>.38</td>
<td>.08</td>
<td>8.72</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>.38</td>
<td>.43</td>
<td>.05</td>
<td>7.96</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>.44</td>
<td>.50</td>
<td>.04</td>
<td>9.05</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>.35</td>
<td>.76</td>
<td>.28</td>
<td>7.21</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>.52</td>
<td>.89</td>
<td>.35</td>
<td>7.25</td>
<td>.14</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>.30</td>
<td>.44</td>
<td>.14</td>
<td>6.64</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>.10</td>
<td>.14</td>
<td>.03</td>
<td>6.25</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>.15</td>
<td>.16</td>
<td>.02</td>
<td>6.57</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>.22</td>
<td>.25</td>
<td>.04</td>
<td>5.55</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>.16</td>
<td>.20</td>
<td>.04</td>
<td>4.63</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>.05</td>
<td>.08</td>
<td>.02</td>
<td>5.17</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>.03</td>
<td>.04</td>
<td>.02</td>
<td>4.58</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>.02</td>
<td>.04</td>
<td><.01</td>
<td>4.58</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>.02</td>
<td>.03</td>
<td><.01</td>
<td>5.18</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>.01</td>
<td>.03</td>
<td><.01</td>
<td>4.73</td>
<td><.01</td>
<td></td>
</tr>
</tbody>
</table>

Assay Lab.

Assayer: D. A. W.
Gibraltar Mines Limited

Assay Certificate

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu</th>
<th>Total Cu</th>
<th>% MoS₂</th>
<th>A.S. Fe on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>.04</td>
<td>.04</td>
<td>.01</td>
<td>4.96</td>
</tr>
<tr>
<td>33</td>
<td>.07</td>
<td>.07</td>
<td>.01</td>
<td>4.64</td>
</tr>
<tr>
<td>34</td>
<td>.08</td>
<td>.08</td>
<td>.01</td>
<td>5.32</td>
</tr>
<tr>
<td>35</td>
<td>.06</td>
<td>.06</td>
<td>.01</td>
<td>5.04</td>
</tr>
<tr>
<td>36</td>
<td>.09</td>
<td>.09</td>
<td>.02</td>
<td>4.70</td>
</tr>
<tr>
<td>37</td>
<td>.06</td>
<td>.06</td>
<td>.01</td>
<td>4.40</td>
</tr>
<tr>
<td>38</td>
<td>.04</td>
<td>.04</td>
<td>.01</td>
<td>4.14</td>
</tr>
<tr>
<td>39</td>
<td>.06</td>
<td>.06</td>
<td>.01</td>
<td>4.16</td>
</tr>
<tr>
<td>40</td>
<td>.10</td>
<td>.11</td>
<td>.01</td>
<td>4.98</td>
</tr>
<tr>
<td>41</td>
<td>.26</td>
<td>.26</td>
<td>.03</td>
<td>5.30</td>
</tr>
<tr>
<td>42</td>
<td>.09</td>
<td>.10</td>
<td>.01</td>
<td>4.62</td>
</tr>
<tr>
<td>43</td>
<td>.10</td>
<td>.12</td>
<td>.03</td>
<td>4.46</td>
</tr>
<tr>
<td>44</td>
<td>.35</td>
<td>.46</td>
<td>.16</td>
<td>4.76</td>
</tr>
<tr>
<td>45</td>
<td>.32</td>
<td>.42</td>
<td>.09</td>
<td>6.62</td>
</tr>
<tr>
<td>46</td>
<td>.36</td>
<td>.44</td>
<td>.04</td>
<td>3.80</td>
</tr>
<tr>
<td>47</td>
<td>.39</td>
<td>.54</td>
<td>.07</td>
<td>5.24</td>
</tr>
<tr>
<td>48</td>
<td>.24</td>
<td>.28</td>
<td>.09</td>
<td>5.32</td>
</tr>
<tr>
<td>49</td>
<td>.32</td>
<td>.49</td>
<td>.23</td>
<td>4.54</td>
</tr>
<tr>
<td>50</td>
<td>.26</td>
<td>.30</td>
<td>.10</td>
<td>5.64</td>
</tr>
<tr>
<td>51</td>
<td>.29</td>
<td>.29</td>
<td>.09</td>
<td>5.00</td>
</tr>
<tr>
<td>52</td>
<td>.22</td>
<td>.22</td>
<td>.03</td>
<td>4.60</td>
</tr>
<tr>
<td>53</td>
<td>.31</td>
<td>.31</td>
<td>.03</td>
<td>6.00</td>
</tr>
<tr>
<td>54</td>
<td>.18</td>
<td>.18</td>
<td>.02</td>
<td>4.02</td>
</tr>
<tr>
<td>55</td>
<td>.21</td>
<td>.21</td>
<td>.03</td>
<td>4.92</td>
</tr>
<tr>
<td>56</td>
<td>.09</td>
<td>.16</td>
<td>.04</td>
<td>4.04</td>
</tr>
<tr>
<td>57</td>
<td>.14</td>
<td>.23</td>
<td>.07</td>
<td>4.44</td>
</tr>
<tr>
<td>58</td>
<td>.06</td>
<td>.21</td>
<td>.04</td>
<td>3.70</td>
</tr>
</tbody>
</table>

Assay Lab.

Assayer: [Signature]
GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

EXPLORATION (MT. POLLEY)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% Mo & Ag</th>
<th>A.S. Fe</th>
<th>% on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>85459</td>
<td>0.04</td>
<td>0.19</td>
<td>0.24</td>
<td>4.02</td>
<td>0.02</td>
</tr>
<tr>
<td>600</td>
<td>0.14</td>
<td>0.21</td>
<td>0.08</td>
<td>5.35</td>
<td>0.02</td>
</tr>
<tr>
<td>61</td>
<td>0.18</td>
<td>0.22</td>
<td>0.04</td>
<td>4.58</td>
<td>0.01</td>
</tr>
<tr>
<td>62</td>
<td>0.12</td>
<td>0.24</td>
<td>0.09</td>
<td>4.38</td>
<td>0.05</td>
</tr>
<tr>
<td>63</td>
<td>0.14</td>
<td>0.18</td>
<td>0.01</td>
<td>3.33</td>
<td><0.01</td>
</tr>
<tr>
<td>64</td>
<td>0.17</td>
<td>0.21</td>
<td>0.03</td>
<td>5.21</td>
<td>0.01</td>
</tr>
<tr>
<td>65</td>
<td>0.14</td>
<td>0.24</td>
<td>0.06</td>
<td>4.42</td>
<td>0.02</td>
</tr>
<tr>
<td>66</td>
<td>0.02</td>
<td>0.15</td>
<td>0.03</td>
<td>5.21</td>
<td>0.02</td>
</tr>
<tr>
<td>67</td>
<td>0.13</td>
<td>0.33</td>
<td>0.11</td>
<td>5.12</td>
<td>0.05</td>
</tr>
<tr>
<td>68</td>
<td>0.07</td>
<td>0.28</td>
<td>0.09</td>
<td>4.00</td>
<td>0.04</td>
</tr>
<tr>
<td>69</td>
<td>0.22</td>
<td>0.24</td>
<td>0.04</td>
<td>6.37</td>
<td>0.02</td>
</tr>
<tr>
<td>70</td>
<td>0.04</td>
<td>0.24</td>
<td>0.06</td>
<td>11.8</td>
<td>0.03</td>
</tr>
<tr>
<td>71</td>
<td>0.04</td>
<td>0.42</td>
<td>0.07</td>
<td>11.4</td>
<td>0.03</td>
</tr>
<tr>
<td>72</td>
<td><0.01</td>
<td>0.17</td>
<td>0.01</td>
<td>5.14</td>
<td><0.01</td>
</tr>
<tr>
<td>73</td>
<td><0.01</td>
<td>0.01</td>
<td><0.01</td>
<td>5.23</td>
<td><0.01</td>
</tr>
<tr>
<td>74</td>
<td>0.03</td>
<td>0.29</td>
<td>0.06</td>
<td>3.46</td>
<td>0.03</td>
</tr>
<tr>
<td>75</td>
<td>0.16</td>
<td>0.29</td>
<td>0.09</td>
<td>5.64</td>
<td>0.04</td>
</tr>
<tr>
<td>76</td>
<td>0.14</td>
<td>0.25</td>
<td>0.15</td>
<td>14.0</td>
<td>0.04</td>
</tr>
<tr>
<td>77</td>
<td>0.09</td>
<td>0.30</td>
<td>0.07</td>
<td>7.36</td>
<td>0.04</td>
</tr>
<tr>
<td>78</td>
<td>0.17</td>
<td>0.30</td>
<td>0.13</td>
<td>6.88</td>
<td>0.05</td>
</tr>
<tr>
<td>79</td>
<td>0.14</td>
<td>0.39</td>
<td>0.25</td>
<td>6.40</td>
<td>0.13</td>
</tr>
<tr>
<td>80</td>
<td>0.05</td>
<td>0.36</td>
<td>0.09</td>
<td>5.93</td>
<td>0.06</td>
</tr>
<tr>
<td>81</td>
<td>0.06</td>
<td>0.29</td>
<td>0.09</td>
<td>4.55</td>
<td>0.05</td>
</tr>
<tr>
<td>82</td>
<td>0.05</td>
<td>0.31</td>
<td>0.06</td>
<td>5.20</td>
<td>0.02</td>
</tr>
<tr>
<td>83</td>
<td>0.15</td>
<td>0.28</td>
<td>0.06</td>
<td>4.38</td>
<td>0.03</td>
</tr>
<tr>
<td>84</td>
<td>0.12</td>
<td>0.30</td>
<td>0.07</td>
<td>4.28</td>
<td>0.02</td>
</tr>
<tr>
<td>85</td>
<td>0.12</td>
<td>0.34</td>
<td>0.09</td>
<td>3.60</td>
<td>0.04</td>
</tr>
<tr>
<td>86</td>
<td>0.02</td>
<td>0.29</td>
<td>0.02</td>
<td>3.10</td>
<td>0.01</td>
</tr>
</tbody>
</table>

CC: Assay Lab.

Assayer: D. A. W.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>% Ox. Cu.</th>
<th>Total Cu.</th>
<th>% MoS₂</th>
<th>A.S. Fe</th>
<th>on Acid Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5627</td>
<td>.17</td>
<td>.43</td>
<td>.17</td>
<td>2.14</td>
<td>.10</td>
</tr>
<tr>
<td>88</td>
<td>.19</td>
<td>.26</td>
<td>.02</td>
<td>3.69</td>
<td>.02</td>
</tr>
<tr>
<td>89</td>
<td>.09</td>
<td>.36</td>
<td>.03</td>
<td>3.14</td>
<td>.02</td>
</tr>
<tr>
<td>90</td>
<td>.07</td>
<td>.23</td>
<td>.08</td>
<td>3.68</td>
<td>.04</td>
</tr>
<tr>
<td>91</td>
<td>.07</td>
<td>.39</td>
<td>.06</td>
<td>4.77</td>
<td>.04</td>
</tr>
<tr>
<td>92</td>
<td>.09</td>
<td>.13</td>
<td>.02</td>
<td>2.48</td>
<td>.01</td>
</tr>
<tr>
<td>93</td>
<td>.12</td>
<td>.20</td>
<td>.05</td>
<td>2.24</td>
<td>.01</td>
</tr>
<tr>
<td>94</td>
<td>.06</td>
<td>.34</td>
<td>.09</td>
<td>2.64</td>
<td>.06</td>
</tr>
<tr>
<td>95</td>
<td>.09</td>
<td>.23</td>
<td>.05</td>
<td>3.12</td>
<td>.02</td>
</tr>
<tr>
<td>96</td>
<td>.17</td>
<td>.25</td>
<td>.02</td>
<td>4.09</td>
<td>.01</td>
</tr>
<tr>
<td>97</td>
<td>.21</td>
<td>.29</td>
<td>.01</td>
<td>4.31</td>
<td>.01</td>
</tr>
<tr>
<td>98</td>
<td>.03</td>
<td>.08</td>
<td><.01</td>
<td>4.88</td>
<td><.01</td>
</tr>
<tr>
<td>99</td>
<td>.01</td>
<td>.02</td>
<td><.01</td>
<td>4.71</td>
<td><.01</td>
</tr>
<tr>
<td>A5700</td>
<td>.02</td>
<td>.04</td>
<td><.01</td>
<td>4.94</td>
<td><.01</td>
</tr>
<tr>
<td>01</td>
<td>.15</td>
<td>.24</td>
<td>.02</td>
<td>5.24</td>
<td>.01</td>
</tr>
<tr>
<td>02</td>
<td>.06</td>
<td>.25</td>
<td>.08</td>
<td>5.00</td>
<td>.04</td>
</tr>
<tr>
<td>03</td>
<td>.01</td>
<td>.22</td>
<td>.02</td>
<td>4.59</td>
<td>.01</td>
</tr>
<tr>
<td>04</td>
<td>.01</td>
<td>.15</td>
<td>.01</td>
<td>5.99</td>
<td>.01</td>
</tr>
<tr>
<td>05</td>
<td>.03</td>
<td>.13</td>
<td>.03</td>
<td>5.37</td>
<td>.02</td>
</tr>
<tr>
<td>06</td>
<td>.01</td>
<td>.11</td>
<td>.02</td>
<td>5.70</td>
<td>.01</td>
</tr>
<tr>
<td>07</td>
<td><.01</td>
<td>.11</td>
<td>.01</td>
<td>4.68</td>
<td><.01</td>
</tr>
<tr>
<td>08</td>
<td><.01</td>
<td>.05</td>
<td>.01</td>
<td>4.95</td>
<td><.01</td>
</tr>
<tr>
<td>09</td>
<td><.01</td>
<td>.11</td>
<td>.01</td>
<td>3.98</td>
<td><.01</td>
</tr>
<tr>
<td>10</td>
<td>.03</td>
<td>.07</td>
<td>.01</td>
<td>4.40</td>
<td>.01</td>
</tr>
<tr>
<td>11</td>
<td>.05</td>
<td>.07</td>
<td><.01</td>
<td>4.84</td>
<td><.01</td>
</tr>
<tr>
<td>12</td>
<td>.07</td>
<td>.10</td>
<td>.01</td>
<td>3.83</td>
<td>.01</td>
</tr>
<tr>
<td>A5401</td>
<td>.24</td>
<td>.29</td>
<td>.11</td>
<td>3.40</td>
<td><.01</td>
</tr>
<tr>
<td>02</td>
<td>.27</td>
<td>.44</td>
<td>.15</td>
<td>3.96</td>
<td>.01</td>
</tr>
</tbody>
</table>
Assay Certificate

Company: GIBRALTAR MINES LTD
Project:
Analyst: Ron Graden
Date: AUG-16-94

We hereby certify the following Assay of 24 pulp samples submitted AUG-08-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85473</td>
<td>.37</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85474</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85475</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85476</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td>.14</td>
</tr>
<tr>
<td>85477</td>
<td>.07</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85478</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85479</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85480</td>
<td>.21</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85481</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85482</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85483</td>
<td>.15</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85484</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85601</td>
<td>.45</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85602</td>
<td>.45</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85603</td>
<td>.46</td>
<td>.013</td>
<td></td>
<td>.48</td>
</tr>
<tr>
<td>85604</td>
<td>.60</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85605</td>
<td>.59</td>
<td>.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85606</td>
<td>.97</td>
<td>.028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85607</td>
<td>.46</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85608</td>
<td>.68</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85609</td>
<td>.73</td>
<td>.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85610</td>
<td>1.38</td>
<td>.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85611</td>
<td>.61</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85612</td>
<td>1.83</td>
<td>.053</td>
<td>1.79</td>
<td>.052</td>
</tr>
</tbody>
</table>

STD
.26 .008

BLK
.01 .001

Certified by [Signature]

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES LTD
Project:
Analyst: Ron Graden
Copy of: Gilbraltar Mines, McLeese Lake, B.C.

We hereby certify the following Assay of 24 pulp samples submitted AUG-08-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85613</td>
<td>.81</td>
<td>.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85614</td>
<td>.82</td>
<td>.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85615</td>
<td>1.15</td>
<td>.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85616</td>
<td>.73</td>
<td>.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85617</td>
<td>1.58</td>
<td>.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85618</td>
<td>1.32</td>
<td>.039</td>
<td>1.37</td>
<td>.040</td>
</tr>
<tr>
<td>85619</td>
<td>2.12</td>
<td>.062</td>
<td>2.24</td>
<td>.065</td>
</tr>
<tr>
<td>85620</td>
<td>1.32</td>
<td>.039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85621</td>
<td>.68</td>
<td>.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85622</td>
<td>.26</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85623</td>
<td>.40</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85624</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85625</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85626</td>
<td>.25</td>
<td>.007</td>
<td>.28</td>
<td>.008</td>
</tr>
<tr>
<td>85627</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85628</td>
<td>.04</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85629</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85630</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85631</td>
<td>.05</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85632</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85633</td>
<td>.10</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85634</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85635</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85636</td>
<td>.09</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td></td>
<td>.25</td>
<td>.007</td>
<td></td>
</tr>
<tr>
<td>BLK</td>
<td></td>
<td>.01</td>
<td>.001</td>
<td></td>
</tr>
</tbody>
</table>

Certified by [Signature]

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES LTD
Project: Ron Graden
Certified by: MIN-EN LABORATORIES

We hereby certify the following Assay of 24 pulp samples submitted AUG-08-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85637</td>
<td>.08</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85638</td>
<td>.08</td>
<td>.002</td>
<td>.11</td>
<td>.003</td>
</tr>
<tr>
<td>85639</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85640</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85641</td>
<td>.28</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85642</td>
<td>.13</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85643</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85644</td>
<td>.56</td>
<td>.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85645</td>
<td>.57</td>
<td>.017</td>
<td>.48</td>
<td>.014</td>
</tr>
<tr>
<td>85646</td>
<td>.56</td>
<td>.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85647</td>
<td>.35</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85648</td>
<td>.25</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85649</td>
<td>.53</td>
<td>.015</td>
<td>.58</td>
<td>.017</td>
</tr>
<tr>
<td>85650</td>
<td>.40</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85651</td>
<td>.28</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85652</td>
<td>.20</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85653</td>
<td>.31</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85654</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85655</td>
<td>.22</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85656</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85657</td>
<td>.21</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85658</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85659</td>
<td>.19</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85660</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD
.26 .008
BLK
.01 .001

Certified by

MIN-EN LABORATORIES
Assay Certificate

Company: GIBRALTAR MINES LTD
Project:
Attn: Ron Gradon

Date: AUG-16-94
Copy 1. Gibraltar Mines, McLeese Lake, B.C.

We hereby certify the following Assay of 24 pulp samples submitted AUG-08-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire (g/tonne)</th>
<th>Au-Fire (oz/ton)</th>
<th>Au-Fire (g/tonne)</th>
<th>Au-Fire (oz/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>85661</td>
<td>.34</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85662</td>
<td>.24</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85663</td>
<td>.20</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85664</td>
<td>.27</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85665</td>
<td>.23</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85666</td>
<td>.15</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85667</td>
<td>.38</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85668</td>
<td>.29</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85669</td>
<td>.29</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85670</td>
<td>.40</td>
<td>.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85671</td>
<td>1.02</td>
<td>.030</td>
<td>.98</td>
<td>.029</td>
</tr>
<tr>
<td>85672</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85673</td>
<td>.02</td>
<td>.001</td>
<td>.02</td>
<td>.001</td>
</tr>
<tr>
<td>85674</td>
<td>.30</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85675</td>
<td>.32</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85676</td>
<td>.31</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85677</td>
<td>.37</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85678</td>
<td>.36</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85679</td>
<td>.46</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85680</td>
<td>.61</td>
<td>.018</td>
<td>.60</td>
<td>.018</td>
</tr>
<tr>
<td>85681</td>
<td>.39</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85682</td>
<td>.44</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85683</td>
<td>.51</td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85684</td>
<td>.37</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STD
.25 .007

BLK
.02 .001

Certified by

MIN-EN LABORATORIES
Assay Certificate

Company: **GIBRALTAR MINES LTD**

Project: **Ron Graden**

Date: **AUG-16-94**

We hereby certify the following Assay of 24 pulp samples submitted AUG-08-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
<th>Au-Fire g/tonne</th>
<th>Au-Fire oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>85685</td>
<td>.35</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85686</td>
<td>.37</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85687</td>
<td>.69</td>
<td>.020</td>
<td>.66</td>
<td>.019</td>
</tr>
<tr>
<td>85688</td>
<td>.36</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85689</td>
<td>.31</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85690</td>
<td>.28</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85691</td>
<td>.37</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85692</td>
<td>.18</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85693</td>
<td>.36</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85694</td>
<td>.41</td>
<td>.012</td>
<td>.39</td>
<td>.011</td>
</tr>
<tr>
<td>85695</td>
<td>.33</td>
<td>.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85696</td>
<td>.43</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85697</td>
<td>.55</td>
<td>.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85698</td>
<td>.03</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85699</td>
<td>.01</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85700</td>
<td>.02</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85701</td>
<td>.43</td>
<td>.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85702</td>
<td>.46</td>
<td>.013</td>
<td>.43</td>
<td>.013</td>
</tr>
<tr>
<td>85703</td>
<td>.30</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85704</td>
<td>.20</td>
<td>.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85705</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85706</td>
<td>.16</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85707</td>
<td>.17</td>
<td>.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85708</td>
<td>.06</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| STD | .25 | .007 |
| BLK | .01 | .001 |

Certified by

MIN-EN LABORATORIES
Company: GIBRALTAR MINES LTD
Project:
Att.: Ron Graden

We hereby certify the following Assay of 4 pulp samples submitted AUG-08-94 by GIBRALTAR MINES.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au-Fire (g/\text{tonne})</th>
<th>Au-Fire (\text{oz/ton})</th>
<th>Au-Fire (g/\text{tonne})</th>
<th>Au-Fire (\text{oz/ton})</th>
</tr>
</thead>
<tbody>
<tr>
<td>85709</td>
<td>.23</td>
<td>.007</td>
<td>.22</td>
<td>.006</td>
</tr>
<tr>
<td>85710</td>
<td>.11</td>
<td>.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85711</td>
<td>.14</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85712</td>
<td>.12</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| STD | .24 | .007 | | |
| BLK | .01 | .001 | | |

Certified by [Signature]

MIN-EN LABORATORIES