DIAMOND DRILLING, GEOLOGY, ROCK AND SOIL GEOCHEMISTRY
MERIT-RICH, SILVER, AND SILVER SPRUCE MINERAL CLAIMS
SLOCAN MINING DIVISION
RETAILLACK AREA, B.C.
NTS 82 K/3 E
LATITUDE 50°02'30"N, LONGITUDE 117°12'W

RECEIVED
JAN 05 1998
Gold Commissioner's Office
VANCOUVER, B.C.

Prepared for
TOUCHSTONE RESOURCES LTD.

ARCTEX ENGINEERING SERVICES

Consulting Geologist

Paul Kallock, F.G.A.C.
Consulting Geologist

November 14, 1997

25,312
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>PROPERTY, LOCATION, ACCESS</td>
<td>2</td>
</tr>
<tr>
<td>HISTORY</td>
<td>2</td>
</tr>
<tr>
<td>LOCATION MAP, FIGURE 1</td>
<td>3</td>
</tr>
<tr>
<td>CLAIM MAP (Showing Area of Soil Geochemical Survey, Trenching, and Diamond Drilling) FIGURE 2</td>
<td>4</td>
</tr>
<tr>
<td>LIST OF CLAIMS, TABLE 1</td>
<td>5</td>
</tr>
<tr>
<td>GENERAL GEOLOGY AND MINERALIZATION</td>
<td>7</td>
</tr>
<tr>
<td>MERIT-RICH CLAIM AREA</td>
<td>8</td>
</tr>
<tr>
<td>Diamond Drilling Programme</td>
<td>8</td>
</tr>
<tr>
<td>Geology and Mineralization</td>
<td>8</td>
</tr>
<tr>
<td>Discussion and Conclusions</td>
<td>10</td>
</tr>
<tr>
<td>SILVER CLAIM AREA</td>
<td>10</td>
</tr>
<tr>
<td>Geology and Mineralization</td>
<td>10</td>
</tr>
<tr>
<td>Soil and Rock Geochemical Survey</td>
<td>10</td>
</tr>
<tr>
<td>Conclusions</td>
<td>11</td>
</tr>
<tr>
<td>SILVER SPRUCE CLAIM</td>
<td>12</td>
</tr>
<tr>
<td>Geology and Mineralization</td>
<td>12</td>
</tr>
<tr>
<td>Soil Geochemical Survey</td>
<td>13</td>
</tr>
<tr>
<td>Conclusions</td>
<td>14</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>14</td>
</tr>
<tr>
<td>Merit-Rich Claim Area</td>
<td>14</td>
</tr>
<tr>
<td>Silver Claim Area</td>
<td>14</td>
</tr>
<tr>
<td>Silver Spruce Claim</td>
<td>15</td>
</tr>
<tr>
<td>COST ESTIMATE</td>
<td>15</td>
</tr>
<tr>
<td>ENGINEER’S CERTIFICATE</td>
<td>17</td>
</tr>
<tr>
<td>GEOLOGIST’S CERTIFICATE</td>
<td>18</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>19</td>
</tr>
<tr>
<td>ITEMIZED COST STATEMENT - 1997 PROGRAM</td>
<td>22</td>
</tr>
</tbody>
</table>
Table of Contents (continued)

APPENDIX:

<table>
<thead>
<tr>
<th>Rock Sample Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Procedures</td>
</tr>
<tr>
<td>Geochemical Analyses</td>
</tr>
<tr>
<td>Diamond Drill Logs</td>
</tr>
<tr>
<td>Core Recovery</td>
</tr>
</tbody>
</table>

MAPS (Pocket inside back cover)

Merit Claim Group:

| Figure 3. Geology Map, Showing Diamond Drill Hole Locations, scale 1:1250 |
| Figure 4. Drill Hole Profile, T-97-1, scale 1:500 |
| Figure 5. Drill Hole Profile, T-97-2, scale 1:500 |

Silver et al. Claims:

| Figure 6. Geology Map, scale 1:5000 |
| Figures 7, 8, 9. Soil Geochemistry, Ag, Pb, Zn, scale 1:5000 |
| Figure 10. Geology Map, Trenches and Adit Near 5+91S, 1+61E, scale 1:100|
| Figures 11, 12, 13. Rock and Soil Geochemistry, Trenches and Adit Near | 5+91S, 1+61E, Ag, Pb, Zn, scale 1:100 |
| Figure 14. Geology Map, Trenches Near 5+75S, 0+24W, scale 1:200 |
| Figures 15, 16, 17. Rock and Soil Geochemistry, Trenches Near 5+75S, 0+24W, Ag, Pb, Zn, scale 1:200 |
| Figure 18. Geology Map, Silver Shadow Claim, scale 1:500 |
| Figures 19, 20, 21. Soil Geochemistry, Silver Shadow Claim, Ag, Pb, Zn, scale 1:500 |

Silver Spruce Claim:

| Figure 22. Geology Map, scale 1:5000 |
| Figures 23, 24, 25. Soil Geochemistry, Ag, Pb, Zn, scale 1:5000 |
SUMMARY

Exploration was undertaken at three areas within the claim group during 1997. Diamond drilling at the Merit-Rich claims was completed. Several sections of calcite and quartz veining within Slocan Group argillites contained anomalous zinc but returned low lead and silver values.

At the Silver claims south of Fish Lake surficial calcareous tufa deposits were found to be associated with anomalous values of silver, lead and zinc in soils.

The soil geochemical survey of the Silver Spruce claim was completed. Additional detailed geochemistry and geological mapping has further defined a soil anomaly with coincident silver bearing quartz vein float which returned values up to 1285 g/T silver.

A programme of backhoe trenching followed by diamond drilling is recommended for future exploration at the Silver Spruce and Silver claims at an estimated cost of $192,000 in the next Phase.
INTRODUCTION

During 1997, three areas within the claim holdings of Touchstone Resources Ltd. were explored. Each of the areas lies within the Slocan Mining Camp which historically has been a silver, lead and zinc producing district. Each of the three areas are at different stages of exploration. At the Merit-Rich claim area two diamond drill holes were cored at a potential limestone-hosted base and precious metal target. At the Silver claim detailed soil geochemical sampling and hand trenching were completed. At the Silver Spruce claim, a broad-spaced geochemical survey accompanied by geological mapping was undertaken.

Results of this exploration which was conducted in July, August and September 1997, are documented in this report.

PROPERTY, LOCATION, ACCESS

The claims are located in southeastern British Columbia, 30 km west of Kaslo, in the Slocan Mining Division, NTS Map Sheets 82 K/3 E and 83 K/3 W. Coordinates of latitude 50°02’N and 117°14’W cross the property.

The arcuate-shaped claim group covers the western ends of London Ridge, Seaton Creek and Kane Creek valleys, the northern tip of Payne Ridge, and extends across Carpenter Creek. To the east, the claims extend down the southeast-facing slope of London Ridge and cross the divide at Bear and Fish Lakes along Highway 31A between New Denver and Kaslo.

Gravel roads in the Kane and Carpenter Creek valleys provide access to the northern and southwestern portions respectively. Logging and mining roads lead onto London and Payne Ridges. Elevations range from 760 m (2500’) near Three Forks to 2165 m (7100’) on London Ridge.

The contiguous group consists of 81 claims and fractions totalling 168 units, less indentations around the outer boundary for a net of approximately 147 units, containing approximately 3675 hectares. Recording data are listed in Table 1.

HISTORY

The claims are within the Slocan mining camp from which tonnages of silver-lead-zinc mineralization have been produced from at least 180 deposits since 1891. Numerous adits, trenches, and pits have been observed on the property but there is no recorded history of production. From 1985 to 1996 soil geochemistry, geological mapping, trenching, and drilling have been completed over most of the claim group by the present operators. Titles of reports which document all of the above work, with company names where available, are included on the References pages.
Touchstone Resources Ltd.
Mineral Claims, Slocan Mining Camp

SLOCAN MINING DIVISION NTS 82K / 3E & 3W

PROPERTY LOCATION MAP

To accompany report by
LOCKE B. GOLDSMITH, P.Eng., P.Geo.
Consulting Geologist
PAUL KALLOCK, F.G.A.C.
Consulting Geologist

ARCTEX ENGINEERING SERVICES

November 1997
Touchstone Resources Ltd.
Slocan Mining Camp

Claim Map
Showing Target Areas and Adjacent Mines

Scale 1:50,000

To accompany report by
LOCKE B. GOLDSMITH, P.Eng., P.Geo., Consulting Geologist
PAUL KALLOCK, F.G.A.C., Consulting Geologist
ARCTEX ENGINEERING SERVICES
NOVEMBER 1997

Figure 2
LIST OF CLAIMS

TABLE 1

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Units</th>
<th>Record No.</th>
<th>Record Date</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakeside</td>
<td>8</td>
<td>256069</td>
<td>Dec. 5, 1984</td>
<td>Dec. 5, 1999</td>
</tr>
<tr>
<td>Lakeside Fr.</td>
<td>1</td>
<td>256070</td>
<td>Dec. 5, 1984</td>
<td></td>
</tr>
<tr>
<td>Lowlander</td>
<td>1</td>
<td>256284</td>
<td>Dec. 8, 1986</td>
<td>Dec. 8, 1999</td>
</tr>
<tr>
<td>Lowlander Fr.</td>
<td>1</td>
<td>256281</td>
<td>Dec. 8, 1986</td>
<td></td>
</tr>
<tr>
<td>Jubilee</td>
<td>1</td>
<td>256282</td>
<td>Dec. 8, 1986</td>
<td></td>
</tr>
<tr>
<td>Hecla</td>
<td>1</td>
<td>256280</td>
<td>Dec. 3, 1986</td>
<td></td>
</tr>
<tr>
<td>Hercules</td>
<td>1</td>
<td>256283</td>
<td>Dec. 8, 1986</td>
<td>Dec. 8, 1999</td>
</tr>
<tr>
<td>Alta</td>
<td>1</td>
<td>256265</td>
<td>Sept. 24, 1986</td>
<td>Sept. 24, 1999</td>
</tr>
<tr>
<td>Dragon</td>
<td>1</td>
<td>256266</td>
<td>Sept. 24, 1986</td>
<td></td>
</tr>
<tr>
<td>Ironside/Seattle Fr.</td>
<td>1</td>
<td>256423</td>
<td>Sept. 24, 1987</td>
<td>Sept. 24, 1999</td>
</tr>
<tr>
<td>Atlas #3</td>
<td>1</td>
<td>256418</td>
<td>Sept. 11, 1987</td>
<td>Oct. 1, 1999</td>
</tr>
<tr>
<td>Vor #1</td>
<td>1</td>
<td>256309</td>
<td>Apr. 1, 1987</td>
<td>Apr. 1, 1999</td>
</tr>
<tr>
<td>Vor #2</td>
<td>1</td>
<td>256310</td>
<td>Apr. 1, 1987</td>
<td></td>
</tr>
<tr>
<td>Vor #3</td>
<td>1</td>
<td>256312</td>
<td>Apr. 1, 1987</td>
<td></td>
</tr>
<tr>
<td>Vor #4</td>
<td>1</td>
<td>256311</td>
<td>Apr. 1, 1987</td>
<td></td>
</tr>
<tr>
<td>Trak</td>
<td>1</td>
<td>256470</td>
<td>May 9, 1988</td>
<td>May 9, 1999</td>
</tr>
<tr>
<td>Trak Fr.</td>
<td>1</td>
<td>303923</td>
<td>Sept. 11, 1991</td>
<td>Sept. 11, 2000</td>
</tr>
<tr>
<td>Smoke 1</td>
<td>1</td>
<td>256115</td>
<td>Aug. 2, 1985</td>
<td>Aug. 2, 2000</td>
</tr>
<tr>
<td>Smoke 2</td>
<td>1</td>
<td>256116</td>
<td>Aug. 2, 1985</td>
<td></td>
</tr>
<tr>
<td>Smoke 3</td>
<td>1</td>
<td>256117</td>
<td>Aug. 2, 1985</td>
<td></td>
</tr>
<tr>
<td>Smoke 4</td>
<td>1</td>
<td>256124</td>
<td>Aug. 30, 1985</td>
<td>Aug. 30, 2000</td>
</tr>
<tr>
<td>Smoke Fr.</td>
<td>1</td>
<td>313103</td>
<td>Sept. 15, 1992</td>
<td>Sept. 15, 2000</td>
</tr>
<tr>
<td>Alamo</td>
<td>9</td>
<td>256106</td>
<td>July 9, 1985</td>
<td>July 9, 1999</td>
</tr>
<tr>
<td>Alamo 2</td>
<td>2</td>
<td>256114</td>
<td>July 30, 1985</td>
<td>July 30, 1999</td>
</tr>
<tr>
<td>Alamo 3</td>
<td>2</td>
<td>256125</td>
<td>Sept. 3, 1985</td>
<td>Sept. 3, 1999</td>
</tr>
<tr>
<td>Creekside</td>
<td>9</td>
<td>255710</td>
<td>Feb. 18, 1981</td>
<td>Feb. 18, 1999</td>
</tr>
<tr>
<td>Lynn</td>
<td>6</td>
<td>256018</td>
<td>Mar. 21, 1984</td>
<td>Mar. 21, 1999</td>
</tr>
<tr>
<td>Santos</td>
<td>12</td>
<td>256380</td>
<td>Aug. 21, 1987</td>
<td>Aug. 21, 1999</td>
</tr>
<tr>
<td>Nellie Fr.</td>
<td>1</td>
<td>255698</td>
<td>Jan. 17, 1980</td>
<td></td>
</tr>
<tr>
<td>Sylver Bud 1</td>
<td>1</td>
<td>301211</td>
<td>June 7, 1991</td>
<td>June 7, 1999</td>
</tr>
<tr>
<td>Sylver Bud 2</td>
<td>1</td>
<td>301212</td>
<td>June 7, 1991</td>
<td></td>
</tr>
<tr>
<td>Sylver Bud 3</td>
<td>1</td>
<td>301213</td>
<td>June 7, 1991</td>
<td></td>
</tr>
<tr>
<td>Sylver Bud 4</td>
<td>1</td>
<td>301214</td>
<td>June 7, 1991</td>
<td></td>
</tr>
<tr>
<td>Sylver Bud 5</td>
<td>1</td>
<td>301215</td>
<td>June 7, 1991</td>
<td></td>
</tr>
<tr>
<td>Sylver Bud 6</td>
<td>1</td>
<td>301208</td>
<td>June 8, 1991</td>
<td>June 8, 1999</td>
</tr>
<tr>
<td>Sylver Bud 7</td>
<td>1</td>
<td>301206</td>
<td>June 9, 1991</td>
<td>June 9, 1999</td>
</tr>
</tbody>
</table>

Continued...
Table 1 (continued)

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Units</th>
<th>Record No.</th>
<th>Record Date</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylver Bud 8</td>
<td>1</td>
<td>301209</td>
<td>June 9, 1991</td>
<td>June 9, 1999</td>
</tr>
<tr>
<td>Sylver Bud 9</td>
<td>1</td>
<td>301210</td>
<td>June 9, 1991</td>
<td>June 9, 1999</td>
</tr>
<tr>
<td>Sylver Bud Fr.</td>
<td>1</td>
<td>301205</td>
<td>June 11, 1991</td>
<td>June 11, 1999</td>
</tr>
<tr>
<td>Sylver Pine</td>
<td>1</td>
<td>301216</td>
<td>June 6, 1991</td>
<td>June 6, 1999</td>
</tr>
<tr>
<td>Sylver Pine Fr.</td>
<td>1</td>
<td>301204</td>
<td>June 11, 1991</td>
<td>June 11, 1998</td>
</tr>
<tr>
<td>Sylver Spruce</td>
<td>20</td>
<td>300988</td>
<td>June 9, 1991</td>
<td>June 9, 1999</td>
</tr>
<tr>
<td>Silver Paw 1</td>
<td>1</td>
<td>310790</td>
<td>June 29, 1992</td>
<td>June 29, 1999</td>
</tr>
<tr>
<td>Silver Paw 2</td>
<td>1</td>
<td>310791</td>
<td>June 29, 1992</td>
<td>June 29, 1999</td>
</tr>
<tr>
<td>Silver Paw 3</td>
<td>1</td>
<td>310792</td>
<td>June 30, 1992</td>
<td>June 30, 1999</td>
</tr>
<tr>
<td>Silver Paw 4</td>
<td>1</td>
<td>310793</td>
<td>June 30, 1992</td>
<td>June 30, 1999</td>
</tr>
<tr>
<td>Merit Fraction</td>
<td>1</td>
<td>310794</td>
<td>June 30, 1992</td>
<td>June 30, 1999</td>
</tr>
<tr>
<td>Merit Fraction</td>
<td>1</td>
<td>331410</td>
<td>Oct. 11, 1994</td>
<td>Oct. 11, 1999</td>
</tr>
<tr>
<td>Silver Leaf 1</td>
<td>1</td>
<td>333323</td>
<td>Jan. 6, 1995</td>
<td>Jan. 6, 1999</td>
</tr>
<tr>
<td>Silver Leaf 2</td>
<td>1</td>
<td>333324</td>
<td>Jan. 6, 1995</td>
<td>Jan. 6, 1999</td>
</tr>
<tr>
<td>Silver Leaf 3</td>
<td>1</td>
<td>330439</td>
<td>Aug. 16, 1994</td>
<td>Aug. 16, 1999</td>
</tr>
<tr>
<td>Silver Leaf 4</td>
<td>1</td>
<td>330440</td>
<td>Aug. 16, 1994</td>
<td>Aug. 16, 1999</td>
</tr>
<tr>
<td>Silver Leaf Fr</td>
<td>1</td>
<td>333393</td>
<td>Jan. 12, 1995</td>
<td>Jan. 12, 1999</td>
</tr>
<tr>
<td>Ridge #1</td>
<td>1</td>
<td>331414</td>
<td>Oct. 5, 1994</td>
<td>Oct. 5, 1999</td>
</tr>
<tr>
<td>Ridge #2</td>
<td>1</td>
<td>331415</td>
<td>Oct. 5, 1994</td>
<td>Oct. 5, 1999</td>
</tr>
<tr>
<td>Alpine #1</td>
<td>1</td>
<td>331418</td>
<td>Oct. 6, 1994</td>
<td>Oct. 6, 1999</td>
</tr>
<tr>
<td>Alpine #2</td>
<td>1</td>
<td>331419</td>
<td>Oct. 6, 1994</td>
<td>Oct. 6, 1999</td>
</tr>
<tr>
<td>Alpine #3</td>
<td>1</td>
<td>331420</td>
<td>Oct. 6, 1994</td>
<td>Oct. 6, 1999</td>
</tr>
<tr>
<td>Alpine #4</td>
<td>1</td>
<td>331421</td>
<td>Oct. 6, 1994</td>
<td>Oct. 6, 1999</td>
</tr>
<tr>
<td>Merit M</td>
<td>4</td>
<td>256001</td>
<td>Nov. 29, 1983</td>
<td>Nov. 29, 1999</td>
</tr>
<tr>
<td>Merit Centre</td>
<td>4</td>
<td>256002</td>
<td>Nov. 29, 1983</td>
<td>Nov. 29, 1999</td>
</tr>
<tr>
<td>Kate</td>
<td>4</td>
<td>256058</td>
<td>Sept. 4, 1984</td>
<td>Sept. 4, 1999</td>
</tr>
<tr>
<td>Famous Fr</td>
<td>1</td>
<td>256059</td>
<td>Sept. 4, 1984</td>
<td>Sept. 4, 1999</td>
</tr>
<tr>
<td>Mino Fr</td>
<td>1</td>
<td>256911</td>
<td>Mar. 15, 1990</td>
<td>Mar. 15, 1999</td>
</tr>
<tr>
<td>Whale Fr</td>
<td>1</td>
<td>256912</td>
<td>Mar. 15, 1990</td>
<td>Mar. 15, 1990</td>
</tr>
<tr>
<td>Cody Fr</td>
<td>1</td>
<td>256943</td>
<td>Mar. 15, 1990</td>
<td>Mar. 15, 1990</td>
</tr>
</tbody>
</table>
At least five formerly productive mines are located near the claim group, as listed below (see map, page 4).

<table>
<thead>
<tr>
<th>Name</th>
<th>Distance from Merit Claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucky Jim</td>
<td>1.0 km north of Merit claim</td>
</tr>
<tr>
<td>Dardanelles</td>
<td>0.75 km southeast of Rich claim</td>
</tr>
<tr>
<td>Rambler-Cariboo</td>
<td>0.75 km south of Merit claim</td>
</tr>
<tr>
<td>Payne</td>
<td>0.5 km south of Merit South claim</td>
</tr>
<tr>
<td>Washington</td>
<td>1.0 km south of Merit M claim</td>
</tr>
</tbody>
</table>

University of British Columbia MINDEP files list the output of the above mines as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Short Tons of Ore</th>
<th>Ag oz/ton</th>
<th>Au oz/ton</th>
<th>Pb %</th>
<th>Zn %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucky Jim</td>
<td>174,190</td>
<td>0.508</td>
<td>-</td>
<td>0.344</td>
<td>7.83</td>
</tr>
<tr>
<td>Dardanelles</td>
<td>725</td>
<td>198</td>
<td>-</td>
<td>28.7</td>
<td>4.20</td>
</tr>
<tr>
<td>Rambler-Cariboo</td>
<td>208,801</td>
<td>16.8</td>
<td>0.0001</td>
<td>5.66</td>
<td>1.43</td>
</tr>
<tr>
<td>Payne</td>
<td>121,921</td>
<td>30.7</td>
<td>-</td>
<td>15.7</td>
<td>1.57</td>
</tr>
<tr>
<td>Washington</td>
<td>14,167</td>
<td>41.8</td>
<td>0.0006</td>
<td>20.4</td>
<td>5.01</td>
</tr>
</tbody>
</table>

GENERAL GEOLOGY AND MINERALIZATION

The claims are underlain by dark, fine-grained clastic sediments and limestone beds of the Upper Triassic to Lower Jurassic Slocan Group. Granitic dykes and sills intrude the sedimentary package. Bedding and axes of major folds strike northwesterly, with dips of bedding either northeasterly or northwesterly. Lode systems trend northeasterly and where productive contain sulphides of silver, lead, and zinc as fissure fillings. Formerly productive lodes which include the Payne, Monitor, Cork, and Victor (Violamac) deposits occur adjacent to the south and southwest of the claims.

The Lucky Jim which is surrounded on three sides by the property is a zinc ± silver ± lead replacement deposit, concentrated where northeast trending fissures cross thick limestone beds. A quartz-tetrahedrite vein was exploited primarily for the silver and silica smelter flux in the McAllister Mine which adjoins the northern edge of the claims.
SOIL AND ROCK GEOCHEMISTRY

The following table displays statistical data concerning metal abundance derived from lognormal probability plots. Years of soil sampling results over Slocan Group rocks have been compiled into this information.

<table>
<thead>
<tr>
<th></th>
<th>Ag ppm</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td><2.3</td>
<td><38</td>
<td></td>
</tr>
<tr>
<td>Threshold</td>
<td>2.3 to 4.9</td>
<td>38 to 150</td>
<td>} Possibly two populations</td>
</tr>
<tr>
<td>Anomalous</td>
<td>>4.9</td>
<td>>150</td>
<td>>980</td>
</tr>
</tbody>
</table>

For a broad spaced soil geochemical survey such as was conducted at the Silver Spruce claim, soil was collected from each sample station using a long, narrow-bladed spade or a mattock-grubhoe. Depth of sample ranged from 0.1 to 0.35 metres which corresponds to the C or lower B soil horizon. Samples were packaged in wet-strength manila envelopes. Geochemical analyses were carried out by Chemex Labs of Vancouver, B.C. Analytical procedures and results are included in the Appendix.

At the Silver claim south of Fish Lake, soils were collected at selected vertical depths within hand-dug pits and trenches.

MERIT-RICH CLAIM AREA

Diamond Drilling Programme

Between August 12 and September 5, 1997, two diamond drill holes were cored at the Merit-Rich claim area. Both holes were oriented 140° with a dip angle of -45° toward the southeast. The first hole, T-97-1 cored a length of 105.49 metres. T-97-2 cored a length of 106.40 m yielding a total of 211.89 m for the programme. Twenty-two samples were split from the core and analyzed for lead, zinc and silver. Drill hole profiles displaying geochemical analyses are included in the pocket of this report. Drill logs are included in the Appendix.

Geology and Mineralization

As can be seen from the geology plan map of the Merit-Rich grid-area, which is included in the pocket of this report, the two diamond drill holes are located in the central part of the grid.

On surface, argillite and limestone of the Triassic to Jurassic Slocan Group generally trend northwest/southeast with steep dips toward the southwest. Younger granitic dykes or sills are
common in the area. The discontinuity of limestone beds and apparent offset of geochemical anomalies suggests that northeast/southwest cross-cutting structural features may bisect the stratigraphy. Information gathered from the subsurface core drilling confirms the surface geological expression.

Drill hole T-97-1 cored black, carbonaceous argillite in the upper 65 metres. Interbedded within the argillite are occasional dark, grey to black limestone beds. Graphite is common between 35 and 65 m. depth. Pyrite is ubiquitous in the argillite and occurs as disseminations, fracture coatings and bedding plane concentrations often amounting to 5 to 10% of the rock. Numerous narrow granitic dykes or sills were also encountered.

Five intervals within the upper 65 m of T-97-1 were split and analyzed. All five samples contained anomalous zinc. The highest value of 6100 ppm Zn (0.61%) was obtained from 0.3 m. of core between 44.00 and 44.30 m. depth in a vuggy calcite, argillite breccia. Calcite was also common in a vein/breccia zone which cross-cuts argillite bedding planes at 56.0 m. Other anomalous zinc values were obtained from a granitic dyke, a black limestone bed and a graphitic shear zone. As with the calcite breccia, the graphitic shear zone bisected the core at a 35° angle which was nearly perpendicular to the bedding/foliation attitude of the argillite.

Between 65 and 88.7 m in T-97-1, grey banded argillite and minor granitic or aplitic dykes were cored. Below 88.7 m. black carbonaceous argillite and black limestone were encountered.

Hole T-97-2 was drilled 150 m northeast of the first location. It was collared in dark grey argillite but soon encountered black carbonaceous limestone. A fault zone in black graphitic argillite with quartz and breccia underlies the limestone at 11.89 to 14.63 m. Black carbonaceous argillite is present to 34.87 m. Irregular quartz veins and a 0.4 m. wide granitic dyke were encountered which returned weakly anomalous zinc values to 1000 ppm (0.1%).

Nearly 9.0 m. of grey limestone are present between 34.87 and 43.83 m depth. Between 43.83 and 56.90 m grey argillite and black graphitic argillite contain numerous irregular white quartz veins and more rarely a later-stage vuggy, quartz, calcite vein assemblage such as at 46.50 and 47.25 m. This later veining exhibits euhedral quartz and calcite crystals with rare sphalerite crystals. No core was recovered between 48.30 and 50.36 m depth. Geochemical analyses of the zone of quartz and calcite with trace sphalerite returned slightly elevated metal values up to 2000 ppm (0.2%) zinc.

Carbonaceous argillite, banded grey argillite and massive dark grey argillite are common in the remainder of the hole. These rocks have been intruded by numerous narrow granitic dykes. A 0.5 m wide fault zone is present near the bottom of the hole at 102.75 to 103.25 m depth. It contained abundant clay gouge.
Discussion and Conclusions

Drilling at the Merit-Rich claim area has shown that the argillite and limestone of the Slocan Group are very dark to black in color due to high amounts of carbon and graphite. The clastic sediments are also high in pyrite content relative to most of the Slocan Mining Camp.

An intersection of argillite breccia with vuggy calcite matrix at 44.00 m depth in T-97-1 which returned 6100 ppm (0.6%) zinc, combined with vuggy quartz, calcite veins at 46.50 and 47.25 m. in T-97-2 which displayed rare sphalerite crystals indicates that potential ore forming processes have been active. Brecciation of limestone and argillite, graphitic shear zones and cross-cutting fault zones indicate that structural sites or conduits for metal migration have been in place. The restricted size and low zinc grades of the mineralized zones encountered in the 1997 programme are discouraging. Silver values were found to be low. Occasionally, mineralized sections of core coincided with sections of poor core recovery.

SILVER CLAIM AREA

Geology and Mineralization

The eastern part of the Silver claim, the northern half of the Silver Shadow and the western part of the Silver Spirit claim are underlain by argillite or slaty argillite of the Triassic-Jurassic Slocan Group. Trend of foliation is northwesterly with dips generally moderate to steep to the southwest. Near the shore of Fish Lake a reversal of dip is present. Granite of Jurassic or later age outcrops in areas near 5+75S, 1+75E and 4+78S, 0+60E.

Surficial calcium carbonate (tufa) deposits occur on the slopes above 4+00S, 0+00E. These crusty, porous, light colored deposits are a few centimetres to a least 1.5 metres thick. Elevated metal values occur within the tufa and in soils adjacent to the tufa.

Soil and Rock Geochemical Survey

Three areas which demonstrated significant elevated soil geochemistry from previous surveys (Goldsmith and Kallock, 1987, 1992) were examined in detail by hand trenching and soil and rock geochemical sampling. Sample locations are shown on detailed maps included in the pocket of this report. The areas are also outlined on a 1:5000 scale map which shows the anomalies in relation to claim boundaries, geographic features and previous soil geochemical surveys.

At the 5+75S, 0+24W trench area two lines of hand-dug pits were excavated 15 to 25 m south (upslope) from the 1992 trench area. Four of the seven pits reached bedrock from 0.5 m to 1.25 m depth. Rock chip samples were collected from each of these pits. Soil samples were collected from each of the seven pits. No significant metal values were found in any of the soil or rock samples.
Brief prospecting was carried out south (upslope) from the old adit located at 5+91S, 1+61E. Granite was exposed and sampled in a 1.0 m long trench at 5+98W, 1+60E. Soil was sampled from a pit at 6+01S, 1+65E. Neither soil nor granite contained significant metal values.

The third area which was investigated revealed numerous elevated lead, zinc and silver values in soils and within a surface or near-surface calcium carbonate blanket or tufa. Between 4+00S and 5+00S and extending from the Baseline at 0+00E to 1+00E, a 1:500 scale map has been constructed showing numerous trenches and pits which were excavated by hand in a effort to pin-point the source of the elevated soil geochemistry. Individual maps showing lead, zinc and silver values are also included in the back pocket of this report. Note that soil samples were collected from various depths in order to establish possible dispersion patterns. Forty-one soil and 6 rock samples were collected from this area.

The tufa is a surficial deposit which appears to have been precipitated from calcium carbonate-saturated spring waters. It varies in thickness from a few centimetres to more than 1.5 m. In plan view the deposit is fan shaped, with its apex or source area located near 4+78S, 0+60E. It extends down-slope toward the northwest from this point. A smaller tufa deposit is located 25 m to the northeast, on the opposite side of a small northwest trending creek. The creek may have eroded a broader tufa deposit that linked the two areas.

Anomalous lead, zinc and silver soil geochemistry appears to be closely associated but not restricted to the tufa. An example of the vertical distribution of metal values in the soil profile is the pit at 4+78S, 0+60E where anomalous values of 12.2 ppm Ag, 84 ppm Pb and 1105 ppm Zn in sample “B” from 0.5 to 0.6 m depth occur within tufa. In grey clay below the tufa, at 0.75 m depth, metal values increase to 31.0 ppm silver, 252 ppm Pb and 2000 ppm Zn. At 1.2 m depth the grey clay exhibits decreased metal values. No bedrock was encountered at this depth. Ten metres south (upslope) from this pit a hand dug trench encountered granite bedrock at 1.75 m depth. Neither the granite nor the soil above the granite carried significant metal values. Metal values are shown on 1:500 scale maps. Contours of anomalous values of each element show an abrupt up-slope termination near the upper boundary of the tufa. The trend of this boundary is northeast/southwest.

Conclusions

Exploration by hand-trenching with soil and rock geochemistry in the 5+75S, 0+24W area did not encounter a source for high silver values detected in previous surveys. Argillite with quartz and limonite were found but did not contain elevated metals.

Granite was exposed and sampled above the old adit near 5+98S, 1+60E however no significant metal values were detected nor was any feature found which could have been the object of past exploration.
Encouraging results were obtained by prospecting between the anomalous soil sample at 4+00S, 0+00E and the 1992 exploration pit at 5+00S, 1+00E. Surficial calcareous tufa and adjacent soils were found to contain up to 31.0 ppm silver, 2000 ppm (0.2%) zinc and 252 ppm lead. The tufa deposit may be located down-slope from a limestone source-area. The base and precious metal values may also have been derived from a fissure vein or replacement-type deposit in limestone.

SILVER SPRUCE CLAIM

Geology and Mineralization

The southern part of the Silver Spruce claim has similar lithologies to the northeast part of the property which was mapped and sampled in 1993, Goldsmith and Kallock (1993). Grey argillite of Upper Triassic to Lower Jurassic Slocan Group is the predominant rock type. Most bedding attitudes strike north to northwest with variable dips toward the east or west. Three areas display interbedded limestone within the argillite. At 4+60N, 0+00W near the eastern border of the claim, several beds of limestone with a maximum thickness of two metres, trend 300°,35°NE. Minor limestone was also seen at 4+00N, 10+60W.

Granitic dykes or sills of Jurassic or later age, intrude the sedimentary package and are common in the southern part of the claim. The largest outcrop-area is more than 400 metres north/south by 200 metres east/west and is coincident with a lead soil anomaly near 4+00N, 10+00W.

Quartz veining is the most common type of mineralization at the Silver Spruce claim. Often the quartz is white, milky and barren of iron oxides or sulphides. Occasionally minor pyrite can be seen in the quartz. At one locality, galena and tetrahedrite(?) were seen in a quartz float boulder which selectively contained 4220 ppm lead and 1285 gm/tonne silver (sample number 16+30N, 5+45W). It lies within a strong soil geochemical anomaly.

The Silver Spruce claim is adjacent to the south of the McAllister Mine which has produced quartz-tetrahedrite ores over several periods of operation. MINDEP computer files of the University of British Columbia list the production as:

<table>
<thead>
<tr>
<th>Tons</th>
<th>Ag, oz/ton</th>
<th>Pb, %</th>
<th>Zn, %</th>
<th>Au, oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.196</td>
<td>45.3</td>
<td>0.066</td>
<td>0.012</td>
<td>0.004</td>
</tr>
</tbody>
</table>

These figures do not include dumps which have been shipped at different times to the Trail, B.C. smelter for flux.

Cairnes (1935), describes the McAllister Mine mineralization as a quartz-filled fissure having and average strike of 036°, 35°-60°SE. The vein averaged 3 feet in width and was at least
1600 feet long. The quartz contained high-grade silver-bearing minerals, pyrite, minor galena, and sphalerite. The Silver Spruce claim lies along the southwest projection of this vein.

Soil Geochemical Survey

During 1997 the soil geochemical survey was extended south and southwest from the 1993 grid using 200 metre line spacings except at detailed follow-up areas of anomalous samples near London Ridge. These areas were sampled at 25 metre stations on 50 metre line separations. Results are plotted on individual element maps for silver, lead and zinc, which are included in the pocket of this report. Both the data from the current programme and the 1993 data have been included on each map. During 1997 a total of 428 soil samples were collected. Eleven rock geochemical samples were also collected from hand dug trenches or other mineralized areas. Three new anomalous areas were detected in addition to the zone near 16+00N, 5+00W where detailed soil and rock sampling was conducted on a 1993 anomaly.

In 1993 soils with up to 14.9 ppm silver were detected at 16+00N, 5+00W within a zone of altered Slocan Group argillite. It is characterized by bleaching, moderate iron oxide and abundant quartz veins. Granitic sills or dykes are also present. In 1997, 20 additional soil samples were collected and the anomaly was more accurately defined. An area measuring 150 metres east/west by 250 metres north/south contains anomalous values of silver and lead. The northwest margin of the anomaly which is in the upslope direction is at least 200 metres long. Most of the soils on the southeast side are derived from talus fines and downslope soil migration. Near the upper margin of the anomaly at 16+30N, 5+45W, a quartz float boulder was found which contained 1-2% galena and tetrahedrite(?) as a single small pod. Chips of quartz with the galena contained 4220 ppm (0.42%) lead and 1,285 gm/tonne (39.0 oz/ton) silver. Hand-trenching and prospecting upslope from the boulder failed to locate the source.

Three additional soil geochemical anomalies were detected in 1997. The largest area lies between 4+00N, 20+00W and 10+50N, 11+00W. It is 1.1 km long and approximately 100 m wide. It is nearly coincident with London Ridge which trends approximately 030. Seventeen soil samples contained greater than 4.9 ppm Ag. No anomalous lead or zinc was detected. Outcrops of argillite and minor granite are sparse. Quartz float is common, however, no sulphides were seen in the quartz. An old trench was re-excavated at 9+80N, 12+43W where barren quartz was found. Argillite along London Ridge trends north/south with a gentle west dip. Near 8+00N, 14+50W a 5.0 metre trench was excavated near a 10.2 ppm soil value but only background values of silver were detected in the argillite bedrock.

The second, newly detected soil anomaly is centered at 4+00N, 11+50W. It is primarily a lead anomaly and appears to be associated with a granite plug or its contact with argillite and argillite with interbedded limestone. The anomaly is a least 300 m long and up to 175 m wide and contains
13 samples with greater than 150 ppm lead. Three samples contained between 4.9 and 6.7 ppm silver. No anomalous zinc was detected.

Thirdly, an area of anomalous zinc was found on a single line in the southeast part of the Silver Spruce claim. On line 4+00N, from 4+00W to 6+00W, five soil samples contain between 1200 and 2550 ppm zinc. No anomalous silver or lead was detected. Occasional outcrops of argillite were noted in the area.

Conclusions

Silver bearing quartz vein float was found within a strong soil anomaly near 16+30N, 5+45W in the eastern part of the Silver Spruce claim. This type of mineralization is similar to the fissure vein as described by Cairnes (1935) which was mined at the McAllister Mine. A silver bearing quartz vein may underlie the northwestern edge of the anomaly thus contributing to a downslope dispersion pattern toward the southeast.

A similar northeast trending silver bearing quartz vein or set of quartz veins is also a possible explanation for the 1.1 km long soil anomaly which coincides with the crest of London Ridge. Although quartz float is common along the ridge, no significant amounts of sulphides were found. No obvious pack trail was found along the ridge from which contamination might have been introduced.

A lead soil anomaly near 4+00N, 11+50W is associated with a small granitic plug; no sulphide mineralization was seen. Likewise no clear explanation can be determined for anomalous zinc values near 4+00N, 5+00W.

RECOMMENDATIONS

Merit-Rich Claim Area

Elevated zinc values of up to 6100 ppm (0.61%) were encountered in the 212 metre programme of diamond drilling at the Rich Claim. It is felt however, that further exploration at this time is not warranted.

Silver Claim Area

Hand trenching with numerous soil sample profiles has helped define the upslope extent of high silver, lead and zinc values associated with a tufa deposit near 4+78S, 0+60E. Bedrock exposures are very restricted in this area. A programme of backhoe-excavator trenching, geological mapping and rock geochemical sampling could aid in delineating a source of the metals and of the tufa. Diamond drilling would be required to test for mineralization at depth.
No further work is recommended in the other trench areas (5+75S, 0+24W and 5+98S, 1+60E) at this time.

Silver Spruce Claim

A more rigorous trenching programme utilizing a backhoe-excavator is required to test the upslope side of the soil anomaly at 16+30N, 5+45W. Silver bearing sulphides in quartz veins similar to those mined at the nearby McAllister Mine are the primary exploration targets.

If results of the trenching programme are favourable, a diamond drilling programme would be warranted. If an exploration model is successfully developed, additional trenching and possible subsequent drill testing of the other soil anomalies on London Ridge would be warranted.

COST ESTIMATE

Phase 1 - Completed.

Phase 2

Silver Area

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road preparation, backhoe trenching</td>
<td>$10,000</td>
</tr>
<tr>
<td>Geological mapping, geochemical sampling</td>
<td>4,000</td>
</tr>
<tr>
<td>Assays, geochemical analyses</td>
<td>2,000</td>
</tr>
<tr>
<td>Diamond drilling</td>
<td></td>
</tr>
<tr>
<td>400 m @ $120/m</td>
<td>48,000</td>
</tr>
<tr>
<td>Food and lodging</td>
<td>3,000</td>
</tr>
<tr>
<td>Transportation</td>
<td>3,500</td>
</tr>
<tr>
<td>Engineering and supervision</td>
<td>8,500</td>
</tr>
<tr>
<td>Reporting</td>
<td>3,000</td>
</tr>
<tr>
<td>Contingencies @ 20%</td>
<td>82,000</td>
</tr>
</tbody>
</table>

Total $98,400
Silver Spruce Area

Road preparation, backhoe trenching: $7,000
Geological mapping, geochemical sampling: 4,000
Assays, geochemical analyses: 1,000
Diamond drilling,
400 m @ $120/m: 48,000
Food and lodging: 3,000
Transportation: 3,500
Engineering and supervision: 8,500
Reporting: 3,000
Contingencies @ 20%: 15,600

Total, Phase 2: $192,000

Results of Phase 2 should be compiled into an engineering report. Continuance to subsequent Phases should be contingent upon favourable conclusions and recommendations by an engineer.

Respectfully submitted,

Consulting Geologist

Paul Kallock, F.G.A.C.
Consulting Geologist

Vancouver, B.C.
November 14, 1997
ENGINEER'S CERTIFICATE
LOCKE B. GOLDSMITH

1. I, Locke B. Goldsmith, am a registered Professional Engineer in the Province of Ontario, and a Registered Professional Geologist in the Provinces of Ontario and British Columbia and the States of Oregon and Wisconsin. My address is 301, 1855 Balsam Street, Vancouver, B.C.

2. I have a B.Sc. (Honours) degree in Geology from Michigan Technological University, a M.Sc. degree in Geology from the University of British Columbia, and have done postgraduate study in Geology at Michigan Tech and the University of Nevada. I am a graduate of the Haileybury School of Mines, and am a Certified Mining Technician. I am a Member of the Society of Economic Geologists, the AIME, and a Fellow of the Geological Association of Canada.

3. I have been engaged in mining exploration for the past 38 years.

4. I have co-authored the report entitled, "Diamond Drilling, Geology, Rock and Soil Geochemistry Merit-Rich, Silver, and Silver Spruce Mineral Claims, Slocan Mining Division, Retallack Area, B.C." dated November 14, 1997. The report is based upon fieldwork and research supervised by the author.

5. I have no ownership in the property, nor in the stocks of Touchstone Resources Ltd.

6. I consent to the use of this report in a prospectus, or in a statement of material facts related to the raising of funds. Sheets of analyses in the Appendix could be omitted from a prospectus because all values are plotted on maps.

Respectfully submitted,

[Signature]

Consulting Geologist

Vancouver, B.C.
October 3, 1996
GEOLOGIST'S CERTIFICATE
PAUL KALLOCK

I, Paul Kallock, do state: that I am a Geologist with Arctex Engineering Services, 301 - 1855 Balsam Street, Vancouver, B.C.

I Further State That:

1. I have a B.Sc. degree in Geology from Washington State University, 1970. I am a Fellow of the Geological Association of Canada.

2. I have engaged in mineral exploration since 1970, both for major mining and exploration companies and as an independent geologist.

3. I have co-authored the report entitled, “Diamond Drilling, Geology, Rock and Soil Geochemistry, Merit-Rich, Silver, and Silver Spruce Mineral Claims, Slocan Mining Division, Retallack Area, B.C.” The report is based on my fieldwork carried out on the property and on previously accumulated geologic data.

4. I have no direct or indirect interest in any manner in either the property or securities of Touchstone Resources Ltd., or its affiliates, nor do I anticipate to receive any such interest.

5. I consent to the use of this report in a prospectus, or in a statement of material facts related to the raising of funds. Sheets of analyses in the Appendix could be omitted from a prospectus because all values are plotted on maps.

Vancouver, B.C.
November 14, 1997

Paul Kallock
Consulting Geologist
REFERENCES

Greenwich Resources Inc. 1982. Annual report.

Minotaur Explorations Ltd. Corporate expenditure files.

ITEMIZED COST STATEMENT, 1997 PROGRAM

PERSONNEL
L.B. Goldsmith, period July 12, 1997-January 5, 1998,
total 35.25 days @ $550/day $19,387.50
P. Kallock, period July 12, 1997-January 5, 1998,
total 51.25 days @ $400/day 20,500.00
C.W. Donald-Hill, period July 12-September 6, 1997,
total 26 days @ $300/day 7,000.00
A. Kallock, period July 12-September 6, 1997, total
26 days @ $75/day 1,950.00

ACCOMMODATION, MEALS
Room
Meals

2,300.50
5,871.92

8,172.42
8,172.42

divided by person days = $59.01/person/day

VEHICLES
Two 4x4 trucks, total 80 vehicle days @ $50/day 4,000.00
7726 km @ $0.42/km 3,244.92
Fuel
600.83

7,845.75
7,845.75

divided by 80 days = $98.07/truck/day

DIAMOND DRILLING
211.89 metres
= $66.07/metre

14,000.00

DOZER
24 hours @ $62.50/hr 1,500.00
Transport
200.83

1,700.83
1,700.83

ANALYSES
553 samples
= $9.05/sample

5,003.71

SUPPLIES
Sample bags, flagging, repairs, equipment

1,224.76

REPORT
Drafting, word processing, prints, copies

3,753.38

TOTAL
$90,538.35
APPENDIX
ROCK SAMPLE DESCRIPTIONS

Silver Spruce Claim - London Ridge Area

4+00N, 13+49W Chips of float boulder of quartz-mica dyke rock showing strong surficial hematite on weathered surface, weakly calcareous, non-pyritic.

4+50N, 11+70W 0.33 m chip sample of outcrop of numerous 2-4 cm wide quartz veins oriented N-S, 050°E in medium-grained granite.

5+00N, 17+55W 1.0 m chip sample of black carbonaceous (sooty) argillite which is fragmental, possibly breccia; strongly leached, porous; weak limonite.

7+98N, 14+50W 2.5 m channel sample on black, carbonaceous bedrock in hand trench, trace disseminated and fracture filled pyrite.

8+03N, 14+50W 2.5 m channel sample; continuation of previous sample, similar argillite.

9+00N, 12+43W Quartz vein boulders, float(?), lying on bedrock in bottom of hand-dug trench overlying argillite, grab sample.

15+75N, 5+80W Grab of float cobbles of brown quartzitic argillite or silicified argillite with 2-3% cubic disseminated pyrite.

15+85N, 5+85W Outcrop of silicified argillite containing quartz with 1-2% pyrite near contact with granite; grab of quartz.

16+30N, 5+45W Select sample of galena (plus additional grey unidentified sulphide) bearing quartz float boulder. Sulphides appear to compose 5% of rock sample. Quartz is white with minor iron oxide.

16+40N, 5+50W 2.5 m channel sample of granite and hornfels argillite from hand-dug trench above quartz float described in previous sample.

16+43N, 5+50W 2.5 m channel sample of granite bedrock continuous from previous sample. No visible quartz veins.

17+48N, 5+55W Chip sample of quartz float boulders, moderate limonite and siderite.

2+00S, 4+00W Approximate location south of grid area. Grab sample of 0.4 m wide quartz vein in old trench, minor iron oxide, argillite host. Elev. 3940'.

Silver Claim - Fish Lake Area

4+35S, 0+20E Grab sample of near-surface cream-white calcareous tufa; porous, crumbly; 5% organics.

4+55S, 1+05E Grey argillite, probable bedrock in 0.4 m deep trench, grab sample.

4+64S, 0+82E-"R" Calcareous tufa, dark olive or greenish-grey colour, from 0.35 m depth in trench. Lighter grey to tan boulders on surface, no tufa in trench deeper than 0.35 m.

4+78S, 0+60E-"B" Grey, crusty, hard, wet, calcareous tufa from 0.5 to 0.6 m depth in 1.75 m deep pit.
4+87S, 0+65E
Grab of granite bedrock exposed in 1.75 m deep trench: fine-grained, moderate iron oxide, trace disseminated pyrite.

4+99S, 0+63E-"R"
Chips of float boulders in pit; hard, light coloured, fine to medium grained intrusive rock with bright orange iron oxide rind or weathered crust, non-pyritic.

5+90S, 0+16W
0.5 m chip sample of argillite bedrock in 0.5 m x 1.0 m x 0.5 m trench. Foliation N60°W 60°S.

5+90S, 0+20W
0.5 m chip sample of fissile argillite with quartz and limonite up to 1.0 cm, parallel to foliation N55°W 60°S.

5+90S, 0+23W
0.5 m chip sample in trench bottom, similar to previous sample.

5+90S, 0+26W
0.5 chip sample of grey argillite; prominent N70°E 75°N joint set; foliation is N50°W 45°S which is parallel to thin sandy beds in argillite. Pit is 1.0 m x 1.0 m x 0.75 m.

5+98S, 1+60E
1.0 m chip/channel sample of granite outcrop showing several 1.0 cm quartz-limonite veinlets. Located above old adit.
Touchstone Resources Ltd.
Merit-Rich Project - Drill Logs

Location: 1.5 km S of Zincton, B.C.
Elevation: 1,760 m (5,775')
Grid Co-ordinates: 6+60N, 9+60E
Core Size: NQ 2 (50 mm)
Azimuth: 140°
Inclination: -45°
Total Length: 105.49 m (346')

DDH Number: T-97-1
Date Started: August 12, 1997
Date Completed: August 23, 1997
Drilled By: Oliver Yeager Drilling
Logged By: Paul Kallock, Geologist

<table>
<thead>
<tr>
<th>From (metres)</th>
<th>To (metres)</th>
<th>Description</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>Ag (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>11.77</td>
<td>Surficial oxidation, pyrite leached from grey, banded argillite, moderate limonite, strongly fractured and broken, poor core recovery.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.77</td>
<td>25.64</td>
<td>Black, carbonaceous argillite, above 13.10 m argillite contains conglomerate pebbles of argillite, pyrite and porphyritic volcanic (?). Clasts are subrounded to angular and appear to be weakly stretched by metamorphism. Pyrite is ubiquitous as concentrations along bedding planes (which is coincident with foliation), as irregular cross-cutting veinlets and as patches (pebbles?).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From (metres)</td>
<td>To (metres)</td>
<td>Description</td>
<td>Pb (ppm)</td>
<td>Zn (ppm)</td>
<td>Ag (ppm)</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>15.86</td>
<td>16.54</td>
<td>Black, massive, calcareous argillite or limestone, non-bedded, 1-2% pyrite as blebs and veinlets. 15.86-16.54</td>
<td>7</td>
<td>2350</td>
<td>0.5</td>
</tr>
<tr>
<td>25.64</td>
<td>26.55</td>
<td>Granitic sill, very fine-grained, mafic minerals less than 10%; 10% diss. pyr. to pyrrhotite.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.64</td>
<td>32.62</td>
<td>Black, carbonaceous argillite, occasional black limestone bed up to 10 cm wide such as at 31.2 m. Limestone is non-pyritic. 10% pyrite as bedding plane and cross-cutting irregular veinlets. Possible pyrrhotite as fine bedding plane concentrations. Calcite common as veinlets and round inclusions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.62</td>
<td>34.42</td>
<td>Granitic dyke, angular argillite inclusions near upper contact. Similar to 25.64-26.55.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.42</td>
<td>36.70</td>
<td>Argillite. 36.65-36.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.70</td>
<td>38.41</td>
<td>Granitic dyke or sill. Similar to 25.64-26.55. Weakly magnetic, possibly due to fine-grained pyrrhotite. 10% pyrite. 36.65-36.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.41</td>
<td>65.04</td>
<td>Black carbonaceous argillite, locally calcareous, locally graphitic, 5-10% pyrite. 41.25 5 cm shear zone with graphite, broken argillite and pyrite, probable 35° attitude appears to cut bedding obliquely. 44.00 10 cm argillite breccia with calcite matrix, vugs common. 49.06 Foliation (and bedding ?) changes from 40° to 25°. 41.16-41.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.36</td>
<td>53.66</td>
<td>Strong, white calcite veinlets in black calcareous argillite.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1000</td>
<td>0.8</td>
</tr>
</tbody>
</table>
From To (metres) Description

56.00-57.50 Grey, banded argillite, strongly laminated with light grey and darker grey beds; numerous soft (?) sediment deformation structures, cross beds, small scale faults mixed with later faults with calcite and pyrite. Average 3-4% pyrite.
Graded bedding is variable, tops undeterminant.

65.04-75.15 Aplitic or granitic fine-grained dyke, minor mafic minerals, common rounded porphyritic phenocrysts (amygdales?).
<table>
<thead>
<tr>
<th>From (metres)</th>
<th>To (metres)</th>
<th>Description</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.50</td>
<td>79.00</td>
<td>Grey banded argillite. Similar to previous argillite section.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.00</td>
<td>79.5</td>
<td>Aplite or granitic fine-grained dyke. 1% diss. py; graphitic shear with quartz and weak limonite at 38° at lower contact. 79.35-79.65</td>
<td>4</td>
<td>235</td>
<td>0.4</td>
</tr>
<tr>
<td>79.5</td>
<td>81.17</td>
<td>Grey banded argillite, locally fragmental, probably conglomerate. 2-3% pyrite. 2-3% calcite. 88.55 2 cm quartz, calcite vein with <1% pyrite.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.72</td>
<td>94.40</td>
<td>Black, carbonaceous argillite with numerous zones which are calcareous possible black carbonaceous limestone, average 2-3% pyrite as veinlets and disseminations, 3-5% veinlet white, calcite. 88.40-88.70 91.10-92.30 91.10-92.00 Black, carbon-rich calcareous argillite, black powder common, driller reports voids and soft zones.</td>
<td>3</td>
<td>141</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1350</td>
<td>0.5</td>
</tr>
<tr>
<td>From (metres)</td>
<td>To (metres)</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94.40</td>
<td>105.49</td>
<td>Black, carbonaceous limestone, generally massive, non-bedded, weakly foliated, very fine-grained non-crystalline. White calcite veinlets, 5-10%; pyrite 2-3% as disseminations and veinlets. 95.3 20 cm zone of numerous calcite veinlets which parallels bedding/foliation.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

105.49 m (346 ft) End of Hole.
TOUCHSTONE RESOURCES LTD.
MERIT-RICH PROJECT - DRILL LOGS

Location: 1.5 km S of Zincton, B.C.
Elevation: 1,760 m (5775')
Grid Co-ordinates: 7+95N, 11+20E
Core Size: NQ 2 (50 mm)
Azimuth: 140°
Inclination: -45°
Total Length: 106.40 m (349')

DDH Number: T-97-2
Date Started: August 25, 1997
Date Completed: September 5, 1997
Drilled By: Oliver Yeager Drilling
Logged By: Paul Kallock, Geologist

<table>
<thead>
<tr>
<th>From (metres)</th>
<th>To (metres)</th>
<th>Description</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>Ag (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>4.30</td>
<td>Strongly fractured and broken, black, carbonaceous argillite, no sulphides, weak limonite.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.30</td>
<td>6.25</td>
<td>Black, carbonaceous limestone, moderately fractured, weak calcite veinlets.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.25</td>
<td>9.10</td>
<td>Black carbonaceous argillite similar to upper section.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.10</td>
<td>11.89</td>
<td>Black, carbonaceous limestone with weak calcite veinlets.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.89</td>
<td>13.41</td>
<td>Black graphitic argillite, poor core recovery, weak limonite, probable fault zone.</td>
<td>19</td>
<td>580</td>
<td>1.5</td>
</tr>
<tr>
<td>13.41</td>
<td>13.74</td>
<td>3 cm quartz vein at 45° underlain by quartz argillite breccia with graphite shear faces at 35°. Porous voids in breccia may have resulted from leaching of sulphides.</td>
<td>12</td>
<td>450</td>
<td>1.0</td>
</tr>
<tr>
<td>13.74</td>
<td>14.63</td>
<td>Black, sheared argillite numerous graphitic slickensides, unoxidized sections contain 5% pyrite, probable fault zone.</td>
<td>24</td>
<td>480</td>
<td>1.5</td>
</tr>
</tbody>
</table>
From (metres) | To (metres) | Description | Pb (ppm) | Zn (ppm) | Ag (ppm)
--- | --- | --- | --- | --- | ---
14.63 | 22.00 | Black graphitic argillite, locally oxidized, sulphide section contain 5% pyrite; occasional quartz vein to 1 cm.
18.80-19.30 Irregular quartz veins up to 1 cm wide in graphitic argillite. strong limonite.
18.80-19.30 | 22.00-22.00 | 23 | 1000 | 1.4
18.80-19.30 | 21.00-22.00 | 18 | 590 | 1.5
22.00 | 22.40 | Fine-grained granitic dyke, minor quartz and limonite at upper contact, strong graphite below.
22.00-22.40 | 22.40-22.87 | 19 | 1000 | 1.8
22.40 | 34.87 | Black carbonaceous argillite, locally with slickensided surfaces of strong graphite; limonite oxidation of pyrite is variable, unoxidized sections contain 2-4% pyrite. Occasional quartz vein less than 1 cm wide. More than half of the interval is very strongly broken; 44% core recovery in lower 3.5 m of interval.
31.40-33.54 Graphitic argillite minor quartz. 44% core recovery.
31.40-33.54 | 32 | 425 | 1.0
33.54-34.87 Vuggy quartz vein with abundant graphite. 1% pyrite, weak limonite, vugs appear to be boxwork structure possibly after calcite and/or sulphides; only 25% core recovery in this section.
33.54-34.87 | 32 | 700 | 2.3
<table>
<thead>
<tr>
<th>From (metres)</th>
<th>To (metres)</th>
<th>Description</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>Ag (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.87</td>
<td>43.83</td>
<td>Grey limestone, weak calcite veinlets, occasional white “bull” quartz vein up to 0.25 m such as at 37.5 m; occasional zone of noncalcereous grey argillite within grey limestone.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.83</td>
<td>47.56</td>
<td>Grey argillite, numerous irregular white quartz veins and zones of argillite-white quartz breccia, i.e. 46.10-46.55 and 46.90-47.30 which have angular, shattered argillite fragments in which vuggy quartz. At 46.50 later quartz-calcite 0.5 cm vein with single sphalerite crystal. Also seen at 47.25 m depth.</td>
<td>16</td>
<td>680</td>
<td><0.2</td>
</tr>
<tr>
<td>47.56</td>
<td>56.90</td>
<td>Black graphitic argillite with numerous irregular white quartz veins or sheared pods. 48.30-50.36 No core, only sandy backfill cuttings of grey argillite, graphite and white quartz. 50.36-54.90 Mostly graphite with slickensides on all broken surfaces, 1% fine-grained pyrite, 5-10% quartz; most shears are at 30° to core axis. 54.90-56.90 Graphitic argillite with foliation at 55°-65° and graphite slicks at −30°.</td>
<td>24</td>
<td>1160</td>
<td>0.3</td>
</tr>
<tr>
<td>48.30</td>
<td>50.36</td>
<td>7 860 <0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
From | To (meters) | Description |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.30</td>
<td>58.54</td>
<td>Banded graphitic argillite, almost laminated at 50°. Strong bedding or foliation plane pyrite to 10%. 58.10-58.54 Broken irregular quartz, moderate limonite, strong graphite, less than 43% core recovery. 58.10-58.54</td>
</tr>
<tr>
<td>58.54</td>
<td>62.80</td>
<td>Fine-grained granitic dyke, 1% pyrite, upper 0.20 m are green due to mariposite or greenish mica. Graphitic argillite inclusion near lower contact.</td>
</tr>
<tr>
<td>62.80</td>
<td>71.65</td>
<td>Black carbonaceous argillite, generally more massive with indistinct foliation and/or bedding, weak quartz and pyrite; occasional granitic dyke <10 cm wide.</td>
</tr>
<tr>
<td>71.65</td>
<td>75.75</td>
<td>Carbonaceous argillite; banded appearance due to numerous light grey (coarser?) beds. Pyrite = 5-10% as 1) disseminations, 2) beddings plance concentrations, 3) cross-cutting veinlets.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>Ag (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>350</td>
<td>3.0</td>
</tr>
<tr>
<td>From (metres)</td>
<td>To (metres)</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>75.15</td>
<td>76.00</td>
<td>Fine-grained granite sill.</td>
</tr>
<tr>
<td>76.00</td>
<td>81.50</td>
<td>Carbonaceous argillite, locally graphitic especially near quartz veins, such as 77.75-78.00 and 78.75-79.00 where white quartz contains brecciated, graphitic argillite at 30° and 45° attitudes. Quartz is not vuggy nor has calcite bladed crystals as seen higher in fold (46.50 m). 2-3% pyrite.</td>
</tr>
<tr>
<td>81.50</td>
<td>81.70</td>
<td>Granitic sill.</td>
</tr>
<tr>
<td>81.70</td>
<td>90.24</td>
<td>Carbonaceous argillite and argillite breccia. Most breccia is composed of light and dark grey argillite which are slightly to strongly displaced along bedding and/or foliation planes. 3-5% pyrite. Near 83.3 m dark argillite is weakly brecciated with minor quartz in the matrix (clast supported crackle-breccia).</td>
</tr>
<tr>
<td>90.24</td>
<td>94.90</td>
<td>Massive argillite, bedding planes not common. Moderately to strongly carbonaceous. 2-3% pyrite.</td>
</tr>
<tr>
<td>From (metres)</td>
<td>To (metres)</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>95</td>
<td>102.75</td>
<td>Banded light and dark grey argillite moderately carbonaceous; 2-3% pyrite.</td>
</tr>
<tr>
<td>102.75</td>
<td>103.25</td>
<td>Fault zone abundant clay gouge minor graphite, appears to be oriented almost parallel to foliation.</td>
</tr>
<tr>
<td>103.25</td>
<td>106.40</td>
<td>Banded dark grey argillite, similar to section above fault zone.</td>
</tr>
<tr>
<td>106.40 m (349 ft)</td>
<td>End of Hole</td>
<td></td>
</tr>
</tbody>
</table>
1997 DIAMOND DRILLING PROGRAMME
CORE RECOVERY

T-97-1

<table>
<thead>
<tr>
<th>Interval (metres)</th>
<th>Percent Recovery</th>
<th>Interval (metres)</th>
<th>Percent Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - 1.98</td>
<td>22</td>
<td>71.95 - 75.00</td>
<td>100</td>
</tr>
<tr>
<td>1.98 - 4.88</td>
<td>79</td>
<td>78.05</td>
<td>100</td>
</tr>
<tr>
<td>7.93</td>
<td>20</td>
<td>81.10</td>
<td>100</td>
</tr>
<tr>
<td>10.67</td>
<td>83</td>
<td>84.15</td>
<td>100</td>
</tr>
<tr>
<td>13.72</td>
<td>83</td>
<td>87.20</td>
<td>100</td>
</tr>
<tr>
<td>17.07</td>
<td>100</td>
<td>90.24</td>
<td>100</td>
</tr>
<tr>
<td>20.12</td>
<td>100</td>
<td>93.29</td>
<td>89</td>
</tr>
<tr>
<td>23.17</td>
<td>100</td>
<td>96.34</td>
<td>100</td>
</tr>
<tr>
<td>26.22</td>
<td>100</td>
<td>99.39</td>
<td>100</td>
</tr>
<tr>
<td>29.27</td>
<td>100</td>
<td>102.44</td>
<td>100</td>
</tr>
<tr>
<td>32.32</td>
<td>100</td>
<td>105.49</td>
<td>100</td>
</tr>
<tr>
<td>35.37</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.41</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.46</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.51</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.56</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.61</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.66</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.71</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.76</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.80</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.85</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.90</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.90 - 71.95</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End of Hole: 105.49 m
<table>
<thead>
<tr>
<th>Interval (metres)</th>
<th>Percent Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 - 4.57</td>
<td>90</td>
</tr>
<tr>
<td>4.57 - 7.01</td>
<td>100</td>
</tr>
<tr>
<td>8.54</td>
<td>60</td>
</tr>
<tr>
<td>10.37</td>
<td>92</td>
</tr>
<tr>
<td>13.41</td>
<td>34</td>
</tr>
<tr>
<td>14.63</td>
<td>76</td>
</tr>
<tr>
<td>16.16</td>
<td>100</td>
</tr>
<tr>
<td>18.60</td>
<td>100</td>
</tr>
<tr>
<td>20.12</td>
<td>80</td>
</tr>
<tr>
<td>22.87</td>
<td>100</td>
</tr>
<tr>
<td>26.22</td>
<td>90</td>
</tr>
<tr>
<td>29.27</td>
<td>90</td>
</tr>
<tr>
<td>31.40</td>
<td>79</td>
</tr>
<tr>
<td>33.54</td>
<td>44</td>
</tr>
<tr>
<td>35.37</td>
<td>44</td>
</tr>
<tr>
<td>38.41</td>
<td>100</td>
</tr>
<tr>
<td>41.46</td>
<td>100</td>
</tr>
<tr>
<td>44.51</td>
<td>100</td>
</tr>
<tr>
<td>47.56</td>
<td>100</td>
</tr>
<tr>
<td>50.61</td>
<td>36</td>
</tr>
<tr>
<td>53.35</td>
<td>93</td>
</tr>
<tr>
<td>55.18</td>
<td>78</td>
</tr>
<tr>
<td>56.40</td>
<td>92</td>
</tr>
<tr>
<td>57.93</td>
<td>95</td>
</tr>
<tr>
<td>58.54</td>
<td>43</td>
</tr>
<tr>
<td>58.54 - 59.76</td>
<td>78</td>
</tr>
<tr>
<td>59.76 - 62.80</td>
<td>38</td>
</tr>
<tr>
<td>65.85</td>
<td>91</td>
</tr>
<tr>
<td>68.90</td>
<td>100</td>
</tr>
<tr>
<td>71.19</td>
<td>100</td>
</tr>
<tr>
<td>73.02</td>
<td>92</td>
</tr>
<tr>
<td>75.00</td>
<td>100</td>
</tr>
<tr>
<td>77.13</td>
<td>93</td>
</tr>
<tr>
<td>80.49</td>
<td>99</td>
</tr>
<tr>
<td>81.10</td>
<td>100</td>
</tr>
<tr>
<td>85.06</td>
<td>96</td>
</tr>
<tr>
<td>87.20</td>
<td>100</td>
</tr>
<tr>
<td>88.41</td>
<td>100</td>
</tr>
<tr>
<td>90.24</td>
<td>100</td>
</tr>
<tr>
<td>92.68</td>
<td>100</td>
</tr>
<tr>
<td>95.73</td>
<td>100</td>
</tr>
<tr>
<td>97.26</td>
<td>100</td>
</tr>
<tr>
<td>100.91</td>
<td>93</td>
</tr>
<tr>
<td>103.05</td>
<td>100</td>
</tr>
<tr>
<td>103.96</td>
<td>100</td>
</tr>
<tr>
<td>103.96-106.40</td>
<td>92</td>
</tr>
</tbody>
</table>

End of Hole: 106.40 m
CERTIFICATE A9732940

(FL.) - ARCTEX ENGINEERING SERVICES

SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>CHEMEX CODE</th>
<th>NUMBER SAMPLES</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>100</td>
<td>Dry, sieve to -80 mesh</td>
</tr>
<tr>
<td>202</td>
<td>100</td>
<td>save reject</td>
</tr>
<tr>
<td>238</td>
<td>100</td>
<td>Nitric-aqua-regia digestion</td>
</tr>
</tbody>
</table>

ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>CHEMEX CODE</th>
<th>NUMBER SAMPLES</th>
<th>DESCRIPTION</th>
<th>METHOD</th>
<th>DETECTION LIMIT</th>
<th>UPPER LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>100</td>
<td>Ag ppm: HNO3-aqua regia digest</td>
<td>AAS-BKGD CORR</td>
<td>0.2</td>
<td>100.0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>Pb ppm: HNO3-aqua regia digest</td>
<td>AAS-BKGD CORR</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>Zn ppm: HNO3-aqua regia digest</td>
<td>AAS</td>
<td>1</td>
<td>10000</td>
</tr>
</tbody>
</table>

Comments: CC: ARCTEX ENGINEERING - SILVERTON, BC

Samples submitted to our lab in Vancouver, BC. This report was printed on 29-JUL-97.
CERTIFICATE

A9733392

(FL) - ARCTEX ENGINEERING SERVICES

Project:
P.O. #:

Samples submitted to our lab in Vancouver, BC. This report was printed on 31-JUL-97.

SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>CHEMEX CODE</th>
<th>NUMBER SAMPLES</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>5</td>
<td>Geochem ring to approx 150 mesh</td>
</tr>
<tr>
<td>226</td>
<td>5</td>
<td>0-1 Kg crush and split</td>
</tr>
<tr>
<td>3202</td>
<td>5</td>
<td>Rock - save entire reject</td>
</tr>
<tr>
<td>238</td>
<td>5</td>
<td>Nitric-aqua-regia digestion</td>
</tr>
</tbody>
</table>

ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>CHEMEX CODE</th>
<th>NUMBER SAMPLES</th>
<th>DESCRIPTION</th>
<th>METHOD</th>
<th>DETECTION LIMIT</th>
<th>UPPER LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>Pb ppm: HNO3-aqua regia digest</td>
<td>AAS-BKGD CORE</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Zn ppm: HNO3-aqua regia digest</td>
<td>AAS</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Ag ppm: HNO3-aqua regia digest</td>
<td>AAS-BKGD CORE</td>
<td>0.2</td>
<td>100.0</td>
</tr>
</tbody>
</table>
SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>CHEMEX CODE</th>
<th>NUMBER SAMPLES</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>4</td>
<td>Geochem ring to approx 150 mesh</td>
</tr>
<tr>
<td>226</td>
<td>4</td>
<td>0-3 Kg crush and split</td>
</tr>
<tr>
<td>3202</td>
<td>4</td>
<td>Rock - save entire reject</td>
</tr>
<tr>
<td>238</td>
<td>2</td>
<td>Nitric-aqua-regia digestion</td>
</tr>
<tr>
<td>229</td>
<td>2</td>
<td>ICP - Ag Digestion charge</td>
</tr>
</tbody>
</table>

* NOTED 11:

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Ba, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Ti, W.
(FL) - ARCTEX ENGINEERING SERVICES

Samples submitted to our lab in Vancouver, BC. This report was printed on 21-AUG-97.

CERTIFICATE A9738383

ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>CHEMEX CODE</th>
<th>NUMBER SAMPLES</th>
<th>DESCRIPTION</th>
<th>METHOD</th>
<th>DETECTION LIMIT</th>
<th>UPPER LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>384</td>
<td>1</td>
<td>Ag g/t; Gravimetric</td>
<td>PA-GRAVIMETRIC</td>
<td>3</td>
<td>1000</td>
</tr>
</tbody>
</table>

SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>CHEMEX CODE</th>
<th>NUMBER SAMPLES</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>284</td>
<td>1</td>
<td>Pulp, prev. prepared at Chemex</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Ag ppm</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>8+00W 0+00N</td>
<td>201 202</td>
<td>0.6</td>
</tr>
<tr>
<td>8+00W 0+50N</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>8+00W 1+00N</td>
<td>201 202</td>
<td>0.3</td>
</tr>
<tr>
<td>8+00W 1+50N</td>
<td>201 202</td>
<td>0.4</td>
</tr>
<tr>
<td>8+00W 2+00N</td>
<td>201 202</td>
<td>0.5</td>
</tr>
<tr>
<td>8+00W 2+50N</td>
<td>201 202</td>
<td>0.7</td>
</tr>
<tr>
<td>8+00W 3+00N</td>
<td>201 202</td>
<td>0.3</td>
</tr>
<tr>
<td>8+00W 3+50N</td>
<td>201 202</td>
<td>1.0</td>
</tr>
<tr>
<td>8+00W 4+00N</td>
<td>201 202</td>
<td>0.4</td>
</tr>
<tr>
<td>8+00W 4+50N</td>
<td>201 202</td>
<td>1.1</td>
</tr>
<tr>
<td>8+00W 5+00N</td>
<td>201 202</td>
<td>0.4</td>
</tr>
<tr>
<td>8+00W 5+50N</td>
<td>201 202</td>
<td>1.0</td>
</tr>
<tr>
<td>10+00W 0+00N</td>
<td>201 202</td>
<td>0.4</td>
</tr>
<tr>
<td>10+00W 0+50N</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>10+00W 1+00N</td>
<td>201 202</td>
<td>0.4</td>
</tr>
<tr>
<td>10+00W 1+50N</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>10+00W 2+00N</td>
<td>201 202</td>
<td>0.9</td>
</tr>
<tr>
<td>10+00W 2+50N</td>
<td>201 202</td>
<td>0.8</td>
</tr>
<tr>
<td>10+00W 3+00N</td>
<td>201 202</td>
<td>2.5</td>
</tr>
<tr>
<td>10+00W 3+50N</td>
<td>201 202</td>
<td>5.4</td>
</tr>
<tr>
<td>10+00W 4+00N</td>
<td>201 202</td>
<td>0.8</td>
</tr>
<tr>
<td>10+00W 4+50N</td>
<td>201 202</td>
<td>0.8</td>
</tr>
<tr>
<td>10+00W 5+00N</td>
<td>201 202</td>
<td>0.7</td>
</tr>
<tr>
<td>10+00W 5+50N</td>
<td>201 202</td>
<td>0.8</td>
</tr>
<tr>
<td>0+00N 6+00W</td>
<td>201 202</td>
<td>0.7</td>
</tr>
<tr>
<td>0+00N 6+50W</td>
<td>201 202</td>
<td>0.6</td>
</tr>
<tr>
<td>0+00N 7+00W</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>0+00N 7+50W</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>0+00N 8+00W</td>
<td>201 202</td>
<td>0.3</td>
</tr>
<tr>
<td>0+00N 8+50W</td>
<td>201 202</td>
<td>0.3</td>
</tr>
<tr>
<td>0+00N 9+00W</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>0+00N 9+50W</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>6+00N 9+00W</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>6+00N 9+50W</td>
<td>201 202</td>
<td>0.5</td>
</tr>
<tr>
<td>6+00N 9+50W</td>
<td>201 202</td>
<td>1.2</td>
</tr>
<tr>
<td>6+00N 10+00W</td>
<td>201 202</td>
<td>2.2</td>
</tr>
<tr>
<td>6+00N 10+50W</td>
<td>201 202</td>
<td>1.8</td>
</tr>
<tr>
<td>6+00N 11+00W</td>
<td>201 202</td>
<td>1.9</td>
</tr>
<tr>
<td>6+00N 11+50W</td>
<td>201 202</td>
<td>0.3</td>
</tr>
<tr>
<td>6+00N 12+00W</td>
<td>201 202</td>
<td>0.3</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Ag ppm</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>6+00N 12+50W</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>6+00N 13+00W</td>
<td>201 202</td>
<td>0.4</td>
</tr>
<tr>
<td>6+00N 13+50W</td>
<td>201 202</td>
<td>0.5</td>
</tr>
<tr>
<td>6+00N 14+00W</td>
<td>201 202</td>
<td>1.0</td>
</tr>
<tr>
<td>6+00N 04+25W</td>
<td>201 202</td>
<td>2.0</td>
</tr>
<tr>
<td>8+00N 04+50W</td>
<td>201 202</td>
<td>1.4</td>
</tr>
<tr>
<td>8+00N 05+00W</td>
<td>201 202</td>
<td>0.4</td>
</tr>
<tr>
<td>8+00N 05+50W</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>8+00N 06+00W</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>8+00N 06+50W</td>
<td>201 202</td>
<td>0.2</td>
</tr>
<tr>
<td>8+00N 07+00W</td>
<td>201 202</td>
<td>0.9</td>
</tr>
<tr>
<td>8+00N 07+50W</td>
<td>201 202</td>
<td>0.3</td>
</tr>
<tr>
<td>8+00N 08+00W</td>
<td>201 202</td>
<td>0.6</td>
</tr>
<tr>
<td>8+00N 08+50W</td>
<td>201 202</td>
<td>0.8</td>
</tr>
<tr>
<td>8+00N 09+00W</td>
<td>201 202</td>
<td>1.2</td>
</tr>
<tr>
<td>8+00N 09+50W</td>
<td>201 202</td>
<td>1.1</td>
</tr>
<tr>
<td>8+00N 10+00W</td>
<td>201 202</td>
<td>0.4</td>
</tr>
<tr>
<td>8+00N 10+50W</td>
<td>201 202</td>
<td>1.1</td>
</tr>
<tr>
<td>8+00N 11+00W</td>
<td>201 202</td>
<td>0.8</td>
</tr>
<tr>
<td>8+00N 11+50W</td>
<td>201 202</td>
<td>0.9</td>
</tr>
<tr>
<td>8+00N 12+00W</td>
<td>201 202</td>
<td>1.1</td>
</tr>
<tr>
<td>8+00N 12+50W</td>
<td>201 202</td>
<td>1.1</td>
</tr>
<tr>
<td>8+00N 13+00W</td>
<td>201 202</td>
<td>1.0</td>
</tr>
<tr>
<td>8+00N 13+50W</td>
<td>201 202</td>
<td>2.4</td>
</tr>
<tr>
<td>8+00N 14+00W</td>
<td>201 202</td>
<td>3.3</td>
</tr>
<tr>
<td>8+25N 04+00W</td>
<td>201 202</td>
<td>1.5</td>
</tr>
<tr>
<td>10+00N 04+00W</td>
<td>201 202</td>
<td>2.0</td>
</tr>
<tr>
<td>10+00N 04+50W</td>
<td>201 202</td>
<td>3.0</td>
</tr>
<tr>
<td>10+00N 05+00W</td>
<td>201 202</td>
<td>1.6</td>
</tr>
<tr>
<td>10+00N 05+50W</td>
<td>201 202</td>
<td>1.0</td>
</tr>
<tr>
<td>10+00N 06+00W</td>
<td>201 202</td>
<td>1.2</td>
</tr>
<tr>
<td>10+00N 06+50W</td>
<td>201 202</td>
<td>3.5</td>
</tr>
<tr>
<td>10+00N 07+00W</td>
<td>201 202</td>
<td>0.8</td>
</tr>
<tr>
<td>10+00N 07+50W</td>
<td>201 202</td>
<td>1.6</td>
</tr>
<tr>
<td>10+00N 08+00W</td>
<td>201 202</td>
<td>3.6</td>
</tr>
<tr>
<td>10+00N 08+50W</td>
<td>201 202</td>
<td>2.8</td>
</tr>
<tr>
<td>10+00N 09+00W</td>
<td>201 202</td>
<td>2.2</td>
</tr>
<tr>
<td>10+00N 09+50W</td>
<td>201 202</td>
<td>1.3</td>
</tr>
<tr>
<td>10+00N 10+00W</td>
<td>201 202</td>
<td>1.2</td>
</tr>
<tr>
<td>10+00N 10+50W</td>
<td>201 202</td>
<td>3.4</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Ag ppm</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>10+00N 11+00W</td>
<td>201 202</td>
<td>3.7</td>
</tr>
<tr>
<td>10+00N 11+50W</td>
<td>201 202</td>
<td>1.7</td>
</tr>
<tr>
<td>10+00N 12+00W</td>
<td>201 202</td>
<td>5.6</td>
</tr>
<tr>
<td>10+00N 12+50W</td>
<td>201 202</td>
<td>2.1</td>
</tr>
<tr>
<td>10+00N 13+00W</td>
<td>201 202</td>
<td>1.6</td>
</tr>
<tr>
<td>10+00N 13+50W</td>
<td>201 202</td>
<td>1.6</td>
</tr>
<tr>
<td>12+00N 04+00W</td>
<td>201 202</td>
<td>2.7</td>
</tr>
<tr>
<td>12+00N 04+50W</td>
<td>201 202</td>
<td>3.2</td>
</tr>
<tr>
<td>12+00N 05+00W</td>
<td>201 202</td>
<td>3.2</td>
</tr>
<tr>
<td>12+00N 05+50W</td>
<td>201 202</td>
<td>2.3</td>
</tr>
<tr>
<td>12+00N 06+00W</td>
<td>201 202</td>
<td>1.0</td>
</tr>
<tr>
<td>12+00N 06+50W</td>
<td>201 202</td>
<td>1.7</td>
</tr>
<tr>
<td>12+00N 07+00W</td>
<td>201 202</td>
<td>1.8</td>
</tr>
<tr>
<td>12+00N 07+50W</td>
<td>201 202</td>
<td>1.2</td>
</tr>
<tr>
<td>12+00N 08+00W</td>
<td>201 202</td>
<td>1.7</td>
</tr>
<tr>
<td>12+00N 09+00W</td>
<td>201 202</td>
<td>0.8</td>
</tr>
<tr>
<td>12+00N 09+50W</td>
<td>201 202</td>
<td>0.6</td>
</tr>
<tr>
<td>12+00N 10+00W</td>
<td>201 202</td>
<td>0.5</td>
</tr>
<tr>
<td>12+00N 10+50W</td>
<td>201 202</td>
<td>0.7</td>
</tr>
<tr>
<td>12+00N 11+00W</td>
<td>201 202</td>
<td>0.7</td>
</tr>
<tr>
<td>12+00N 11+50W</td>
<td>201 202</td>
<td>1.0</td>
</tr>
<tr>
<td>12+00N 12+00W</td>
<td>201 202</td>
<td>3.1</td>
</tr>
<tr>
<td>12+00N 12+50W</td>
<td>201 202</td>
<td>1.6</td>
</tr>
<tr>
<td>12+00N 13+00W</td>
<td>201 202</td>
<td>3.7</td>
</tr>
<tr>
<td>12+00N 13+50W</td>
<td>201 202</td>
<td>2.0</td>
</tr>
<tr>
<td>12+00N 14+00W</td>
<td>201 202</td>
<td>0.5</td>
</tr>
<tr>
<td>12+00N 14+50W</td>
<td>201 202</td>
<td>1.0</td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS A9733391

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>PREP CODE</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
<th>Ag ppm</th>
<th>Aqua R</th>
</tr>
</thead>
<tbody>
<tr>
<td>OW 0+00N</td>
<td>201 202</td>
<td>82</td>
<td>193</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>OW 0+50N</td>
<td>201 202</td>
<td>114</td>
<td>205</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>OW 1+00N</td>
<td>201 202</td>
<td>45</td>
<td>235</td>
<td>< 0.2</td>
<td></td>
</tr>
<tr>
<td>OW 1+50N</td>
<td>201 202</td>
<td>62</td>
<td>540</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>OW 2+00N</td>
<td>201 202</td>
<td>29</td>
<td>360</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>OW 2+50N</td>
<td>201 202</td>
<td>92</td>
<td>275</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>OW 3+00N</td>
<td>201 202</td>
<td>52</td>
<td>215</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>OW 3+50N</td>
<td>201 202</td>
<td>44</td>
<td>345</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>OW 4+00N</td>
<td>201 203</td>
<td>27</td>
<td>355</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>OW 4+50N</td>
<td>201 203</td>
<td>85</td>
<td>290</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>OW 5+00N</td>
<td>201 202</td>
<td>46</td>
<td>310</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>OW 5+50N</td>
<td>201 202</td>
<td>26</td>
<td>375</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>L2W 0+50N</td>
<td>201 202</td>
<td>34</td>
<td>245</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>L2W 1+00N</td>
<td>201 202</td>
<td>26</td>
<td>215</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>L2W 1+50N</td>
<td>201 202</td>
<td>18</td>
<td>405</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>L2W 2+00N</td>
<td>201 202</td>
<td>29</td>
<td>480</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>L2W 2+50N</td>
<td>201 202</td>
<td>26</td>
<td>510</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>L2W 3+00N</td>
<td>201 202</td>
<td>24</td>
<td>350</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>L2W 3+50N</td>
<td>201 202</td>
<td>30</td>
<td>770</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>L2W 4+00N</td>
<td>201 202</td>
<td>23</td>
<td>260</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>L4N 2+00W</td>
<td>201 202</td>
<td>35</td>
<td>820</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>L4N 2+50W</td>
<td>201 202</td>
<td>26</td>
<td>330</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>L4N 3+00W</td>
<td>201 202</td>
<td>20</td>
<td>850</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>L4N 3+50W</td>
<td>201 202</td>
<td>40</td>
<td>1350</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>L4N 4+00W</td>
<td>201 202</td>
<td>42</td>
<td>1300</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>L4N 5+00W</td>
<td>201 202</td>
<td>32</td>
<td>1200</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>L4N 5+50W</td>
<td>201 202</td>
<td>50</td>
<td>2550</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>L4N 6+00W</td>
<td>201 202</td>
<td>37</td>
<td>1650</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>L4N 6+50W</td>
<td>201 202</td>
<td>53</td>
<td>940</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>L4N 7+00W</td>
<td>201 202</td>
<td>23</td>
<td>630</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>L4N 7+50W</td>
<td>201 202</td>
<td>26</td>
<td>640</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>5+90S 0+20W</td>
<td>201 202</td>
<td>34</td>
<td>235</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>5+90S 0+23W</td>
<td>201 202</td>
<td>80</td>
<td>165</td>
<td>< 0.2</td>
<td></td>
</tr>
<tr>
<td>5+90S 0+26W</td>
<td>201 202</td>
<td>55</td>
<td>205</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>6N 0+00W</td>
<td>201 202</td>
<td>32</td>
<td>890</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>6N 0+50W</td>
<td>201 202</td>
<td>23</td>
<td>650</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>6N 1+00W</td>
<td>201 202</td>
<td>25</td>
<td>192</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>6N 1+50W</td>
<td>201 202</td>
<td>28</td>
<td>420</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>6N 2+00W</td>
<td>201 202</td>
<td>63</td>
<td>355</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>6N 2+50W</td>
<td>201 202</td>
<td>24</td>
<td>460</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm</td>
<td>Aqua R</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>6N 3+00W</td>
<td>201 202</td>
<td>40</td>
<td>230</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>6N 3+50W</td>
<td>201 202</td>
<td>32</td>
<td>182</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>6N 4+00W</td>
<td>201 202</td>
<td>31</td>
<td>365</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>6N 4+50W</td>
<td>201 202</td>
<td>30</td>
<td>430</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>6N 5+00W</td>
<td>201 202</td>
<td>27</td>
<td>670</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>6N 5+50W</td>
<td>201 202</td>
<td>26</td>
<td>189</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>6N 6+00W</td>
<td>201 202</td>
<td>27</td>
<td>305</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>6N 6+50W</td>
<td>201 202</td>
<td>37</td>
<td>198</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>6N 7+00W</td>
<td>201 202</td>
<td>26</td>
<td>315</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>6N 7+50W</td>
<td>201 202</td>
<td>23</td>
<td>395</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>6+00S 0+16W</td>
<td>201 202</td>
<td>32</td>
<td>199</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>6+00S 0+23W</td>
<td>201 202</td>
<td>25</td>
<td>240</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>6+00S 0+26W</td>
<td>201 202</td>
<td>22</td>
<td>205</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm</td>
<td>Agqua R</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>4N 10+5OW</td>
<td>201 202</td>
<td>162</td>
<td>320</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>4N 11+0OW</td>
<td>201 202</td>
<td>181</td>
<td>420</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>4N 11+5OW</td>
<td>201 202</td>
<td>500</td>
<td>540</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>4N 12+0OW</td>
<td>201 202</td>
<td>492</td>
<td>510</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>4N 12+5OW</td>
<td>201 202</td>
<td>232</td>
<td>480</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>4N 13+0OW</td>
<td>201 202</td>
<td>61</td>
<td>340</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>4N 13+5OW</td>
<td>201 202</td>
<td>24</td>
<td>360</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>4N 14+0OW</td>
<td>201 202</td>
<td>26</td>
<td>300</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>4N 14+5OW</td>
<td>201 202</td>
<td>36</td>
<td>720</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>4N 15+0OW</td>
<td>201 202</td>
<td>81</td>
<td>510</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>4N 15+5OW</td>
<td>201 202</td>
<td>32</td>
<td>520</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>4N 16+0OW</td>
<td>201 202</td>
<td>57</td>
<td>360</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>4N 16+5OW</td>
<td>201 202</td>
<td>31</td>
<td>200</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>4N 17+0OW</td>
<td>201 202</td>
<td>38</td>
<td>220</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>4N 17+5OW</td>
<td>201 202</td>
<td>30</td>
<td>280</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>4N 18+0OW</td>
<td>201 202</td>
<td>24</td>
<td>240</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>4N 18+5OW</td>
<td>201 202</td>
<td>28</td>
<td>240</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>4N 19+0OW</td>
<td>201 202</td>
<td>19</td>
<td>145</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>4N 19+5OW</td>
<td>201 202</td>
<td>51</td>
<td>320</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>4N 20+0OW</td>
<td>201 202</td>
<td>29</td>
<td>79</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>4N 20+5OW</td>
<td>201 202</td>
<td>26</td>
<td>156</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>4N 21+0OW</td>
<td>201 202</td>
<td>34</td>
<td>220</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>4N 21+5OW</td>
<td>201 202</td>
<td>31</td>
<td>200</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>4N 22+0OW</td>
<td>201 202</td>
<td>16</td>
<td>250</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>4N 22+5OW</td>
<td>201 202</td>
<td>19</td>
<td>146</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>4N 23+0OW</td>
<td>201 202</td>
<td>24</td>
<td>220</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>4N 23+5OW</td>
<td>201 202</td>
<td>14</td>
<td>166</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>4N 24+0OW</td>
<td>201 202</td>
<td>15</td>
<td>280</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>4N 24+5OW</td>
<td>201 202</td>
<td>14</td>
<td>64</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>4N 25+0OW</td>
<td>201 202</td>
<td>16</td>
<td>200</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>6N 14+0OW</td>
<td>201 202</td>
<td>26</td>
<td>310</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>6N 15+0OW</td>
<td>201 202</td>
<td>39</td>
<td>175</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>6N 15+5OW</td>
<td>201 202</td>
<td>31</td>
<td>152</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>6N 16+0OW</td>
<td>201 202</td>
<td>21</td>
<td>240</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>6N 16+5OW</td>
<td>201 202</td>
<td>22</td>
<td>200</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>6N 17+0OW</td>
<td>201 202</td>
<td>19</td>
<td>320</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>6N 17+5OW</td>
<td>201 202</td>
<td>18</td>
<td>270</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>6N 18+0OW</td>
<td>201 202</td>
<td>17</td>
<td>210</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>6N 18+5OW</td>
<td>201 202</td>
<td>16</td>
<td>118</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>6N 19+0OW</td>
<td>201 202</td>
<td>25</td>
<td>400</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm Aqua R</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>6N 19+50W</td>
<td>201 202</td>
<td>15</td>
<td>190</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>6N 20+00W</td>
<td>201 202</td>
<td>19</td>
<td>330</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>6N 20+50W</td>
<td>201 202</td>
<td>21</td>
<td>240</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>6N 21+00W</td>
<td>201 202</td>
<td>18</td>
<td>110</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>6N 21+50W</td>
<td>201 202</td>
<td>20</td>
<td>260</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>6N 22+00W</td>
<td>201 202</td>
<td>21</td>
<td>102</td>
<td>< 0.2</td>
<td></td>
</tr>
<tr>
<td>6N 22+50W</td>
<td>201 202</td>
<td>10</td>
<td>820</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>6N 23+00W</td>
<td>201 202</td>
<td>25</td>
<td>250</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>6N 23+50W</td>
<td>201 202</td>
<td>15</td>
<td>120</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>6N 24+00W</td>
<td>201 202</td>
<td>13</td>
<td>210</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>6N 24+50W</td>
<td>201 202</td>
<td>24</td>
<td>139</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>6N 25+00W</td>
<td>201 202</td>
<td>17</td>
<td>198</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>8N 14+50W</td>
<td>201 202</td>
<td>24</td>
<td>250</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>8N 15+00W</td>
<td>201 202</td>
<td>33</td>
<td>240</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>8N 15+50W</td>
<td>201 202</td>
<td>21</td>
<td>140</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>8N 16+00W</td>
<td>201 202</td>
<td>22</td>
<td>180</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>8N 16+50W</td>
<td>201 202</td>
<td>14</td>
<td>162</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>8N 17+00W</td>
<td>201 202</td>
<td>19</td>
<td>102</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>8N 17+50W</td>
<td>201 202</td>
<td>12</td>
<td>150</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>8N 18+00W</td>
<td>201 202</td>
<td>27</td>
<td>158</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>8N 19+50W</td>
<td>201 202</td>
<td>7</td>
<td>52</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>8N 19+00W</td>
<td>201 202</td>
<td>29</td>
<td>280</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>8N 19+50W</td>
<td>201 202</td>
<td>21</td>
<td>390</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>8N 20+00W</td>
<td>201 202</td>
<td>14</td>
<td>380</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>8N 20+50W</td>
<td>201 202</td>
<td>12</td>
<td>128</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>8N 21+00W</td>
<td>201 202</td>
<td>14</td>
<td>370</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>8N 21+50W</td>
<td>201 202</td>
<td>14</td>
<td>240</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>8N 22+00W</td>
<td>201 202</td>
<td>15</td>
<td>150</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>8N 22+50W</td>
<td>201 202</td>
<td>20</td>
<td>320</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>8N 23+00W</td>
<td>201 202</td>
<td>18</td>
<td>260</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>8N 23+50W</td>
<td>201 202</td>
<td>19</td>
<td>270</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>8N 24+00W</td>
<td>201 202</td>
<td>21</td>
<td>290</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>8N 24+50W</td>
<td>201 202</td>
<td>22</td>
<td>580</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>8N 25+00W</td>
<td>201 202</td>
<td>16</td>
<td>220</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>8N 25+50W</td>
<td>201 202</td>
<td>16</td>
<td>96</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>10N 14+50W</td>
<td>201 202</td>
<td>8</td>
<td>34</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>10N 15+00W</td>
<td>201 202</td>
<td>12</td>
<td>78</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>10N 15+50W</td>
<td>201 202</td>
<td>18</td>
<td>192</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>10N 16+00W</td>
<td>201 202</td>
<td>25</td>
<td>200</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>10N 16+50W</td>
<td>201 202</td>
<td>17</td>
<td>230</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>PREP CODE</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
<th>Ag ppm</th>
<th>Aqua R</th>
</tr>
</thead>
<tbody>
<tr>
<td>10N 17+50W</td>
<td>201 202</td>
<td>21</td>
<td>660</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>10N 19+00W</td>
<td>201 202</td>
<td>19</td>
<td>220</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>10N 19+50W</td>
<td>201 202</td>
<td>37</td>
<td>210</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>10N 19+00W</td>
<td>201 202</td>
<td>32</td>
<td>400</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>10N 19+50W</td>
<td>201 202</td>
<td>27</td>
<td>270</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>10N 20+00W</td>
<td>201 202</td>
<td>17</td>
<td>186</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>10N 20+50W</td>
<td>201 202</td>
<td>11</td>
<td>120</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>10N 21+00W</td>
<td>201 202</td>
<td>19</td>
<td>280</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>10N 21+50W</td>
<td>201 202</td>
<td>15</td>
<td>280</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>10N 22+00W</td>
<td>201 202</td>
<td>11</td>
<td>172</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>10N 22+50W</td>
<td>201 202</td>
<td>15</td>
<td>300</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>10N 23+00W</td>
<td>201 202</td>
<td>14</td>
<td>220</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>10N 23+50W</td>
<td>201 202</td>
<td>18</td>
<td>260</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>10N 24+00W</td>
<td>201 202</td>
<td>37</td>
<td>200</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>10N 24+50W</td>
<td>201 202</td>
<td>15</td>
<td>270</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>10N 25+00W</td>
<td>201 202</td>
<td>19</td>
<td>340</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>12N 14+50W</td>
<td>201 202</td>
<td>18</td>
<td>140</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>12N 15+00W</td>
<td>201 202</td>
<td>37</td>
<td>210</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>12N 15+50W</td>
<td>201 202</td>
<td>23</td>
<td>154</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>12N 16+00W</td>
<td>201 202</td>
<td>32</td>
<td>93</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>12N 16+50W</td>
<td>201 202</td>
<td>34</td>
<td>132</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>12N 17+00W</td>
<td>201 202</td>
<td>17</td>
<td>230</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>12N 17+50W</td>
<td>201 202</td>
<td>19</td>
<td>280</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>12N 18+00W</td>
<td>201 202</td>
<td>25</td>
<td>136</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>12N 18+50W</td>
<td>201 202</td>
<td>33</td>
<td>210</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>12N 19+00W</td>
<td>201 202</td>
<td>22</td>
<td>240</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>12N 19+50W</td>
<td>201 202</td>
<td>28</td>
<td>101</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>12N 20+00W</td>
<td>201 202</td>
<td>16</td>
<td>76</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>12N 20+50W</td>
<td>201 202</td>
<td>22</td>
<td>260</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>12N 21+00W</td>
<td>201 202</td>
<td>21</td>
<td>300</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>12N 21+50W</td>
<td>201 202</td>
<td>17</td>
<td>340</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>12N 22+00W</td>
<td>201 202</td>
<td>20</td>
<td>370</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>12N 22+50W</td>
<td>201 202</td>
<td>17</td>
<td>290</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>12N 23+00W</td>
<td>201 202</td>
<td>8</td>
<td>140</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>12N 23+50W</td>
<td>201 202</td>
<td>20</td>
<td>260</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>12N 24+00W</td>
<td>201 202</td>
<td>13</td>
<td>240</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>12N 24+50W</td>
<td>201 202</td>
<td>16</td>
<td>230</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>12N 25+00W</td>
<td>201 202</td>
<td>16</td>
<td>160</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>12N 25+50W</td>
<td>201 202</td>
<td>21</td>
<td>99</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>12N 26+00W</td>
<td>201 202</td>
<td>29</td>
<td>330</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm</td>
<td>Aqua R</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>14N 15+00W</td>
<td>201 202</td>
<td>30</td>
<td>370</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>14N 15+50W</td>
<td>201 202</td>
<td>22</td>
<td>230</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>14N 16+00W</td>
<td>201 202</td>
<td>23</td>
<td>164</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>14N 16+50W</td>
<td>201 202</td>
<td>35</td>
<td>128</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>14N 17+00W</td>
<td>201 202</td>
<td>27</td>
<td>90</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>14N 17+50W</td>
<td>201 202</td>
<td>21</td>
<td>94</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>14N 18+00W</td>
<td>201 202</td>
<td>23</td>
<td>140</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>14N 18+50W</td>
<td>201 202</td>
<td>20</td>
<td>136</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>14N 19+00W</td>
<td>201 202</td>
<td>13</td>
<td>178</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>14N 19+50W</td>
<td>201 202</td>
<td>14</td>
<td>240</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>14N 20+00W</td>
<td>201 202</td>
<td>13</td>
<td>400</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>14N 20+50W</td>
<td>201 202</td>
<td>16</td>
<td>390</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>14N 21+00W</td>
<td>201 202</td>
<td>14</td>
<td>360</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>14N 21+50W</td>
<td>201 202</td>
<td>16</td>
<td>240</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>14N 22+00W</td>
<td>201 202</td>
<td>12</td>
<td>320</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>14N 22+50W</td>
<td>201 202</td>
<td>16</td>
<td>310</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>14N 23+00W</td>
<td>201 202</td>
<td>15</td>
<td>130</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>14N 23+50W</td>
<td>201 202</td>
<td>19</td>
<td>270</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>14N 24+00W</td>
<td>201 202</td>
<td>27</td>
<td>280</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>14N 24+50W</td>
<td>201 202</td>
<td>23</td>
<td>200</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>14N 25+00W</td>
<td>201 202</td>
<td>15</td>
<td>138</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>16N 14+50W</td>
<td>201 202</td>
<td>24</td>
<td>112</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>16N 15+00W</td>
<td>201 202</td>
<td>46</td>
<td>250</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>16N 15+50W</td>
<td>201 202</td>
<td>32</td>
<td>93</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>16N 16+00W</td>
<td>201 202</td>
<td>35</td>
<td>250</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>16N 16+50W</td>
<td>201 202</td>
<td>16</td>
<td>260</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>16N 17+00W</td>
<td>201 202</td>
<td>23</td>
<td>310</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>16N 17+50W</td>
<td>201 202</td>
<td>42</td>
<td>380</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>16N 18+00W</td>
<td>201 202</td>
<td>30</td>
<td>600</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>16N 18+50W</td>
<td>201 202</td>
<td>54</td>
<td>240</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>16N 19+00W</td>
<td>201 202</td>
<td>28</td>
<td>780</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>16N 19+50W</td>
<td>201 202</td>
<td>25</td>
<td>640</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>16N 20+00W</td>
<td>201 202</td>
<td>61</td>
<td>183</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>16N 20+50W</td>
<td>201 202</td>
<td>26</td>
<td>300</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>16N 21+00W</td>
<td>201 202</td>
<td>45</td>
<td>220</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>16N 21+50W</td>
<td>201 202</td>
<td>32</td>
<td>380</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>16N 22+00W</td>
<td>201 202</td>
<td>33</td>
<td>300</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>16N 22+50W</td>
<td>201 202</td>
<td>48</td>
<td>360</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>16N 23+00W</td>
<td>201 202</td>
<td>35</td>
<td>160</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>16N 23+50W</td>
<td>201 202</td>
<td>26</td>
<td>210</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm Aqua R</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>16N 24+00W</td>
<td>201 202</td>
<td>41</td>
<td>186</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>16N 24+50W</td>
<td>201 202</td>
<td>22</td>
<td>270</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>16N 25+00W</td>
<td>201 202</td>
<td>29</td>
<td>230</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm</td>
<td>Aqua R</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>2+00N 10+50W</td>
<td>201 202</td>
<td>50</td>
<td>790</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2+00N 11+00W</td>
<td>201 202</td>
<td>56</td>
<td>500</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>2+00N 13+50W</td>
<td>201 202</td>
<td>155</td>
<td>210</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>2+00N 14+00W</td>
<td>201 202</td>
<td>320</td>
<td>180</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>2+00N 14+50W</td>
<td>201 202</td>
<td>82</td>
<td>540</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2+00N 13+00W</td>
<td>201 202</td>
<td>40</td>
<td>1430</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>2+00N 16+00W</td>
<td>201 202</td>
<td>43</td>
<td>760</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>2+00N 14+50W</td>
<td>201 202</td>
<td>47</td>
<td>540</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>2+00N 15+00W</td>
<td>201 202</td>
<td>37</td>
<td>320</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>2+00N 15+50W</td>
<td>201 202</td>
<td>46</td>
<td>360</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>2+00N 16+00W</td>
<td>201 202</td>
<td>71</td>
<td>460</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>2+00N 16+50W</td>
<td>201 202</td>
<td>47</td>
<td>410</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>2+00N 17+00W</td>
<td>201 202</td>
<td>36</td>
<td>420</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>2+00N 17+50W</td>
<td>201 202</td>
<td>44</td>
<td>580</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>2+00N 18+00W</td>
<td>201 202</td>
<td>36</td>
<td>520</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>2+00N 18+50W</td>
<td>201 202</td>
<td>130</td>
<td>850</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>2+00N 19+00W</td>
<td>201 202</td>
<td>47</td>
<td>860</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>2+00N 20+00W</td>
<td>201 202</td>
<td>27</td>
<td>670</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>2+00N 20+50W</td>
<td>201 202</td>
<td>30</td>
<td>720</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>2+00N 20+00W</td>
<td>201 202</td>
<td>24</td>
<td>340</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>2+00N 21+00W</td>
<td>201 202</td>
<td>22</td>
<td>198</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>2+00N 21+50W</td>
<td>201 202</td>
<td>31</td>
<td>370</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2+00N 22+00W</td>
<td>201 202</td>
<td>18</td>
<td>138</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>2+00N 22+50W</td>
<td>201 202</td>
<td>22</td>
<td>178</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>2+00N 23+00W</td>
<td>201 202</td>
<td>27</td>
<td>136</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>2+00N 23+50W</td>
<td>201 202</td>
<td>21</td>
<td>99</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>2+00N 24+00W</td>
<td>201 202</td>
<td>12</td>
<td>95</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>2+00N 24+50W</td>
<td>201 202</td>
<td>29</td>
<td>300</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>2+00N 25+00W</td>
<td>201 202</td>
<td>19</td>
<td>200</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>4+75E 0+00E</td>
<td>201 202</td>
<td>106</td>
<td>1690</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>4+75E 0+10E</td>
<td>201 202</td>
<td>122</td>
<td>1260</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>4+75E 0+30E</td>
<td>201 202</td>
<td>40</td>
<td>230</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>4+75E 1+05E</td>
<td>201 202</td>
<td>45</td>
<td>420</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>4+75E 1+50E</td>
<td>201 202</td>
<td>35</td>
<td>450</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>4+75E 0+00E</td>
<td>201 202</td>
<td>30</td>
<td>143</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>4+75E 0+25E</td>
<td>201 202</td>
<td>26</td>
<td>137</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>4+75E 0+50E</td>
<td>201 202</td>
<td>118</td>
<td>1260</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>4+75E 0+60E</td>
<td>201 202</td>
<td>40</td>
<td>840</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>4+75E 0+75E</td>
<td>201 202</td>
<td>89</td>
<td>1220</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm</td>
<td>Aqua R</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>4+75S 1+00E</td>
<td>201 202</td>
<td>44</td>
<td>170</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>4+75S 1+25E</td>
<td>201 202</td>
<td>28</td>
<td>142</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>4+75S 1+50E</td>
<td>201 202</td>
<td>27</td>
<td>154</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>4+78S 0+60E"A"</td>
<td>201 202</td>
<td>52</td>
<td>670</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>4+78S 0+60E"C"</td>
<td>201 202</td>
<td>252</td>
<td>2000</td>
<td>31.0</td>
<td></td>
</tr>
<tr>
<td>4+80S 0+58E</td>
<td>201 202</td>
<td>170</td>
<td>950</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>6+01S 1+65E</td>
<td>201 202</td>
<td>27</td>
<td>113</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm</td>
<td>Aqua R</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>4+50N-11+70W</td>
<td>205 226</td>
<td><1</td>
<td>67</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>4+99S+0+6E "R"</td>
<td>205 226</td>
<td><1</td>
<td>565</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>5+00N-17+95W</td>
<td>205 226</td>
<td>15</td>
<td>409</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>9+00N-12+43W</td>
<td>205 226</td>
<td><1</td>
<td>36</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>15+75N-5+80W</td>
<td>205 226</td>
<td>26</td>
<td>66</td>
<td><0.2</td>
<td></td>
</tr>
<tr>
<td>15+85N-5+85W</td>
<td>205 226</td>
<td>31</td>
<td>16</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>16+30N-5+45W</td>
<td>205 226</td>
<td>4220</td>
<td>15</td>
<td>>100.0</td>
<td></td>
</tr>
<tr>
<td>17+48N-5+55W</td>
<td>205 226</td>
<td>47</td>
<td>26</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
<th>Ag ppm</th>
<th>Aqua R</th>
</tr>
</thead>
<tbody>
<tr>
<td>4+50N 10+25W</td>
<td>36</td>
<td>286</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>4+50N 10+50W</td>
<td>115</td>
<td>252</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>4+50N 10+75W</td>
<td>61</td>
<td>328</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>4+50N 11+00W</td>
<td>392</td>
<td>720</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>4+50N 11+25W</td>
<td>274</td>
<td>620</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>4+50N 11+50W</td>
<td>305</td>
<td>500</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>4+50N 11+75W</td>
<td>330</td>
<td>433</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>4+50N 12+00W</td>
<td>156</td>
<td>310</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>4+50N 12+25W</td>
<td>120</td>
<td>373</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>4+50N 12+50W</td>
<td>190</td>
<td>560</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>4+50N 12+75W</td>
<td>94</td>
<td>324</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>4+50N 13+00W</td>
<td>97</td>
<td>295</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>5N 10+25W</td>
<td>39</td>
<td>196</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>5N 10+50W</td>
<td>45</td>
<td>384</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>5N 10+75W</td>
<td>50</td>
<td>273</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>5N 11+00W</td>
<td>124</td>
<td>216</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>5N 11+25W</td>
<td>93</td>
<td>46</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>5N 11+50W</td>
<td>114</td>
<td>28</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>5N 11+75W</td>
<td>247</td>
<td>1</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>5N 12+00W</td>
<td>68</td>
<td>241</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>5N 12+25W</td>
<td>108</td>
<td>341</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>5N 12+50W</td>
<td>79</td>
<td>372</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>5N 12+75W</td>
<td>42</td>
<td>353</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>5N 13+00W</td>
<td>45</td>
<td>330</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>5N 13+50W</td>
<td>23</td>
<td>595</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>5N 17+75W</td>
<td>22</td>
<td>410</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>5N 18+00W</td>
<td>20</td>
<td>375</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>5N 18+25W</td>
<td>62</td>
<td>561</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>5N 18+50W</td>
<td>23</td>
<td>623</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>5N 18+75W</td>
<td>18</td>
<td>567</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>5N 19+00W</td>
<td>27</td>
<td>360</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>5N 19+25W</td>
<td>11</td>
<td>113</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>5N 19+50W</td>
<td>15</td>
<td>374</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>5N 19+75W</td>
<td>25</td>
<td>365</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>5N 20+00W</td>
<td>23</td>
<td>159</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>5N 20+25W</td>
<td>29</td>
<td>285</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>5N 20+50W</td>
<td>10</td>
<td>177</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>5N 20+75W</td>
<td>13</td>
<td>196</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>5N 21+00W</td>
<td>13</td>
<td>216</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>5N 50N 17+00W</td>
<td>51</td>
<td>700</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>5+50N 17+25W</td>
<td>201 202</td>
<td>15</td>
<td>250</td>
<td>2.0</td>
</tr>
<tr>
<td>5+50N 17+50W</td>
<td>201 202</td>
<td>21</td>
<td>370</td>
<td>10.0</td>
</tr>
<tr>
<td>5+50N 17+75W</td>
<td>201 202</td>
<td>18</td>
<td>400</td>
<td>18.2</td>
</tr>
<tr>
<td>5+50N 18+00W</td>
<td>201 202</td>
<td>12</td>
<td>198</td>
<td>5.6</td>
</tr>
<tr>
<td>5+50N 18+25W</td>
<td>201 202</td>
<td>20</td>
<td>430</td>
<td>7.2</td>
</tr>
<tr>
<td>5+50N 18+50W</td>
<td>201 202</td>
<td>27</td>
<td>390</td>
<td>4.8</td>
</tr>
<tr>
<td>6N 17+25W</td>
<td>201 202</td>
<td>15</td>
<td>134</td>
<td>1.7</td>
</tr>
<tr>
<td>6N 17+75W</td>
<td>201 202</td>
<td>21</td>
<td>340</td>
<td>4.1</td>
</tr>
<tr>
<td>6N 18+25W</td>
<td>201 202</td>
<td>18</td>
<td>176</td>
<td>0.9</td>
</tr>
<tr>
<td>6N 18+75W</td>
<td>201 202</td>
<td>30</td>
<td>450</td>
<td>3.2</td>
</tr>
<tr>
<td>L6+50N 15+00W</td>
<td>201 202</td>
<td>13</td>
<td>190</td>
<td>1.5</td>
</tr>
<tr>
<td>L6+50N 15+25W</td>
<td>201 202</td>
<td>16</td>
<td>176</td>
<td>2.0</td>
</tr>
<tr>
<td>L6+50N 15+50W</td>
<td>201 202</td>
<td>52</td>
<td>560</td>
<td>0.8</td>
</tr>
<tr>
<td>L7N 14+00W</td>
<td>201 202</td>
<td>20</td>
<td>350</td>
<td>1.3</td>
</tr>
<tr>
<td>L7N 14+25W</td>
<td>201 202</td>
<td>14</td>
<td>173</td>
<td>6.0</td>
</tr>
<tr>
<td>L7N 14+50W</td>
<td>201 202</td>
<td>19</td>
<td>220</td>
<td>2.4</td>
</tr>
<tr>
<td>L7N 15+00W</td>
<td>201 202</td>
<td>19</td>
<td>159</td>
<td>1.2</td>
</tr>
<tr>
<td>L7N 15+25W</td>
<td>201 202</td>
<td>19</td>
<td>300</td>
<td>2.6</td>
</tr>
<tr>
<td>L7N 15+50W</td>
<td>201 202</td>
<td>18</td>
<td>153</td>
<td>2.0</td>
</tr>
<tr>
<td>7+50N 13+50W</td>
<td>201 202</td>
<td>24</td>
<td>380</td>
<td>2.5</td>
</tr>
<tr>
<td>7+50N 13+75W</td>
<td>201 202</td>
<td>40</td>
<td>490</td>
<td>5.0</td>
</tr>
<tr>
<td>7+50N 14+00W</td>
<td>201 202</td>
<td>27</td>
<td>260</td>
<td>1.8</td>
</tr>
<tr>
<td>7+50N 14+25W</td>
<td>201 202</td>
<td>20</td>
<td>495</td>
<td>1.5</td>
</tr>
<tr>
<td>7+50N 14+50W</td>
<td>201 202</td>
<td>21</td>
<td>178</td>
<td>6.0</td>
</tr>
<tr>
<td>7+50N 14+75W</td>
<td>201 202</td>
<td>18</td>
<td>146</td>
<td>6.1</td>
</tr>
<tr>
<td>7+50N 15+00W</td>
<td>201 202</td>
<td>21</td>
<td>310</td>
<td>2.0</td>
</tr>
<tr>
<td>9+00N 12+00W</td>
<td>201 202</td>
<td>34</td>
<td>320</td>
<td>0.2</td>
</tr>
<tr>
<td>9+00N 12+25W</td>
<td>201 202</td>
<td>21</td>
<td>240</td>
<td>1.8</td>
</tr>
<tr>
<td>9+00N 12+50W</td>
<td>201 202</td>
<td>25</td>
<td>136</td>
<td>1.7</td>
</tr>
<tr>
<td>9+00N 13+00W</td>
<td>201 202</td>
<td>33</td>
<td>310</td>
<td>1.3</td>
</tr>
<tr>
<td>9+00N 13+25W</td>
<td>201 202</td>
<td>19</td>
<td>260</td>
<td>1.8</td>
</tr>
<tr>
<td>9+00N 13+50W</td>
<td>201 202</td>
<td>14</td>
<td>740</td>
<td>0.9</td>
</tr>
<tr>
<td>9+00N 13+75W</td>
<td>201 202</td>
<td>10</td>
<td>97</td>
<td>5.0</td>
</tr>
<tr>
<td>9+00N 14+00W</td>
<td>201 202</td>
<td>32</td>
<td>400</td>
<td>1.9</td>
</tr>
<tr>
<td>9+00N 14+25W</td>
<td>201 202</td>
<td>7</td>
<td>18</td>
<td>0.9</td>
</tr>
<tr>
<td>9+00N 14+50W</td>
<td>201 202</td>
<td>30</td>
<td>29</td>
<td>1.0</td>
</tr>
<tr>
<td>9+00N 14+75W</td>
<td>201 202</td>
<td>21</td>
<td>61</td>
<td>1.3</td>
</tr>
<tr>
<td>9+00N 15+00W</td>
<td>201 202</td>
<td>21</td>
<td>124</td>
<td>0.7</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>L9+50N 11+50W</td>
<td>201 202</td>
<td>28</td>
<td>300</td>
<td>0.5</td>
</tr>
<tr>
<td>L9+50N 11+75W</td>
<td>201 202</td>
<td>29</td>
<td>510</td>
<td>0.4</td>
</tr>
<tr>
<td>L9+50N 12+00W</td>
<td>201 202</td>
<td>34</td>
<td>490</td>
<td>0.4</td>
</tr>
<tr>
<td>L9+50N 12+25W</td>
<td>201 202</td>
<td>38</td>
<td>235</td>
<td>1.1</td>
</tr>
<tr>
<td>L9+50N 12+50W</td>
<td>201 202</td>
<td>14</td>
<td>151</td>
<td>1.8</td>
</tr>
<tr>
<td>L9+50N 12+75W</td>
<td>201 202</td>
<td>14</td>
<td>310</td>
<td>0.9</td>
</tr>
<tr>
<td>L9+50N 13+25W</td>
<td>201 202</td>
<td>9</td>
<td>92</td>
<td>1.6</td>
</tr>
<tr>
<td>L9+50N 13+50W</td>
<td>201 202</td>
<td>11</td>
<td>72</td>
<td>2.2</td>
</tr>
<tr>
<td>10+50N 11+00W</td>
<td>201 202</td>
<td>25</td>
<td>260</td>
<td>6.0</td>
</tr>
<tr>
<td>10+50N 11+25W</td>
<td>201 202</td>
<td>16</td>
<td>186</td>
<td>1.6</td>
</tr>
<tr>
<td>10+50N 11+50W</td>
<td>201 202</td>
<td>21</td>
<td>360</td>
<td>4.5</td>
</tr>
<tr>
<td>10+50N 11+75W</td>
<td>201 202</td>
<td>19</td>
<td>440</td>
<td>6.6</td>
</tr>
<tr>
<td>10+50N 12+00W</td>
<td>201 202</td>
<td>18</td>
<td>210</td>
<td>1.8</td>
</tr>
<tr>
<td>10+50N 12+25W</td>
<td>201 202</td>
<td>19</td>
<td>320</td>
<td>1.4</td>
</tr>
<tr>
<td>10+50N 12+50W</td>
<td>201 202</td>
<td>12</td>
<td>116</td>
<td>0.9</td>
</tr>
<tr>
<td>10+50N 12+75W</td>
<td>201 202</td>
<td>60</td>
<td>260</td>
<td>2.0</td>
</tr>
<tr>
<td>10+50N 13+00W</td>
<td>201 202</td>
<td>20</td>
<td>340</td>
<td>3.1</td>
</tr>
<tr>
<td>15+50N 4+75W</td>
<td>201 202</td>
<td>64</td>
<td>215</td>
<td>6.2</td>
</tr>
<tr>
<td>15+50N 5+00W</td>
<td>201 202</td>
<td>55</td>
<td>310</td>
<td>2.3</td>
</tr>
<tr>
<td>15+50N 5+25W</td>
<td>201 202</td>
<td>45</td>
<td>196</td>
<td>1.4</td>
</tr>
<tr>
<td>15+50N 5+50W</td>
<td>201 202</td>
<td>42</td>
<td>152</td>
<td>0.3</td>
</tr>
<tr>
<td>15+50N 5+75W</td>
<td>201 202</td>
<td>135</td>
<td>205</td>
<td>1.4</td>
</tr>
<tr>
<td>L16+50N 4+00W</td>
<td>201 202</td>
<td>28</td>
<td>154</td>
<td>0.7</td>
</tr>
<tr>
<td>L16+50N 4+25W</td>
<td>201 202</td>
<td>43</td>
<td>184</td>
<td>2.4</td>
</tr>
<tr>
<td>L16+50N 4+50W</td>
<td>201 202</td>
<td>48</td>
<td>210</td>
<td>7.2</td>
</tr>
<tr>
<td>L16+50N 4+75W</td>
<td>201 202</td>
<td>34</td>
<td>189</td>
<td>1.9</td>
</tr>
<tr>
<td>L16+50N 5+00W</td>
<td>201 202</td>
<td>34</td>
<td>154</td>
<td>1.0</td>
</tr>
<tr>
<td>L16+50N 5+25W</td>
<td>201 202</td>
<td>66</td>
<td>192</td>
<td>3.5</td>
</tr>
<tr>
<td>L16+50N 5+50W</td>
<td>201 202</td>
<td>70</td>
<td>225</td>
<td>6.6</td>
</tr>
<tr>
<td>L16+50N 5+75W</td>
<td>201 202</td>
<td>38</td>
<td>182</td>
<td>1.2</td>
</tr>
<tr>
<td>17+50N 4+00W</td>
<td>201 202</td>
<td>90</td>
<td>144</td>
<td>0.5</td>
</tr>
<tr>
<td>17+50N 4+25W</td>
<td>201 202</td>
<td>23</td>
<td>148</td>
<td>< 0.2</td>
</tr>
<tr>
<td>17+50N 4+50W</td>
<td>201 202</td>
<td>28</td>
<td>135</td>
<td>0.2</td>
</tr>
<tr>
<td>17+50N 4+75W</td>
<td>201 202</td>
<td>46</td>
<td>164</td>
<td>0.8</td>
</tr>
<tr>
<td>17+50N 5+00W</td>
<td>201 202</td>
<td>28</td>
<td>112</td>
<td>0.7</td>
</tr>
<tr>
<td>17+50N 5+25W</td>
<td>201 202</td>
<td>34</td>
<td>144</td>
<td>< 0.2</td>
</tr>
<tr>
<td>17+50N 5+50W</td>
<td>201 202</td>
<td>25</td>
<td>123</td>
<td>0.2</td>
</tr>
<tr>
<td>4+786 0+60E D</td>
<td>201 202</td>
<td>88</td>
<td>1250</td>
<td>4.7</td>
</tr>
<tr>
<td>4+828 0+63E A</td>
<td>201 202</td>
<td>25</td>
<td>340</td>
<td>0.5</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm Aqua R</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>4+72S 0+63E B</td>
<td>201 202</td>
<td>170</td>
<td>1100</td>
<td>9.8</td>
</tr>
<tr>
<td>4+84S 0+56E</td>
<td>201 202</td>
<td>32</td>
<td>1300</td>
<td>2.8</td>
</tr>
<tr>
<td>4+86S 0+65E A</td>
<td>201 202</td>
<td>37</td>
<td>310</td>
<td>1.0</td>
</tr>
<tr>
<td>4+86S 0+65E B</td>
<td>201 202</td>
<td>52</td>
<td>600</td>
<td>0.3</td>
</tr>
<tr>
<td>4+91S 0+68E</td>
<td>201 202</td>
<td>36</td>
<td>530</td>
<td>< 0.2</td>
</tr>
<tr>
<td>4+93S 0+70E A</td>
<td>201 202</td>
<td>22</td>
<td>890</td>
<td>1.6</td>
</tr>
<tr>
<td>4+94S 0+70E B</td>
<td>201 202</td>
<td>33</td>
<td>1000</td>
<td>0.5</td>
</tr>
<tr>
<td>4+99S 0+63E A</td>
<td>201 202</td>
<td>18</td>
<td>460</td>
<td>< 0.2</td>
</tr>
<tr>
<td>4+99S 0+63E B</td>
<td>201 202</td>
<td>23</td>
<td>650</td>
<td>< 0.2</td>
</tr>
<tr>
<td>4+99S 0+68E</td>
<td>201 202</td>
<td>26</td>
<td>650</td>
<td>0.5</td>
</tr>
<tr>
<td>4+99S 0+73E</td>
<td>201 202</td>
<td>83</td>
<td>700</td>
<td>5.5</td>
</tr>
<tr>
<td>4+99S 0+77E</td>
<td>201 202</td>
<td>32</td>
<td>820</td>
<td>< 0.2</td>
</tr>
<tr>
<td>4+99S 0+82E</td>
<td>201 202</td>
<td>22</td>
<td>420</td>
<td>< 0.2</td>
</tr>
<tr>
<td>4+99S 0+87E</td>
<td>201 202</td>
<td>23</td>
<td>880</td>
<td>0.8</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Ag ppm</td>
<td>Zn ppm</td>
<td>Pb ppm</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>4+66S 0+65E-D</td>
<td>201 202</td>
<td>0.4</td>
<td>760</td>
<td>110</td>
</tr>
<tr>
<td>4+71S 0+65E</td>
<td>201 202</td>
<td>0.6</td>
<td>680</td>
<td>40</td>
</tr>
<tr>
<td>4+64S 0+82E-A</td>
<td>201 202</td>
<td>3.0</td>
<td>2200</td>
<td>22</td>
</tr>
<tr>
<td>4+64S 0+82E-B</td>
<td>201 202</td>
<td>0.3</td>
<td>600</td>
<td>22</td>
</tr>
<tr>
<td>0+82E 4+63S-A</td>
<td>201 202</td>
<td>2.8</td>
<td>2400</td>
<td>27</td>
</tr>
<tr>
<td>0+82E 4+63S-B</td>
<td>201 202</td>
<td>0.5</td>
<td>620</td>
<td>20</td>
</tr>
<tr>
<td>0+82E 4+63S-C</td>
<td>201 202</td>
<td>0.2</td>
<td>580</td>
<td>20</td>
</tr>
<tr>
<td>0+82E 4+61.5S</td>
<td>201 202</td>
<td>0.4</td>
<td>560</td>
<td>20</td>
</tr>
<tr>
<td>14+50W, 8+04N</td>
<td>201 202</td>
<td>8.5</td>
<td>290</td>
<td>50</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Ag ppm</td>
<td>Zn ppm</td>
<td>Pb ppm</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>0+65E 4+87S</td>
<td>205</td>
<td>0.8</td>
<td>65</td>
<td>29</td>
</tr>
<tr>
<td>0+82E 4+64S R</td>
<td>205</td>
<td>< 0.2</td>
<td>510</td>
<td>10</td>
</tr>
<tr>
<td>5+50W 16+40N</td>
<td>205</td>
<td>2.0</td>
<td>80</td>
<td>24</td>
</tr>
<tr>
<td>5+50W 16+43N</td>
<td>205</td>
<td>2.6</td>
<td>33</td>
<td>20</td>
</tr>
<tr>
<td>14+50W 7+98N</td>
<td>205</td>
<td>1.3</td>
<td>360</td>
<td>13</td>
</tr>
<tr>
<td>14+50W 8+03N</td>
<td>205</td>
<td>2.5</td>
<td>61</td>
<td>18</td>
</tr>
</tbody>
</table>
Certificate of Analysis

Sample	**Prep Code**	**Pb ppm**	**Zn ppm**	**Ag ppm (Aqua R)**
2+00s 4+00w | 205 225 | 18 | 30 | < 0.2
5+90s 0+16w | 205 226 | 4 | 178 | < 0.2
5+90s 0+20w | 205 226 | 24 | 69 | < 0.2
5+90s 0+23w | 205 226 | 24 | 53 | < 0.2
5+90s 0+26w | 205 226 | 20 | 116 | < 0.2
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>PREP CODE</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
<th>Ag ppm</th>
<th>Aqua R</th>
</tr>
</thead>
<tbody>
<tr>
<td>4N 13+49W</td>
<td>205</td>
<td>226</td>
<td>4</td>
<td>115</td>
<td>< 0.2</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm</td>
<td>Al ppm</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>4+35S 0+20E</td>
<td>205 226</td>
<td>-------</td>
<td>-------</td>
<td>1.2</td>
<td>0.34</td>
</tr>
<tr>
<td>4+55S 1+05E</td>
<td>205 226</td>
<td>16</td>
<td>118</td>
<td>< 0.2</td>
<td>-------</td>
</tr>
<tr>
<td>4+75S 0+60K"N"</td>
<td>205 226</td>
<td>-------</td>
<td>-------</td>
<td>12.2</td>
<td>0.63</td>
</tr>
<tr>
<td>5+95S 1+60E</td>
<td>205 226</td>
<td>17</td>
<td>21</td>
<td>< 0.2</td>
<td>-------</td>
</tr>
</tbody>
</table>

CERTIFICATION: [Signature]
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>PREP CODE</th>
<th>Mg</th>
<th>Mn</th>
<th>Mo</th>
<th>Na</th>
<th>Ni</th>
<th>F</th>
<th>Pb</th>
<th>Sb</th>
<th>Sb</th>
<th>Sr</th>
<th>Ti</th>
<th>Tl</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>4+35S 0+20E</td>
<td>205 226</td>
<td>0.36</td>
<td>175</td>
<td><1</td>
<td><0.01</td>
<td>15</td>
<td>160</td>
<td>20</td>
<td><2</td>
<td>1</td>
<td>641</td>
<td><0.01</td>
<td><10</td>
<td><10</td>
<td>4</td>
<td><10</td>
<td>508</td>
</tr>
<tr>
<td>4+55S 1+05E</td>
<td>205 226</td>
<td>-----</td>
</tr>
<tr>
<td>4+78S 0+60EB</td>
<td>205 226</td>
<td>0.41</td>
<td>135</td>
<td><1</td>
<td><0.01</td>
<td>23</td>
<td>120</td>
<td>84</td>
<td><2</td>
<td>3</td>
<td>654</td>
<td><0.01</td>
<td><10</td>
<td><10</td>
<td>9</td>
<td><10</td>
<td>1105</td>
</tr>
<tr>
<td>5+98S 1+60E</td>
<td>205 226</td>
<td>-----</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Ag, FA g/t</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>16+30N-5+45w</td>
<td>244</td>
<td>1285</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm Aquas R</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>11.89-13.41</td>
<td>205 226</td>
<td>19</td>
<td>580</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>13.41-13.74</td>
<td>205 226</td>
<td>12</td>
<td>450</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>13.74-14.63</td>
<td>205 226</td>
<td>24</td>
<td>480</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>18.80-19.30</td>
<td>205 226</td>
<td>23</td>
<td>1000</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>21.00-22.00</td>
<td>205 226</td>
<td>18</td>
<td>590</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>22.00-22.40</td>
<td>205 226</td>
<td>19</td>
<td>1000</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>22.40-22.87</td>
<td>205 226</td>
<td>20</td>
<td>720</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>31.40-33.54</td>
<td>205 226</td>
<td>12</td>
<td>425</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>33.54-34.87</td>
<td>205 226</td>
<td>32</td>
<td>700</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm</td>
<td>Aqua R</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>15.86-16.54</td>
<td>20S 226</td>
<td>7</td>
<td>2350</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>36.65-36.95</td>
<td>20S 226</td>
<td>5</td>
<td>1000</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>41.16-41.41</td>
<td>20S 226</td>
<td>40</td>
<td>1150</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>44.00-44.30</td>
<td>20S 226</td>
<td>7</td>
<td>6100</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>56.00-57.50</td>
<td>20S 226</td>
<td>7</td>
<td>2300</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>79.35-79.65</td>
<td>20S 226</td>
<td>4</td>
<td>235</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>88.40-88.70</td>
<td>20S 226</td>
<td>3</td>
<td>141</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>91.10-92.30</td>
<td>20S 226</td>
<td>5</td>
<td>1350</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>PREP CODE</td>
<td>Pb ppm</td>
<td>Zn ppm</td>
<td>Ag ppm</td>
<td>Aqua R</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>46.10-46.55</td>
<td>205 226</td>
<td>16</td>
<td>680</td>
<td>< 0.2</td>
<td></td>
</tr>
<tr>
<td>46.55-47.56</td>
<td>205 226</td>
<td>9</td>
<td>2000</td>
<td>< 0.2</td>
<td></td>
</tr>
<tr>
<td>47.56-48.30</td>
<td>205 226</td>
<td>24</td>
<td>1160</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>48.30-50.36</td>
<td>205 226</td>
<td>7</td>
<td>860</td>
<td>< 0.2</td>
<td></td>
</tr>
<tr>
<td>50.10-58.54</td>
<td>205 226</td>
<td>8</td>
<td>350</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>102.75-103.25</td>
<td>205 226</td>
<td>6</td>
<td>830</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 5 Drill Hole Section D.D.H. T-97-2
VIEWER FACING NORTHEAST

1:500
0 5 10 20
metres

1 cm = 5 m.
To accompany report by
Paul Kallick, FGAC,
Consulting Geologist
and
Locke B. Goldsmith, P.Eng., P.Geo.,
Consulting Geologist
ARCTEX ENGINEERING SERVICES
November 1997

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

25,312
TOUCHSTONE RESOURCES LTD.
SILVER SHADOW CLAIM 4012110
SILVER SPIRIT PROJECT
Sierra Nevada Division NTS 83N/3E

FIG 10
1:100 Sketch of Trenches and Adit

GEOLOGY
To accompany report by
Paul Kornack, Geologist
Locke B. Goldsmith, P. Eng., Consulting Geologist
ARCTEX ENGINEERING SERVICES
October 1992
Amended Nov. 1997

Scale: 1:100
1 cm = 1 m

40 JOINTING, with dip
60 FOLIATION or CLEAVAGE, with dip
40 VEIN, with dip

OLD ADIT
rotten timber
appears to be caved at 6.8 m. inside

GRANITE with Qtz and Feox varits
1997 TRENCH
5+985 1+60E
6+015 1+65E

25,312

DRAINAGE
with water

SOIL SAMPLE
Δ ROCK SAMPLE

5+505 1+25E
3-5 cm. QUARTZ in ARGILLITE bedrock?

SOIL SAMPLES FROM TRENCH

SHALE, ARGILLITE
AND MINOR QUARTZ
ON DUMP

ARGILLITE
3.5 cm.

GRANITE
with minor quartz veins.

1 cm. QUARTZ VEIN
Several short Qtz schists.

ARGILLITE

35

80

47

1 cm. Qtz vein

3-5 cm. FELSIC SILL with Qtz and LIMONITE

2-4 cm. Qtz vein

5+755 1+75E
5+755 1+75E

.75 m. sheared argillite

5+505 1+25E

10 m. from adit area to trench area

6+056 1+53E

5+505 1+30E
SOIL SAMPLES FROM TRENCH

FIG. 11
1:100 Sketch of Trenches and Adit
SUBSURFACE
ROCK AND SOIL
GEOCHEMISTRY

To accompany report by
Paul Kajack, Geologist
Locke D. Goldsmith, P. Eng., Consulting Geologist
ARCTEX ENGINEERING SERVICES
October 1997
Amended Oct 1997

ALL VALUES SHOWN
P.P.M.
Ag

OLD ADIT
cracked timbers
appears to be caved at 2-3 m. inside

1997 TRENCH
5 + 985 1 + 65E
Ag < 0.2

1997 value 0.9 ppm depth
5 + 985 1 + 65E < 0.2
4
8 0.6 ppm 1.75 m.
65 m. bearing 315° from 5 + 985 1 + 75E to spit at 5 + 985 1 + 75E

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

25,312

Touchstone
RESOURCES LTD.
SILVER SHADOW CLAIM: W4711015
SILVER SPIRIT PROJECT
Slocan Mining Division NTS 83K/3E

Ag

Scale: 1:100
1 cm = 1 m

TRENCH
DUMP

KEY

* SOIL SAMPLE
△ ROCK SAMPLE

Bearing 315°
approx. 30 m.
from adit area
to trench area
at 5 + 985 1 + 75E

< 0.2
5 + 985 1 + 65E
5 + 985 1 + 75E
5 + 985 1 + 75E hw
< 0.2

< 0.2
5 + 815 1 + 46E

< 0.2
5 + 875 1 + 61E
< 0.2
5 + 915 1 + 61E
< 0.2

< 0.2
5 + 875 1 + 61E
< 0.2
5 + 915 1 + 61E
< 0.2

drainage with
water
FIG. 12
1:100 Sketch of Trenches and Adit
SUBSURFACE
ROCK AND SOIL
GEOCHEMISTRY

To accompany report by
Paul Kallock, Geologist
Lorne B. Cadekewitch, P. Eng., Consulting Geologist
ARCTEX ENGINEERING SERVICES
October 1997
Amended Nov. 1997

Scale: 1:100
1 cm = 1 m

ALL VALUES SHOWN
P.P.M.
Pb

OLD ADIT
Rotten timber
appears to be caved at 6-8 m. inside
SOIL SAMPLES FROM TRENCH

TRENCH

DUMP

KEY

* SOIL SAMPLE
& ROCK SAMPLE

Bearing 335° approx. 30 m. from adit area to trench area at 5+505 +25E

ALL VALUES SHOWN
P.P.M.

Zn

1:100 Sketch of Trenches and Adit
SUBSURFACE
ROCK AND SOIL GEOCHEMISTRY

To accompany report by
Paul Kallock, Geologist
Locke B. Goldsmith, P., Eng., Consulting Geologist
ARCTEX ENGINEERING SERVICES
October 1997
Amended Nov 1997

Scale: 1:100
1 cm = 1 m
Touchstone RESOURCES LTD.

GEOLOGY

SILVER CLAIM 027521
SILVER SPIRIT PROJECT
Suecra Mining District
NTS 83K/7E
1:200 Sketch of Trenches

SOIL SAMPLES
ROCK SAMPLES

JOINTING, with clip
FOLIATION or CLEAVAGE, with dip

25,312

FIG. 14
To accompany report by
Paul Kollock, Geologist

Lacke B. Cooksmith, P. Eng., Consulting Geologist

ARCTEX ENGINEERING SERVICES
October 1997
Amended Nov 1997

Scale: 1:200
1 cm. = 2 m.

clay-silted shale rubble

quartz, shale
5+65 S 0+25W A
5+65 N 0+29W A
SOIL

3 cm quartz vein
with minor euclidean quartz
and orange limonite;
comformable with foliation
5+75S 0+17W

Southwest end of Fish Lake
Bearing 338°

argillite + shale

grey shale and thinly
foliated phyllite

40

5+75S 0+17W
5+75S 0+7W
5+85S 0+31W
5+85S 0+17W

shaly argillite

shale + argillite

40

5+85S 0+36W
5+85S 0+36W

Elevation: 4670 ft.

24W 23W 20W 16W

7 1997 PITS

30 m south to rock ledge

GEOLOGICAL SURVEY BRANCH

ASSESSMENT REPORT

25,312

ALL VALUES SHOWN

P.P.M.

Zn

Touchstone

RESOURCES LTD.

SILVER CLAIM 422512

SILVER SPIRIT PROJECT

Siskiyou Mining District

NTS 83K/3E

1:200 Sketch of Trenches

FIG. 17

SUBSURFACE

ROCK AND SOIL

GEOCHEMISTRY

To accompany report by

Paul Kallock, Geologist

Lacke B. Goldsmith, P. Eng., Consulting Geologist

ARCTEX ENGINEERING SERVICES

October 1997

Amended Nov. 1997

Scale: 1:200

0 2 5 10

1 cm. = 2 m.

Depth below surface

5+055 0+25W

A 150 0.3 m

B 190 1.2 m

C 174 2.0 m clay

B 127 1.6 m. bedrock

soil 252 0.3 m.

Southwest end of Fish Lake

Bearing 318°

Elevation: 4670 ft.

5+855 0+00W

5+785 0+17W

5+755 0+00W

1997 MTS

205 240 T

30 m. south

to rock ledge

199 6+00 S
TOUCHSTONE RESOURCES LTD
SILVER SHADOW MINERAL CLAIM 4817(10) SILVER SPIRIT PROJECT

STRATIGRAPHY

JURASSIC AND LATER
Calcarenous tufa
Granite and granitic dykes and stocks; lesser aplite

TRIASSIC AND JURASSIC
Slocan Group
Grey to brown phyllitic schist, slaty schist, argillite and minor porous calcarenous sandstone.
Light to dark grey limestone

LEGEND

Grid lines, showing geochemical samples
1997 soil sample 1997 rock sample 1992 soil sample site

Fig. 18 GEOLOGY MAP
Showing rock geochemistry

1:500
1 cm = 5 m.

Silver Spirit Project
TOUCHSTONE RESOURCES LTD
SILVER SHADOW CLAIM 4817(10)

Fish Lake area, Zincton B.C.
Slocan Mining Division NTS 83K03E

To accompany report by
Paul Kallick, FGC
Consulting Geologist

Consulting Geologist

ARCTIC ENGINEERING SERVICES
November 1997

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

25,312
TOUCHSTONE RESOURCES LTD
SILVER SHADOW MINERAL CLAIM 4817(10) SILVER SPIRIT PROJECT

LEGEND

\[\text{Ag} \ldots \quad \text{Ph} \ldots \quad \text{Zn} \ldots \]

1997 soil sample 1997 rock sample 1992 soil sample site

ALL VALUES SHOWN P P M

Threshold: 2.3-4.8 18-425 1000 ppm

Anomalous: >4.9 >25 250

Grid line, showing geochemical sampling

1:500

1 cm = 5 m

To accompany report by
Paul Kallack, P.Geo.
Consulting Geologist
and
Consulting Geologist

ARCTEX ENGINEERING SERVICES
November 1997

Fig. 19 Soil Geochemistry

SILVER SPIRIT Project
TOUCHSTONE RESOURCES LTD
SILVER SHADOW CLAIM 4817(10)

Fish Lake area, Zincton B.C.
Slocan Mining Division NTS 83X/3E

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

25,312
TOUCHSTONE RESOURCES LTD

SILVER SHADOW MINERAL CLAIM 4817(10) SILVER SPIRIT PROJECT

LEGEND

- Grid line, showing geochemical samples
- 1997 soil sample 1997 rock sample 1992 soil sample site

ALL VALUES SHOWN IN PPM

Ag .. Pb .. Zn ..

Threshold: 2.5 - 5 25 - 100 (ppm)

A .. Anomalous .. >5 5 - 50

Fig. 20 Soil Geochemistry

1:500

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

25,312

1 cm = 5 m.

To accompany report by
Paul Katlock, PGAC,
Consulting Geologist
and
Consulting Geologist

ARCTEX ENGINEERING SERVICES
November 1997