GEOCHEMICAL
AND
PROSPECTING
ASSESSMENT REPORT

on the

CASE 1 CLAIM
LILLOOET MINING DIVISION
SETON LAKE, B.C. AREA

by

PAUL D. GRAY, B.Sc.
and
KENNETH A. WILLIAMS, B.Sc.

SOUTHERN GOLD RESOURCES LTD.

CLAIMS: CASE 1, 4-post mineral claim (20 units)
LOCATION: The Case claim is located 19.5 km west of Lillooet, B.C.,
and 1.4 km south of Seton Lake shore.
Lat. 50°42'; Long. 122°12';
N.T.S. Map 92 J/9
OWNER: Southern Gold Resources Limited
OPERATOR: Southern Gold Resources Limited
DATE COMMENCED: June 22, 1997
DATE COMPLETED: June 23, 1997

GEOPHYSICAL SURVEY BRANCH
ASSIGNMENT NUMBER

Vancouver B.C.

November 14, 1997

25,230
TABLE OF CONTENTS

LIST OF FIGURES

ii

LIST OF MAPS

ii

SUMMARY

1

INTRODUCTION

1. Property Location, Access, Topography *2*
2. Physical features and climate *2*
3. Claim Status *4*

PREVIOUS WORK

4

1997 WORK PROGRAM

6

REGIONAL GEOLOGY

7

REGIONAL MINERALIZATION

11

PROPERTY GEOLOGY

12

GEOCHEMISTRY

1. Introduction *12*
2. Soil *13*
3. Rock *16*

CONCLUSIONS

17

RECOMMENDATIONS

17

REFERENCES

18

APPENDIX A

Rock Sample Descriptions *19*

APPENDIX B

Soil Sample Procedure *21*

APPENDIX C

Analytical Methods *22*

APPENDIX D

Analytical Results *23*

APPENDIX E

Statement of Qualifications *32*

APPENDIX F

Statement of Expenses *34*
LIST OF FIGURES

Figure 1: Regional location map of the Case 1 Claim. 3

Figure 2: Case 1 Claim location near Seton Lake. 5

Figure 3: Regional Geology of the Anderson and Seton Lake area. 8
(modified after Journeay and Monger, 1994).

Figure 4: Grid of the Case 1 Claim showing sample locations of soil survey and minor geology. 14

Figure 5: Geochemical grid of the Case 1 Claim with soil sample sites and assay. 15

LIST OF MAPS

Map 1: Locations of Soil and Rock samples along with Property Geology from the Case 1 claim.

Map 2: Locations of geochemically anomalous rock samples from the Case 1 claim.
SUMMARY

The 4-post Case 1 claim is comprised of 20 units located 1.4 km south of Seton Lake shore, 19.5 km west from Lillooet, B.C. The property was staked by Percy F. Cox, for Southern Gold Resources Ltd., to cover an area just west of major exploration activity by Homestake Canada Ltd. An exploration program was conducted on August 22nd and 23rd, 1997. This program consisted of geological mapping, prospecting, rock sampling, and soil sampling. A total of 20 rock and 10 soil samples were collected.

The purpose of the exploration program was to evaluate the Case 1 Property for gold and base metals in quartz-carbonate veins, because to the east, near Cayoosh Creek, and to the west in the Bridge River-Bralorne mining district, the sedimentary sequences of the Bridge River Complex are known to host economic value of gold mineralization. Several geochemical anomalies exist on the Case 1 claim and this trend possibly continues to the northern part of the claim.

The geology of the Case 1 claim hosts a favorable lithology and structural controls similar to that as the Bridge River Complex. The Bridge-River Mining camp is just due north west of the Case Claim 1 and Prime Resources Group are drill testing several kilometers to the east. Further drill testing of the 1.2 mile long mineralized zone is scheduled for early 1997.

INTRODUCTION

This report, written for government assessment work requirements, presents and discusses results of a two day prospecting and geochemical program conducted on the Case 1 property during the days of August 22 and 23, 1997. The Case 1 claim covers an
area of extremely rugged and precipitous terrain, therefore work was only possible on the high elevation alpine meadows and immediate areas. The property covers an area where there is a possibility of base metals and gold-bearing quartz carbonate veins within the sedimentary sequences of the Bridge River Complex. These lithologies have the potential to host a quartz-carbonate vein gold deposit such as those situated to the northwest in the Bridge River-Bralorne mining camps.

Property Location, Access and Topography

The Case 1 claim is located 1.4 km south of Seton lake shore, 19.5 km west of Lillooet, B.C. (Lat. 50° 42'; Long. 122° 12'; N.T.S. Map 92-J-09) (Figure 1). Access to the property is gained via helicopter, and landing is only permissible on the height of land alpine meadows (~ 7000 ft.). A network of logging roads off the Duffey Lake road (B.C. Highway 99), allows vehicular access to the Seton Lake shore within 5 km of the claim, however at ~ 1000 feet above sea level. Due to the severity of the topography no direct access exists.

Physical Features and Climate

The Case 1 property covers the peak and surrounding area of a 7000 foot plus unnamed mountain. The mountain is one of the many peaks within the region known geographically as the Pacific Ranges (Coast Mountains). Elevations in the area range from around 700 feet at Lake shore levels, to well over 9,000 feet. The Cayoosh Creek represents a major drainage for the area west of the Fraser River.
The Case 1 property surrounds the peak of the mountain, elevations range from 3000 feet to over 7000 feet, over 1.4 km. The property is extremely steep, with

Figure 1: Regional location map of the Case 1 Claim.
grades of 35% to almost vertical. The bulk of the claim is made up of steep avalanche slopes, massive cliffs, or thin barren soil. The claim is dominated by bluffs and cliffs of the Bridge River Complex, and very little soil. Vegetation on the property is almost exclusively small scrubby brush, with very few large trees. The Lillooet valley receives relatively little precipitation in comparison with these higher elevations. Precipitation is chiefly in the form of snow which begins to accumulate in mid October and can linger on shaded slopes until early June. Summer temperatures can reach as high as 30°C on the property while winter temperatures can drop to -30°C.

Claim Status

The Case 1, 20 contiguous units, 4-post mineral claim (Figure 2) (Tenure Number 356580) was staked by Percy F. Cox for Southern Gold Resources Ltd. on June 1, 1997, and are recorded in the Lillooet Mining Division. The records can be examined at the Mineral Titles Office in Vancouver.

Previous Work

To date, there is no recorded work available for the property. However, there is evidence in the field consisting of older claim posts that were present near the current claim boundaries which had the name “Spider 1”. Research at the British Columbia Mineral Titles Office was unsuccessful in locating information pertaining to the “Spider 1” claim.
CASE CLAIM
MINERAL CLAIMS
LILLOOET AREA
LILLOOET MINING DIVISION, B.C.

TENURE 11356580
BRIEFCASE 3
BOXCAR # 1
GOLDMAX # 15
GOLDMAX # 12

GOLDMAX # 14
AURTHUR NOEL

GOLDMAX # 3
CAY # 2

CASE 1
4S5W
TAG # 231152
TENURE # 356580

CASE 2
4N5W
TAG # 231153
TENURE # 356581

CASE 3
4S5W
TAG # 231154
TENURE # 356583

IDENTIFICATION POST
WITNESS POST

SCALE 1:31680

Figure 2: Case I Claim location near Seton Lake.
Historically, the area around Seton Lake has experienced several episodes of exploration, prospecting, and limited mine development since the turn of the century. Around 1859, Chinese immigrants discovered gold in the gravels and within the rocks encompassing Cayoosh Creek. Arthur E. Noel, discovered and developed the Bralorne Mine, which was located immediately adjacent to the former Bonanza and Golden Cache property. These properties hosted sulphide bearing argillites, which contained a significant amount of gold. By 1905, the Ample claim was further developed and subsequently encountered “arsenical iron sulphide”. In 1933, the Bonanza gold camp was reconditioned and work focused on several mineralized quartz and argillite structures. However, no significant amount of work was reported. Harlin Resources obtained the claims from a prospector in 1985 and planned diamond drilling and no drilling assessment report has been filed. Prime Resources Group has since acquired and interest in the Cayoosh Creek area to the east and has planned test drilling on their claims.

1997 WORK PROGRAM

Field work on the Case 1 claim was conducted from August 22nd to August 23rd, 1997. Where possible, geological mapping, prospecting, rock sampling, and soil sampling were conducted on 45% of the property (Map 1). Soil and rock sampling were conducted where rocks outcropped on cliff faces and soil was abundant near scree slopes. The focus of the fieldwork program was to set up a grid where the terrain permitted and to gather sufficient soil and rock samples so as to delineate anomalous geochemical areas. These anomalous geochemical areas would allow a future field program to close in upon these
in upon these anomalies that would suggest a possibility of significant gold and base metal mineralization.

Control was established via an altimeter, global positioning system, and compass. All geo-data was plotted on two topographic base maps with scales 1:10,000, and 1:50,000.

REGIONAL GEOLOGY

The Case 1 Claim, contained within the Bridge River Complex, is flanked by two known faults to the southwest and to the northeast. These are the Downton Creek Fault and the Marshall Creek Fault respectively. The former determines the boundary between the Anderson Lake Pluton and the Bridge River Complex and the latter carries through the Bridge River Complex and flanks the Mission Ridge Pluton and the Cayoosh assemblage. The Bridge River Group has been intruded by massive plutons of granitic-dioritic compositions and ranges in age from Jurassic to Triassic in age. The area is underlain by rocks of the Bridge River Complex which is perhaps the same unit as the Hozameen Complex and is described in detail after Journeay and Monger (1994) (Figure 3). Both complexes, if assumed to be the same unit, manifest themselves as regional geological lithologies, however, the CJBg unit of the Bridge River Complex is of particular interest since it is underlies the property (Map 1). The larger scale regional geological setting of the Case 1 Claim is presented in Figure 3.
Figure 3: Regional Geology of the Anderson and Seton Lake area.
(modified after Journeay and Monger, 1994)
REGIONAL GEOLOGY (after Journeay and Monger, 1994)

MIOCENE AND PLIOCENE

MPC CHILCOTIN GROUP: basalt (plateau basalt), olivine basalt, minor tuff.

EARLY TERTIARY

Egd Granodiorite and mozogranite (gd) of NEEDLE PEAK, MISSION RIDGE, MOUNT OUTRAM and TEXAS CREEK PLUTONS (46-58 Ma): small bodies of intermediate composition.

LOWER JURASSIC to LOWER CRETACEOUS

JKC CAYOOSH ASSEMBLAGE: undifferentiated graphitic phyllite, tuffaceous phyllite, siltstone, thinly laminated siltstone/sandstone turbidite; volcaniclastic sandstone, shale; arkosic sandstone, quartzose sandstone, thinly laminated phyllic quartzite; minor limestone, volcanic tuffs, breccias and intermediate to mafic flows; includes rocks previously mapped as BREW GROUP, LILLOOET GROUP and, locally, RELAY MOUNTAIN GROUP.

JKCu Upper Member: graphitic siltstone, shale, phyllite, arkosic sandstone, quartzose sandstone, thinly laminated phyllic quartzite (Unit 4); thin-bedded graphitic phyllite, siltstone, volcaniclastic sandstone, and a calcareous schist (Unit 5) locally containing Neocommininan bivalves.

JKCm Middle Member: thin and thick bedded volcaniclastic sandstone, graphitic siltstone, minor limestone (Unit 3).

JKCl Lower Member: graphitic phyllite, siltstone, thin laminated siltstone sandstone turbidite (Unit 1); tuffaceous phyllite, minor lapilli tuff and tuff breccia.

LATE CRETACEOUS

IKB BENDOR PLUTONIC SUITE: undivided granodiorite (gd), quartz diorite (qd), biotite tonalite (t) and granite (g); includes TRUAX, BENDOR, ANDERSON LAKE, LOST VALLEY, DOWNTON CREEK and CAYOOSH CREEK.

LATE TRIASSIC and EARLY JURASSIC

TCdH HURLEY FORMATION: thin to thick bedded sandstone calcarenite and shale; lesser amounts of limestone-volcanic conglomerate and volcanic sandstone; locally includes greenstone, limestone-greenstone breccia and pebbly mudstone.
CARBONIFEROUS to MIDDLE JURASSIC

CJR BRIDGE RIVER COMPLEX: comprised of undifferentiated chert, pelite and mafic volcanic rocks; minor olistrominal carbonate; gabbro and associated ultramafic rocks; local melange and talc-carbonate schist.

CJBs Radiolarian chert, siltstone, argillite, sandstone; minor amounts of greenstone, limestone and serpentinite.

CJBg Pillowed and massive greenstone and limestone; lesser amounts of radiolarian chert, argillite diabase, sandstone, and pebbly mudstone.

CJBb Blueschist, greenschist, phyllite, metachert; also includes non-schistose pillowed and massive greenstone containing minor blue amphibole and minor limestone.

CJBm Light to dark gray phyllite, quartz phyllite, calcareous phyllite, metachert, green chlorite schist, greenstone, marble and biotite-quartz schist; metamorphosed equivalents of the Bridge River Complex.

PERMIAN

PBC BRALORNE COMPLEX: gabbro (gb), diorite (d), quartz diorite (qd), soda granite (g), harzburgite and peridotite (u), serpentine (s), and talc-carbonate schist (s) of PRESIDENT ULTRAMAFIC SUITE, pillowed and massive greenstone flows, minor phyllite; includes some PIONEER GREENSTONE.
REGIONAL MINERALIZATION

The geology of the Bralorne intrusions, Pioneer volcanics, and porphyry dikes combined with very deep brittle faulting, spaying, and cross fractures are probably the principle factors that controlled the genesis of the polymetallic vein and lode gold replacements in the Bralorne-Bridge River Mining District. The following draws heavily on Church (1995, Cleveland (1958) and Stevenson (1958) and reflects upon the controls of ore genesis in the Bralorne-Bridge River Mining District:

The limits of vein fissuring at Bralorne-Pioneer, as delineated by the mining operations, define a rectangular area 1600 metres long and 550 metres wide. The ore controls are both regional and local. The main regional control is the Cadwallader fault. Stevenson (1958) indicates that most of the movement was along the northeast contact of serpentine belt, left lateral motion is suggested by rotation of the veins. The ore veins at Bralorne-Pioneer were emplaced in an array of tension fractures resulting from a left lateral shear couple developed between the Cadwallader and Fergusson faults. Within the structural lens, between the two faults, veins developed in a variety of rock types. Consequently most of the fissures in these rocks are complex structures which opened with the shifting stresses, permitting the passage of hydrothermal solutions and deposition of polymetallic quartz veins. Other structural controls such as branch junctions, segment junctions and lenses also resulted in ore sites in different veins and different parts of veins that may occur in two adjacent mines, but these controls are subsidiary to the steep and flat control. This control, one which manifests itself when tracing veins near serpentine bodies was noted by Cleveland (1958) the serpentine acted as a dam to the mineralizing solutions. 'The incompetent rocks, particularly the serpentine, have exerted a strong influence on the distribution of ore merely because the veins died out or a tendency for the ore shoot to pull away from the serpentine with depth and drop vertically down the dip of the vein.' Abnormal richness in gold was noted by previous workers in veins near the serpentine belt. At the adjacent Pioneer mine, Cleveland (1938) observed 'the vein fissures in several instances are deflected from their normal strike on approaching serpentine contacts'. The Pioneer, Footwall and Coronation veins all deflect towards the south near this contact.

Thus, in summarizing, both structure and geological controls have a consistent influence in creating these vein gold polymetallic suites.
Property Geology

Lithologies of the CJBg sub-unit of the Bridge River Complex, which consists of pillowed and massive greenstone and limestone; lesser amounts of radiolarian chert, argillite diabase, sandstone, and pebbly mudstone comprise the rocks found on the Case 1 Claim. This sub unit has a total of seven different lithologies, four of which are located on the Property (Map 1 and Figure 4). To the southeast, there is a brown pebbly mudstone which, transecting the property to the northwest, grades into various layers of gray limestone and altered greenstone. A greenish colored porphrite intrudes the centre of the property, yet no clear alteration zones appear to be present. Minor fissures of hematite mineralization are evident within the gray limestone and minor reddening of greenstones. Boundaries of the lithologies have a northeast-southwest trend, yet most of the contacts are speculative due to overburden.

According to previous workers such as Chisholm (1983), Cardinal (1983), Tanguay and Allen (1983), the area to the west of the Case 1 Claim were underlain by intensely folded and sheared graphitic argillites and shales and graphitic shear planes within the argillite hosts gold mineralization. No significant mineralization was directly discerned from field observations.

GEOCHEMISTRY

Introduction

A total of 20 rock and 10 soil samples were gathered during the 1997 field work program and submitted to Eco-Tech Laboratories for preparation and analysis. The sample locations are shown in Map 1 and Figure 4 respectively. All 30 samples were analyzed for
30 elements plus gold fire assay. Rock sample descriptions are given in Appendix A, sampling procedures are given in Appendix B, sample preparation in the lab and analytical procedures in Appendix C. All analytical results are given in Appendix D.

Soil Geochemistry

A total of 10 soil samples were taken during the geochemical sampling program on the Case 1 Claim. The various sample locations and assay results for gold, silver, arsenic, copper, nickel, and tungsten are shown in Figure 5. The samples yielded weak values in gold, silver, arsenic, copper, nickel, and tungsten. The values range from background (10 ppb) levels up to 110 ppb gold, <0.2 ppm silver, 100 ppm arsenic, 50 ppm copper, 103 ppm nickel, and <10 ppm tungsten. These samples were obtained from the “B” horizon along a small soil grid parallel to a ridge on the property. All analytical results are given in Appendix D (See Appendix B for Soil Sampling procedure, Appendix C for Analytical Methodology and Appendix D for Analytical Results).
Figure 4: Grid of the Case 1 Claim showing sample locations of soil survey and minor geology. Scale is in meters (see Map 1 for relative location).
Figure 5: Geochemical grid of the Case 1 Claim with soil sample sites and assay data pertaining to relative samples. Scale is in meters (see Map 1 for relative location and Appendix D for actual Analytical Results).
Rock Geochemistry

A total of 20 rock sample were collected from various sites on the property. The samples were from limestone, mudstone and greenstone. These samples were taken at various sites while prospecting on the property. Sample locations and analytical results for gold, silver, arsenic, copper, nickel, and tungsten are plotted on Map 2. The rock samples returned maximum up to 0.04 g/t gold, <0.6 ppm silver, 870 ppm arsenic, 91 ppm copper, 75 ppm nickel, and <10 ppm tungsten (See Appendix C for Analytical Methodology and Appendix D for analytical results).
CONCLUSIONS AND RECOMMENDATIONS

The Case 1 Claim is underlain by the CJBg sub-unit of Bridge River Complex which is comprised of north-northeasterly trending and southeasterly dipping sequence of sedimentary rocks. The rocks were highly fractured and hydrothermally altered which made structural measurements unobtainable on most of the few outcrops. The soil was very shallow and obtaining a suitable soil sample from the “B” horizon was challenging.

Mineralization on the Case 1 Claim was non-existent or restricted to small, localized pockets within the limestone. This suggests a skarn-type mineralizing environment and not a structural/geological setting as recorded in the regional mineralization encountered in the Bridge River-Bralorne Mining District. No significant mineralization was encountered and/or detected via ICP analysis.

Due to the lack of significant mineralization of rocks and soil and low values of leader minerals, future fieldwork on the Case 1 Claim is restricted to geological mapping, rock and soil sampling, and prospecting on the unexplored units of the claim. Geochemical anomalies suggest gold and base metal potential approximately one hundred meters to the north because reconnaissance geochemical sampling on Seton Lake supports this theory. Further geochemical sampling and geological mapping is recommended to isolate and evaluate this anomalous trend.
REFERENCES

1859 J. S. Stevenson: B. C. Department of Mines. Bulletin 20, Part IV. Lode Gold Deposits of Southwestern B. C.

1933 B. C. Department of Mines Report.

1938 C. E. Cleveland, Geology of the Bralorne and Pioneer Mines; Canadian Institute of Mining and Metallurgy, Transactions, Volume 41, pages 12-27.

APPENDIX A

ROCK SAMPLE DESCRIPTIONS

97-KW-4b-R-8 Massive bull quartz vein with no visible mineralization.

97-KW-4b-R-9 Very fine grained matrix of brown mud hosting minor quartz calcite stringers along with various shaped pebbles; brown mudstone.

97-KW-4b-R-10 Dark gray to black colored bluish-green rock; many green minerals; greenstone.

97-KW-4b-R-11 Gray colored rock with calcite fissures and partially fractured; gray limestone.

97-KW-4b-R-12 Lime green feldspar rich porphyritic rock; porphrite.

97-KW-4b-R-13 Gray limestone as before.

97-KW-4b-R-14 Purplish-red weathered rock with calcite stringers; mostly green on unaltered surfaces; greenstone.

97-KW-4b-R-15 Greenstone as above.

97-KW-4b-R-16 Greenstone as above.

97-PG-4b-R-50 Quartz calcite vein within a carbonate limestone host; Bridge River Complex

97-PG-4b-R-51 Gray limestone altered to orange color; color pervasive, ooid like structures, crystalline calcite, minor dark orange (pyrite-like) alteration in small clasts.

97-PG-4b-R-52 40 cm wide quartz calcite vein with no signs of Mineralization, but altered to orange. Chiefly calcite constituents.

97-PG-4b-R-53 Greenstone (meta-basalt) well altered and pervasively hydraulically fractured. Calcite veinlets and 2 cm wide veins. Green fine grained (possibly mudstone??). Thick intrusive calcite veins also.
Appendix A (cont’d)

Rock Sample Descriptions

97-PG-4b-R-54 Well altered (red-orange to rusty) greenstone. Calcite and quartz veins pervasive. Large slope of fine (5 cm) sized boulders below main exposure. Easily broken-up fresh surfaces difficult to obtain.

97-PG-4b-R-55 Quartz-calcite vein within red altered greenstones. Massive vein (0.5 cm wide) with 1:1 quartz-calcite. Located proximal to weathered gray limestone contact.

97-PG-4b-R-56 Massive medium grained, 0.5 crystalline green-gray 50% carbonate rock. Weathered to red-orange float.

97-PG-4b-R-57 Quartz Calcite vein bearing pyrite, arsenopyrite, and chalcopyrite. Altered to orange red with sulfur smell. Hosted in massive greenstones.

97-PG-4b-R-58 Calcite veins with minor quartz hosted by altered greenstone that is very broken up. Veins are (15 cm) wide and cross cut altered host rock.

97-PG-4b-R-59 Additional gossan-like carbonate rock that has breccia like appearance. Breaks easily. Varied sized (1-5 mm) clasts within fine grained matrix.

97-PG-4b-R-60 Gossanous silicified float.
APPENDIX B

SOIL SAMPLING PROCEDURE

Geochemical soil sampling was conducted to cover almost any part of exposed soil on the property. The soil consisted mostly of talus fines and natural soil taken at depths of up to 25 centimeters or “B” horizon. The soil was then sieved on site using a 10 mesh sieve and subsequently placed in paper sample bags and shipped to Eco-Tech Laboratories for gold analyses by standard Induced Coupling Plasma Mass Spectrometer techniques.

Soil samples were taken as “fresh” as possible from the localities available and along the geochemical grid as in Figure 3.
APPENDIX C

ANALYTICAL METHODS

Multielement ICP Analysis

Samples are catalogued and dried. Soil samples are screened to obtain a -80 mesh sample. Rock samples are 2 stage crushed to -10 mesh and pulverized on a ring mill pulverizer to -140 mesh, rolled and homogenized.

A 0.5 gram sample is digested with aqua regia with beryllium which acts as an internal standard. The sample is analyzed on a Jarrel Ash ICP unit. Repeats and standards are used every time to ensure quality control.

Gold Geochemical Analysis

Samples are catalogued and dried. Soils are prepared by sieving through a +80 mesh screen to obtain a -80 mesh fraction. Rock samples are 2 stage crushed to -10 mesh and a 250 gram subsample is pulverized on a ring mill pulverizer to -140 mesh. The subsample is rolled, homogenized and bagged in a pre-numbered bag.

The sample is weighed to 10 or 30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on a Atomic Absorption Instrument. Over range values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data.
APPENDIX D

ANALYTICAL RESULTS
CERTIFICATE OF ANALYSIS AK 97-940

SOUTHERN GOLD RESOURCES LTD.
1540-750 WEST PENDER
VANCOUVER, BC
V6C 1T8

ATTENTION: ALAN SAVAGE

No. of samples received: 26
Sample type: Soil
PROJECT #: AL - 95
SHIPMENT #: Not given
Samples submitted by: Paul D. Gray

<table>
<thead>
<tr>
<th>ET #</th>
<th>Tag #</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97-KW-4B-SS-22</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>97-KW-4B-SS-23</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>97-KW-4B-SS-24</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>97-KW-4B-SS-25</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>97-KW-4B-SS-26</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>97-KW-4B-SS-27</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>97-KW-4B-SS-28</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>97-KW-4B-SS-29</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>97-KW-4B-SS-30</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>97-KW-4B-SS-31</td>
<td><5</td>
</tr>
<tr>
<td>11</td>
<td>97-KW-1-SS-66</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>97-KW-1-SS-67</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>97-KW-1-SS-68</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>97-KW-1-SS-69</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>97-KW-1-SS-70</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>97-KW-1-SS-71</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>97-KW-1-SS-72</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>97-KW-1-SS-73</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>97-KW-1-SS-74</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>97-KW-1-SS-75</td>
<td>5</td>
</tr>
<tr>
<td>21</td>
<td>97-KW-1-SS-76</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>97-KW-1-SS-77</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>97-KW-1-S-55</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>97-KW-1-S-56</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>97-KW-1-S-57</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>97-KW-1-R-52</td>
<td>110</td>
</tr>
<tr>
<td>ET #</td>
<td>Tag #</td>
<td>Au (ppb)</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>97-KW-4B-SS-22</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>97-KW-4B-SS-29</td>
<td>110</td>
</tr>
<tr>
<td>10</td>
<td>97-KW-4B-SS-31</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>97-KW-1-SS-74</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>97-KW-1R-52</td>
<td>105</td>
</tr>
</tbody>
</table>

Quality Control Data (QC):

Repeat:

<table>
<thead>
<tr>
<th>ET #</th>
<th>Tag #</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97-KW-4B-SS-22</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>97-KW-4B-SS-29</td>
<td>110</td>
</tr>
<tr>
<td>10</td>
<td>97-KW-4B-SS-31</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>97-KW-1-SS-74</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>97-KW-1R-52</td>
<td>105</td>
</tr>
</tbody>
</table>

Standard:

GEO'97 135

XLS/97

Fax: 604-681-1339

Cc: Southern Gold Whistler

ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer
<table>
<thead>
<tr>
<th>Et. #</th>
<th>Tag</th>
<th>Au (ppb)</th>
<th>Ag</th>
<th>Al %</th>
<th>As</th>
<th>Ba</th>
<th>Bi</th>
<th>Ca %</th>
<th>Cd</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe %</th>
<th>La</th>
<th>Mg %</th>
<th>Mn</th>
<th>Mo</th>
<th>Na %</th>
<th>Ni</th>
<th>P</th>
<th>Pb</th>
<th>Sb</th>
<th>Sn</th>
<th>Sr</th>
<th>Tl %</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>Y</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>97-KW-4B-23</td>
<td>40</td>
<td><0.2</td>
<td>2.34</td>
<td>65</td>
<td>140</td>
<td><5</td>
<td>1.06</td>
<td>4</td>
<td>41</td>
<td>34</td>
<td>169</td>
<td>6.10</td>
<td><10</td>
<td>1.39</td>
<td>1471</td>
<td>22</td>
<td>0.02</td>
<td>81</td>
<td>880</td>
<td>20</td>
<td>70</td>
<td><20</td>
<td>70</td>
<td>0.05</td>
<td><10</td>
<td>75</td>
<td><10</td>
<td>9</td>
<td>185</td>
</tr>
<tr>
<td>29</td>
<td>97-KW-4B-24</td>
<td>10</td>
<td><0.2</td>
<td>2.00</td>
<td>45</td>
<td>200</td>
<td><5</td>
<td>0.57</td>
<td>3</td>
<td>28</td>
<td>34</td>
<td>103</td>
<td>4.90</td>
<td><10</td>
<td>0.95</td>
<td>1229</td>
<td>16</td>
<td>0.02</td>
<td>64</td>
<td>920</td>
<td>18</td>
<td>60</td>
<td><20</td>
<td>45</td>
<td>0.04</td>
<td><10</td>
<td>63</td>
<td><10</td>
<td>8</td>
<td>152</td>
</tr>
<tr>
<td>30</td>
<td>97-KW-4B-25</td>
<td>25</td>
<td><0.2</td>
<td>2.20</td>
<td>50</td>
<td>155</td>
<td><5</td>
<td>0.95</td>
<td>4</td>
<td>39</td>
<td>25</td>
<td>181</td>
<td>5.41</td>
<td><10</td>
<td>0.98</td>
<td>1327</td>
<td>21</td>
<td>0.03</td>
<td>68</td>
<td>990</td>
<td>22</td>
<td>55</td>
<td><20</td>
<td>69</td>
<td>0.04</td>
<td><10</td>
<td>62</td>
<td><10</td>
<td>12</td>
<td>186</td>
</tr>
<tr>
<td>31</td>
<td>97-KW-4B-26</td>
<td>35</td>
<td><0.2</td>
<td>2.52</td>
<td>100</td>
<td>190</td>
<td><5</td>
<td>1.07</td>
<td>3</td>
<td>39</td>
<td>34</td>
<td>186</td>
<td>5.57</td>
<td><10</td>
<td>0.96</td>
<td>1551</td>
<td>17</td>
<td>0.03</td>
<td>77</td>
<td>1310</td>
<td>22</td>
<td>45</td>
<td><20</td>
<td>85</td>
<td>0.07</td>
<td><10</td>
<td>67</td>
<td><10</td>
<td>11</td>
<td>224</td>
</tr>
<tr>
<td>32</td>
<td>97-KW-4B-27</td>
<td>65</td>
<td><0.2</td>
<td>2.29</td>
<td>175</td>
<td>185</td>
<td><5</td>
<td>0.78</td>
<td>4</td>
<td>44</td>
<td>31</td>
<td>208</td>
<td>5.97</td>
<td><10</td>
<td>0.99</td>
<td>1608</td>
<td>28</td>
<td>0.03</td>
<td>86</td>
<td>710</td>
<td>24</td>
<td>85</td>
<td><20</td>
<td>60</td>
<td>0.05</td>
<td><10</td>
<td>71</td>
<td><10</td>
<td>15</td>
<td>219</td>
</tr>
<tr>
<td>33</td>
<td>97-KW-4B-28</td>
<td>10</td>
<td><0.2</td>
<td>2.03</td>
<td>40</td>
<td>325</td>
<td><5</td>
<td>1.27</td>
<td><1</td>
<td>32</td>
<td>39</td>
<td>118</td>
<td>5.28</td>
<td><10</td>
<td>1.07</td>
<td>2085</td>
<td>9</td>
<td>0.03</td>
<td>63</td>
<td>2500</td>
<td>22</td>
<td><5</td>
<td><20</td>
<td>98</td>
<td>0.03</td>
<td><10</td>
<td>56</td>
<td><10</td>
<td>8</td>
<td>221</td>
</tr>
<tr>
<td>34</td>
<td>97-KW-4B-29</td>
<td>10</td>
<td><0.2</td>
<td>2.19</td>
<td>30</td>
<td>455</td>
<td><5</td>
<td>1.27</td>
<td>2</td>
<td>34</td>
<td>42</td>
<td>128</td>
<td>5.48</td>
<td><10</td>
<td>1.02</td>
<td>2855</td>
<td>7</td>
<td>0.03</td>
<td>68</td>
<td>2730</td>
<td>24</td>
<td><5</td>
<td><20</td>
<td>103</td>
<td>0.04</td>
<td><10</td>
<td>57</td>
<td><10</td>
<td>9</td>
<td>266</td>
</tr>
<tr>
<td>35</td>
<td>97-KW-4B-30</td>
<td>25</td>
<td><0.2</td>
<td>2.34</td>
<td>40</td>
<td>385</td>
<td><5</td>
<td>1.12</td>
<td>2</td>
<td>36</td>
<td>46</td>
<td>113</td>
<td>5.79</td>
<td><10</td>
<td>1.08</td>
<td>2344</td>
<td>7</td>
<td>0.03</td>
<td>77</td>
<td>2880</td>
<td>24</td>
<td><5</td>
<td><20</td>
<td>94</td>
<td>0.04</td>
<td><10</td>
<td>63</td>
<td><10</td>
<td>8</td>
<td>320</td>
</tr>
<tr>
<td>36</td>
<td>97-KW-4B-31</td>
<td>5</td>
<td><0.2</td>
<td>1.67</td>
<td>5</td>
<td>260</td>
<td><5</td>
<td>0.55</td>
<td><1</td>
<td>15</td>
<td>32</td>
<td>42</td>
<td>3.22</td>
<td><10</td>
<td>0.64</td>
<td>993</td>
<td>1</td>
<td>0.02</td>
<td>42</td>
<td>1290</td>
<td>12</td>
<td><5</td>
<td><20</td>
<td>48</td>
<td>0.08</td>
<td><10</td>
<td>44</td>
<td><10</td>
<td>4</td>
<td>173</td>
</tr>
<tr>
<td>Et. #</td>
<td>Tag #</td>
<td>Au(ppb)</td>
<td>Ag</td>
<td>Al %</td>
<td>As</td>
<td>Ba</td>
<td>Bi</td>
<td>Ca %</td>
<td>Cd</td>
<td>Co</td>
<td>Cr</td>
<td>Cu</td>
<td>Fe %</td>
<td>La</td>
<td>Mg %</td>
<td>Mn</td>
<td>Mo</td>
<td>Na %</td>
<td>Ni</td>
<td>P</td>
<td>Pb</td>
<td>Sb</td>
<td>Sn</td>
<td>Sr</td>
<td>Ti %</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>Y</td>
<td>Zn</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>97-PG-4B-S-50</td>
<td>-<0.2</td>
<td>1.89</td>
<td>35</td>
<td>130</td>
<td>5</td>
<td>1.71</td>
<td><1</td>
<td>31</td>
<td>34</td>
<td>106</td>
<td>>10</td>
<td><10</td>
<td>1.32</td>
<td>1260</td>
<td>11</td>
<td>0.02</td>
<td>55</td>
<td>780</td>
<td>18</td>
<td><5</td>
<td><20</td>
<td>173</td>
<td>0.09</td>
<td><10</td>
<td>57</td>
<td><10</td>
<td>3</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>97-PG-4B-S-51</td>
<td>10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>97-PG-4B-SS-107</td>
<td>55</td>
<td>0.4</td>
<td>1.94</td>
<td>80</td>
<td>190</td>
<td><5</td>
<td>1.16</td>
<td><1</td>
<td>48</td>
<td>39</td>
<td>192</td>
<td>6.06</td>
<td><10</td>
<td>1.05</td>
<td>1991</td>
<td>16</td>
<td>0.03</td>
<td>94</td>
<td>1380</td>
<td>30</td>
<td><5</td>
<td><20</td>
<td>88</td>
<td>0.04</td>
<td><10</td>
<td>58</td>
<td><10</td>
<td>11</td>
<td>229</td>
</tr>
<tr>
<td>19</td>
<td>97-PG-4B-SS-118</td>
<td>30</td>
<td>0.2</td>
<td>2.06</td>
<td>75</td>
<td>205</td>
<td><5</td>
<td>0.94</td>
<td><1</td>
<td>34</td>
<td>28</td>
<td>175</td>
<td>5.16</td>
<td><10</td>
<td>0.87</td>
<td>1416</td>
<td>8</td>
<td>0.03</td>
<td>58</td>
<td>960</td>
<td>22</td>
<td><5</td>
<td><20</td>
<td>75</td>
<td>0.09</td>
<td><10</td>
<td>60</td>
<td><10</td>
<td>12</td>
<td>198</td>
</tr>
<tr>
<td>28</td>
<td>97-KW-4B-SS-23</td>
<td>20</td>
<td>0.2</td>
<td>2.32</td>
<td>55</td>
<td>130</td>
<td><5</td>
<td>1.05</td>
<td><1</td>
<td>40</td>
<td>35</td>
<td>166</td>
<td>6.03</td>
<td><10</td>
<td>1.38</td>
<td>1450</td>
<td>8</td>
<td>0.04</td>
<td>66</td>
<td>880</td>
<td>20</td>
<td><5</td>
<td><20</td>
<td>88</td>
<td>0.08</td>
<td><10</td>
<td>73</td>
<td><10</td>
<td>8</td>
<td>184</td>
</tr>
<tr>
<td>36</td>
<td>97-KW-4B-SS-31</td>
<td>5</td>
<td><0.2</td>
<td>1.69</td>
<td>10</td>
<td>260</td>
<td><5</td>
<td>0.55</td>
<td><1</td>
<td>15</td>
<td>32</td>
<td>42</td>
<td>3.24</td>
<td><10</td>
<td>0.64</td>
<td>1002</td>
<td><1</td>
<td>0.02</td>
<td>42</td>
<td>1310</td>
<td>12</td>
<td><5</td>
<td><20</td>
<td>46</td>
<td>0.08</td>
<td><10</td>
<td>44</td>
<td><10</td>
<td>4</td>
<td>174</td>
</tr>
<tr>
<td>45</td>
<td>97-KW-4B-SS-40</td>
<td>5</td>
<td><0.2</td>
<td>2.14</td>
<td>20</td>
<td>300</td>
<td><5</td>
<td>0.52</td>
<td><1</td>
<td>24</td>
<td>31</td>
<td>75</td>
<td>4.14</td>
<td><10</td>
<td>0.70</td>
<td>1361</td>
<td>3</td>
<td>0.02</td>
<td>54</td>
<td>1310</td>
<td>16</td>
<td><5</td>
<td><20</td>
<td>47</td>
<td>0.08</td>
<td><10</td>
<td>50</td>
<td><10</td>
<td>6</td>
<td>191</td>
</tr>
</tbody>
</table>

Standard:
- GEO97:
 - 130 | 1.4 | 1.62 | 50 | 155 | <5 | 1.65 | <1 | 18 | 52 | 79 | 3.87 | <10 | 0.91 | 665 | <1 | 0.02 | 24 | 660 | 20 | <5 | <20 | 54 | 0.10 | <10 | 71 | 20 | 4 | 70
- GEO97:
 - 150 | 1.4 | 1.60 | 45 | 150 | <5 | 1.62 | <1 | 18 | 53 | 78 | 3.82 | <10 | 0.88 | 647 | <1 | 0.02 | 24 | 660 | 20 | <5 | <20 | 52 | 0.10 | <10 | 70 | 20 | 4 | 69

Note: * = Result to follow

Eco-Tech Laboratories Ltd.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

d#:1059
XLS/87
fax: 604-681-1339
c: southern gold whistler - fax: 604-905-4185
CERTIFICATE OF ASSAY AK 97-939R

SOUTHERN GOLD RESOURCES
1540-750 WEST PENDER
VANCOUVER, BC
V6C 2T8

ATTENTION: ALAN SAVAGE

No. of samples received: 23
Sample type: Rock
PROJECT #: AL - 95
SHIPMENT #: Not given
Samples submitted by: Paul D. Gray

<table>
<thead>
<tr>
<th>ET #</th>
<th>Tag #</th>
<th>Au (g/t)</th>
<th>Au (oz/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97-KW-1-R-50</td>
<td>0.11</td>
<td>0.003</td>
</tr>
<tr>
<td>2</td>
<td>97-KW-1-R-51</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>3</td>
<td>97-KW-1-R-53</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>4</td>
<td>97-KW-4B-R-08</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>97-KW-4B-R-09</td>
<td>0.04</td>
<td>0.001</td>
</tr>
<tr>
<td>6</td>
<td>97-KW-4B-R-10</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>7</td>
<td>97-KW-4B-R-11</td>
<td>0.04</td>
<td>0.001</td>
</tr>
<tr>
<td>8</td>
<td>97-KW-4B-R-12</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>9</td>
<td>97-KW-4B-R-13</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>10</td>
<td>97-KW-4B-R-14</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>11</td>
<td>97-KW-4B-R-15</td>
<td>0.04</td>
<td>0.001</td>
</tr>
<tr>
<td>12</td>
<td>97-KW-4B-R-16</td>
<td>0.20</td>
<td>0.006</td>
</tr>
<tr>
<td>13</td>
<td>97-PG-4B-R-50</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>14</td>
<td>97-PG-4B-R-51</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>15</td>
<td>97-PG-4B-R-52</td>
<td>0.14</td>
<td>0.004</td>
</tr>
<tr>
<td>16</td>
<td>97-PG-4B-R-53</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>17</td>
<td>97-PG-4B-R-54</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>18</td>
<td>97-PG-4B-R-55</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>19</td>
<td>97-PG-4B-R-56</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>ET #</td>
<td>Tag #</td>
<td>Au (g/t)</td>
<td>Au (oz/t)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>20</td>
<td>97-PG-4B-R-57</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>21</td>
<td>97-PG-4B-R-58</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>22</td>
<td>97-PG-4B-R-59</td>
<td>0.35</td>
<td>0.010</td>
</tr>
<tr>
<td>23</td>
<td>97-PG-4B-R-60</td>
<td>0.03</td>
<td>0.001</td>
</tr>
</tbody>
</table>

QC/DATA:

Resplit:
1. 97-KW-1-R-50 0.10 0.003

Repeat:
1. 97-KW-1-R-50 0.14 0.004
10. 97-KW-4B-R-14 0.03 0.001

Standard:
STD-M 1.53 0.045

XLS/97

Fax: 604-681-1339

Cc: southern gold whistler - 604-905-4185

Eco-Tech Laboratories Ltd.

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer
<p>| Et. # | Tag # | Ag | Al | As | Ba | Bi | Ca | C | Cd | Co | Cr | Cu | Fe | La | Mg | % | Mn | Mo | Na | Ni | P | Pb | Sb | Sn | Sr | Ti | % | U | V | W | Y | Zn |
| 4 | 97-KW-4B-R-08 | <0.2 | 0.16 | 100 | 25 | <5 | 1.85 | <1 | 3 | 262 | 27 | 1.18 | <10 | 0.07 | 313 | 9 | <0.01 | 5 | 240 | 2 | <5 | <20 | 5 | <0.01 | <10 | 14 | <10 | <1 | 13 | 58 |
| 5 | 97-KW-4B-R-09 | <0.2 | 0.80 | 10 | 20 | 5 | 3.49 | <1 | 2 | 94 | 3 | 2.26 | 50 | 0.30 | 670 | 2 | 0.07 | <1 | 200 | 6 | <5 | <20 | 69 | <0.01 | <10 | 3 | <10 | 9 | 58 |
| 6 | 97-KW-4B-R-10 | <0.2 | 3.94 | <5 | 205 | 10 | 3.84 | <1 | 35 | 158 | 39 | 6.08 | 20 | 4.24 | 1630 | <1 | 0.04 | 66 | 2490 | 10 | 10 | <20 | 77 | 0.40 | <10 | 149 | <10 | 91 | 50 |
| 7 | 97-KW-4B-R-11 | <0.2 | 0.53 | <5 | 55 | <5 | 0.16 | <1 | 6 | 147 | 19 | 1.31 | <10 | 0.23 | 918 | <1 | <0.01 | 16 | 370 | 8 | <5 | <20 | 4 | <0.01 | <10 | 9 | <10 | 13 | 33 |
| 8 | 97-KW-4B-R-12 | <0.2 | 0.75 | <5 | 55 | 10 | 0.93 | <1 | 4 | 85 | 3 | 1.75 | 20 | 0.24 | 384 | 2 | 0.04 | 2 | 370 | 12 | <5 | <20 | 28 | 0.01 | <10 | 12 | <10 | 31 | 35 |
| 9 | 97-KW-4B-R-13 | <0.2 | 0.19 | 5 | <5 | <5 | >10 | <1 | 2 | 10 | 4 | 0.59 | <10 | 0.30 | 582 | <1 | <0.01 | 5 | 130 | <2 | 10 | <20 | 945 | <0.01 | <10 | 23 | <10 | 2 | 3 |
| 10 | 97-KW-4B-R-14 | <0.2 | 1.31 | <5 | 140 | 15 | >10 | <1 | 34 | 79 | 30 | 5.95 | 30 | 0.98 | 1001 | <1 | 0.04 | 75 | 2460 | 2 | <5 | <20 | 223 | 0.37 | <10 | 71 | <10 | 52 | 40 |
| 11 | 97-KW-4B-R-15 | <0.2 | 2.51 | <5 | 85 | 15 | 5.88 | 1 | 20 | 28 | 23 | 6.70 | 40 | 1.09 | 1027 | 5 | 0.02 | 30 | 1970 | 10 | <5 | <20 | 174 | 0.01 | <10 | 28 | <10 | 101 |
| 12 | 97-KW-4B-R-16 | 0.8 | 0.50 | 550 | 85 | 10 | 2.07 | <1 | 6 | 152 | 91 | 3.83 | 20 | 0.19 | 639 | 16 | <0.01 | 3 | 1460 | 30 | <5 | <20 | 24 | <0.01 | <10 | 16 | <10 | 25 | 53 |
| 13 | 97-PG-4B-R-50 | <0.2 | 0.27 | 10 | <5 | <5 | >10 | <1 | 3 | 82 | 6 | 0.56 | <10 | 0.16 | 338 | <1 | 0.01 | 6 | 70 | <2 | 10 | <20 | 506 | 0.01 | <10 | 7 | <10 | 11 | 11 |
| 14 | 97-PG-4B-R-51 | 0.2 | 0.45 | 15 | 135 | 16 | >10 | <1 | 5 | 27 | 11 | 4.05 | <10 | 0.32 | 1310 | 3 | <0.01 | 7 | 450 | <2 | <5 | <20 | 121 | <0.01 | <10 | 33 | <10 | 35 | 28 |
| 15 | 97-PG-4B-R-52 | <0.2 | 0.03 | 870 | 10 | >5 | >10 | <1 | 67 | <1 | 0.41 | <10 | 0.06 | 519 | <1 | <0.01 | 1 | 100 | <2 | 15 | <20 | 195 | <0.01 | <10 | 3 | <10 | 6 | 2 |
| 16 | 97-PG-4B-R-53 | <0.2 | 2.40 | 20 | 85 | 10 | >10 | <1 | 29 | 39 | 46 | 5.48 | 30 | 1.36 | 702 | 3 | 0.02 | 47 | 3650 | 4 | <5 | <20 | 238 | <0.01 | <10 | 38 | <10 | 10 | 80 |
| 17 | 97-PG-4B-R-54 | 0.2 | 1.38 | 160 | 100 | 5 | 3.04 | <1 | 8 | 32 | 3 | 5.23 | 30 | 0.44 | 572 | 5 | 0.02 | 2100 | 8 | <5 | <20 | 75 | <0.01 | <10 | 12 | <10 | 25 | 88 |
| 18 | 97-PG-4B-R-55 | 0.2 | 0.34 | 5 | <5 | <5 | >10 | <1 | 3 | 122 | 1 | 1.33 | <10 | 0.18 | 1965 | 3 | <0.01 | 140 | <2 | <5 | <20 | 1623 | <0.01 | <10 | 6 | <10 | 3 | 9 |
| 19 | 97-PG-4B-R-56 | <0.2 | 0.93 | 5 | 25 | <5 | 1.81 | <1 | 3 | 80 | <1 | 2.38 | 80 | 0.31 | 370 | 2 | 0.06 | 5 | 850 | <2 | <5 | <20 | 40 | <0.01 | <10 | 10 | <10 | 60 | 165 |
| 20 | 97-PG-4B-R-57 | <0.2 | 0.91 | 30 | 120 | 15 | >10 | <1 | 13 | 39 | 6 | 7.21 | 20 | 2.82 | 2374 | 6 | 0.02 | 4 | 2170 | <2 | <10 | <20 | 371 | <0.01 | <10 | 51 | <10 | 30 | 76 |
| 21 | 97-PG-4B-R-58 | 0.6 | 0.35 | 30 | 35 | 5 | >10 | <1 | 3 | 5 | <1 | 1.58 | 10 | 0.26 | 3158 | <1 | 0.06 | <1 | 235 | <2 | 10 | <20 | 1345 | 0.01 | <10 | 18 | <10 | 85 | 6 |
| 22 | 97-PG-4B-R-59 | <0.2 | 1.61 | 905 | 85 | 10 | >10 | <1 | 26 | 27 | 4 | 7.53 | 30 | 0.27 | 1682 | 7 | <0.01 | 9 | 5220 | 4 | <5 | <20 | 123 | <0.01 | <10 | 70 | <10 | 56 | 98 |
| 23 | 97-PG-4B-R-60 | 0.2 | 0.55 | 35 | 90 | 5 | 0.52 | <1 | 3 | 176 | 29 | 1.87 | 10 | 0.22 | 133 | 4 | 0.01 | 14 | 410 | 8 | <5 | <20 | 13 | <0.01 | <10 | 21 | <10 | 6 | 48 |</p>
<table>
<thead>
<tr>
<th>Et. #</th>
<th>Tag #</th>
<th>Ag</th>
<th>Al %</th>
<th>As</th>
<th>Ba</th>
<th>Bi</th>
<th>Ca %</th>
<th>Cd</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe %</th>
<th>La</th>
<th>Mg %</th>
<th>Mn</th>
<th>Mo</th>
<th>Na %</th>
<th>Ni</th>
<th>P</th>
<th>Pb</th>
<th>Sb</th>
<th>Sn</th>
<th>Sr</th>
<th>Ti %</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>Y</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QC DATA:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resplit:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 97-KW-1-R-50</td>
<td>0.6</td>
<td>1.16</td>
<td>10</td>
<td>35</td>
<td>5</td>
<td>0.09</td>
<td><1</td>
<td>21</td>
<td>53</td>
<td>110</td>
<td>5.38</td>
<td><10</td>
<td>0.79</td>
<td>378</td>
<td>11</td>
<td>0.03</td>
<td>9</td>
<td>490</td>
<td>22</td>
<td><5</td>
<td><20</td>
<td>8</td>
<td><0.01</td>
<td><10</td>
<td>22</td>
<td><10</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 97-KW-1-R-50</td>
<td>0.6</td>
<td>1.21</td>
<td>10</td>
<td>40</td>
<td><5</td>
<td>0.08</td>
<td><1</td>
<td>20</td>
<td>104</td>
<td>102</td>
<td>5.28</td>
<td><10</td>
<td>0.74</td>
<td>361</td>
<td>12</td>
<td>0.05</td>
<td>10</td>
<td>460</td>
<td>22</td>
<td><5</td>
<td><20</td>
<td>12</td>
<td><0.01</td>
<td><10</td>
<td>23</td>
<td><10</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 97-KW-4B-R-14</td>
<td><0.2</td>
<td>1.30</td>
<td><5</td>
<td>140</td>
<td>15</td>
<td>>10</td>
<td><1</td>
<td>33</td>
<td>75</td>
<td>29</td>
<td>5.86</td>
<td>30</td>
<td>0.98</td>
<td>1005</td>
<td><1</td>
<td>0.03</td>
<td>75</td>
<td>2490</td>
<td>2</td>
<td><5</td>
<td><20</td>
<td>232</td>
<td>0.35</td>
<td><10</td>
<td>68</td>
<td><10</td>
<td>52</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>10 97-KW-4B-R-14</td>
<td><0.2</td>
<td>1.30</td>
<td><5</td>
<td>140</td>
<td>15</td>
<td>>10</td>
<td><1</td>
<td>33</td>
<td>75</td>
<td>29</td>
<td>5.86</td>
<td>30</td>
<td>0.98</td>
<td>1005</td>
<td><1</td>
<td>0.03</td>
<td>75</td>
<td>2490</td>
<td>2</td>
<td><5</td>
<td><20</td>
<td>232</td>
<td>0.35</td>
<td><10</td>
<td>68</td>
<td><10</td>
<td>52</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Repeat:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEO'97</td>
<td>1.2</td>
<td>1.79</td>
<td>55</td>
<td>160</td>
<td><5</td>
<td>1.82</td>
<td><1</td>
<td>20</td>
<td>62</td>
<td>79</td>
<td>4.19</td>
<td><10</td>
<td>0.95</td>
<td>679</td>
<td><1</td>
<td>0.02</td>
<td>27</td>
<td>670</td>
<td>24</td>
<td><5</td>
<td><20</td>
<td>63</td>
<td>0.13</td>
<td><10</td>
<td>80</td>
<td><10</td>
<td>18</td>
<td>72</td>
</tr>
</tbody>
</table>

dt/939

XLS/97

fax: 604-681-1339

cc: southern gold whistler
APPENDIX E

STATEMENT OF QUALIFICATIONS

I. Paul D. Gray, of the city of Vancouver, in the Province of British Columbia, do hereby state that:

1. I graduated from Dalhousie University in 1996 with a B.Sc. Degree in Earth Science.

2. I am employed by Southern Gold Resources Ltd., at #1540-750 West Pender, Vancouver B.C. V6C 1T8.

3. I have worked as an exploration geologist since June of 1996.

4. Work conducted in this report was performed by Kenneth Williams, Jason French, Jason McLaughlin and myself.

November 7, 1996

Vancouver, B.C. Paul D. Gray, B.Sc.
STATEMENT OF QUALIFICATIONS

I, Kenneth A. Williams, of 4862 Argyle Street, Vancouver, in the Province of British Columbia, do hereby state that:

1. I graduated from Memorial University of Newfoundland in 1996 and I hold a B. Sc. (Honours) in Earth Science.

2. I am employed by Southern Gold Resources Ltd., at #1540-750 West Pender, Vancouver B.C. V6C 2T8.

3. I have been practicing in my profession in Canada and the United States since June of 1996.

4. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of a private or public financing.

5. Work conducted in this report was performed by Paul D. Gray, Jason French, Jason McLaughlin and myself.

Dated in Vancouver, B.C. this 15th day of November, 1997.

Kenneth A. Williams, B. Sc.
APPENDIX F

STATEMENT OF EXPENDITURES

FIELD WORK

P. Gray, geologist 2 days @ $200.00/day $400.00
K. Williams, geologist 2 days @ $200.00/day $400.00
Jason French, student 2 days @ $100.00/day $200.00
J. McLaughlin, student 2 days @ $100.00/day $200.00

4 x 4 Truck, including gasoline 1 day @ $80.00/day + $160.00
and insurance 1 day @ $80.00/day

Meals and Lodging 2 days @ $280.00/day $560.00

Rock Assaying costs (including shipping 30 samples @ $13.00/sample) $390.00

Helicopter Charter Costs $2600.00

Flagging, belt chain thread, and miscellaneous field equipment $25.00

Sub-total: $4910.00

REPORT PREPARATION COSTS

1 geologist @ $200/day for 7 days $1400.00

TOTAL: $6310.00