GEOLOGICAL REPORT

on the

KIM and GUST INDUSTRIAL MINERAL CLAIMS
Golden Mining Division, South-Eastern British Columbia
N.T.S. 82N/1W

Latitude 51° 11' 30" N, Longitude 116° 22' 00" W

For

Magtite Minerals Ltd. NPL
Box 880
Elkford, British Columbia
VOB 1H0

by

T.J. Termuende, P.Geo., of
Toklat Resources Inc.
2720-17th Street South
Cranbrook, B.C. V1C 4H4

November 20th, 1998

GEOLOGICAL SURVEY BRANCH
ASSSESSMENT REPORT

25,751
SUMMARY

The Kim group of mineral claims are owned by Magtite Minerals Ltd. NPL, and are situated in the Moose Creek watershed, located 45 kilometres east of Golden, BC. The property is host to portions of the Ice River Complex, and contains a number of geologically unique and economically significant features, including (but not limited to) extensive resources of industrial-quality titaniferous magnetite, a widely dispersed resource of ornamental sodalite, an enormous quantity of nepheline syenite, and an undefined deposit of possible ore-grade base-and precious metals. The overall area has been the subject of academic study since the early 1900's.

The topography and location of the property is amenable to economic extraction of its' resources, provided that adequate definition of reserves can be established. In the past, the proximity of the property area to Yoho National Park has made access permitting difficult, but recent “right to access” legislation introduced in British Columbia has paved the way for streamlining access issues which should inevitably facilitate cost-effective resource development. The area is currently designated as “Special Management”, and with careful planning and an appreciation of other resource values present within the region, economic development within property boundaries may be realised.

Following a review of related material, a single day was spent on the property with the Principals of Magtite Minerals. All significant occurrences were inspected, and an 800lb sample of sodalite material was collected, and transported by helicopter to Golden. The total cost of the program, for assessment purposes was $7,253.05, representing a unit cost per sample of $1,074.72.

This report will summarise the overall property physiology, history, geology, and tenure, and will provide recommendations to help guide its future development. Data provided by Magtite Minerals, in addition to publicly accessed materials, were used to form the basis for observations and conclusions provided herein.

Geological Report on the Kim and Gust Industrial Mineral Claims
INTRODUCTION

Magtite minerals has been conducting geological fieldwork within the property area since 1993. The initial focus of work was to develop an occurrence of titaniferous magnetite. Efforts to this effect were hindered in the past by a reluctance by officials to grant a road-access permit. Though not considered by the author to be critical for preliminary resource definition, accessibility by road would be absolutely necessary to the economic viability of the project in the future.

The property area is one of steep slopes and rugged terrain. The property is essentially surrounded by National Parks on three sides, and as such, bears a considerable amount of scrutiny, both from the public and from government.

It is readily apparent after visiting the property and reviewing available literature, that the area is one of considerable economic potential.

LOCATION, ACCESS AND PHYSIOGRAPHY

The Kim property is located within the Golden Mining Division, on NTS mapsheet 82N/1W at Latitude 51° 11' 30" N, Longitude 116° 22' 00" W. (see Location Map; Figure 1, following). It is located within the headwaters of Moose Creek, occupying the western side of the valley. Its western boundary is shared with Yoho National Park. Moose Creek drains southward to the Beaverfoot Valley, which flows northward to the Kicking Horse River. The property is situated 45 km east of Golden, B.C. and is currently accessed by helicopter. Forest Service roads reach to within 5km of property boundaries, though a bridge spanning the Beaverfoot river was reportedly damaged recently, and rendered unserviceable.

The property is located from elevation 1760 to 2700m, and consists of primary subalpine scrub vegetation and talus. Lower elevations are forest-covered, with mature spruce and pine
dominating. The lower reaches of the property are currently within the future development plans of Evans Lumber (L. Fiss-personal communication).

The property is accessible from late May to late October, though a number of areas of interest on the property may have snow cover until mid-summer.

PROPERTY TENURE

The property area consists of four MGS claim blocks (KIM B-E), and eight 2-post claims (GUST 3-10), all contiguously located. Claim boundaries and post locations are shown on Figure 2, in pocket. A summary of tenure information is provided below:

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Type</th>
<th>Record No.</th>
<th>Units</th>
<th>Location Date</th>
<th>Expiry Date*</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIM B</td>
<td>MGS</td>
<td>330553</td>
<td>20</td>
<td>Sept 4, 1994</td>
<td>Sept 04, 1999</td>
</tr>
<tr>
<td>GUST 3</td>
<td>2-P</td>
<td>321781</td>
<td>1</td>
<td>Aug. 12, 1994</td>
<td>Aug. 12, 1999</td>
</tr>
<tr>
<td>GUST 4</td>
<td>2-P</td>
<td>321782</td>
<td>1</td>
<td>Aug. 12, 1994</td>
<td>Aug. 12, 1999</td>
</tr>
<tr>
<td>GUST 5</td>
<td>2-P</td>
<td>321783</td>
<td>1</td>
<td>Aug. 12, 1994</td>
<td>Aug. 12, 1999</td>
</tr>
<tr>
<td>GUST 6</td>
<td>2-P</td>
<td>321784</td>
<td>1</td>
<td>Aug. 12, 1994</td>
<td>Aug. 12, 1999</td>
</tr>
<tr>
<td>GUST 7</td>
<td>2-P</td>
<td>321785</td>
<td>1</td>
<td>Aug. 12, 1994</td>
<td>Aug. 12, 1999</td>
</tr>
<tr>
<td>GUST 8</td>
<td>2-P</td>
<td>321786</td>
<td>1</td>
<td>Aug. 12, 1994</td>
<td>Aug. 12, 1999</td>
</tr>
<tr>
<td>GUST 9</td>
<td>2-P</td>
<td>321787</td>
<td>1</td>
<td>Aug. 12, 1994</td>
<td>Aug. 12, 1999</td>
</tr>
<tr>
<td>GUST 10</td>
<td>2-P</td>
<td>321788</td>
<td>1</td>
<td>Aug. 12, 1994</td>
<td>Aug. 12, 1999</td>
</tr>
</tbody>
</table>

Total: 45 units

* Upon acceptance of assessment expenditures by B.C. Ministry of Mines.
PROPERTY HISTORY

The KIM and GUST groups of claims overlie a sequence of rocks which has seen geologic investigation since the early 1900s. This is due to both the unique geological and geochemical characteristics of the area, and the considerable economic potential located there.

The project area was first described in 1914 by J.A. Allan in GSC Memoir No. 55, Map 142A. In this report, he discusses the complex rock types, but does not mention the mineral potential of the Moose Creek area.

In 1953, W.H. Patmore of Vancouver located claims on niobium-bearing mineralization near the head of Moose Creek. During that same period, other claims were recorded in the area.

J.W. McCammon, in the 1954 Report to the Minister of Mines, described claims in the Moose Creek area which contained radioactive and columbium mineralization, and notes the many occurrences of titaniferous magnetite.

Albany Oil and Gas in 1971 staked the Bow 1-49 claims, which cover most of the area now underlain by the Kim and Gust tenures. Their work consisted of evaluating the property for a number of commodities, including titaniferous magnetite, uranium, columbium/niobium, and sodalite. During the course of their 1971 program, 31 samples were taken of representative material.

Cominco Ltd. investigated the Moose Creek area in 1971, and visited the Waterloo prospect, owned at the time by Purcell Development of Brisco, B.C..

The current claim package was first assembled in the early 1990s by Paul Demcoe, who concentrated efforts on defining the potential for economic extraction of titaniferous magnetite/ilmenite material for use in heavy industry. Early work included x-ray diffraction and SEM evaluation of titanium-bearing minerals from the property, and followed in 1993 by a study
by Kilborn Engineering. At this time, samples were sent to the Western Research Centre for Metallurgical Testing. A further large sample was extracted by Magtite Minerals using a helicopter-transported backhoe, following a ground-penetrating radar survey carried out in October, 1993.

GEOLOGY

GEOLOGY OF THE ICE RIVER COMPLEX (After Pell, 1987)

The Ice River complex is an alkaline ultramafic intrusion located 23 kilometres south of Field. It is an arcuate mass, some 18 kilometres in length, with a total exposure of 29 square kilometres, most of which lies within Kootenay and Yoho National Parks. Access is difficult due to steep mountainous topography, lack of roads and regulations imposed by Parks Canada.

Within the complex, two distinct suites are present: an early, rhythmically layered, feldspar-free intrusion of jacupirangite, ijolite and urtite, cored by a carbonatite plug and crosscut by carbonatite dykes rich in mafic silicates and oxides; and a later zoned and crosscutting syenitic series, associated with a zeolite and feldspar-bearing carbonatite. The alkaline rocks intruded Cambrian and Ordovician shales and carbonates of the Chancellor, Ottertail and McKay Formations. Contact metamorphism of the enclosing sedimentary rocks resulted in the formation of hornfels and skarns. Some limited soda metasomatism also occurred. The complex and its host rocks were deformed and subjected to low-grade regional metamorphism during the Columbian orogeny.

The Ice River complex was the first alkaline intrusion to be recognized in British Columbia. It was discovered and described around the turn of the century. Work by Allan (1911, 1914) established it as one of the world's major alkaline complexes. During the 1950s and 1960s, there was renewed interest and a number of additional studies.
Ultramafic Series

The older part of the complex comprises a semiconcordant, rhythmically layered intrusion of feldspar-free lithologies ranging from jacupirangite through melanite ijolite to metanite urtite and characterized by a repetitive sequence of graded layers, 10 to 200 metres thick, with nepheline increasing in abundance towards the top of each layer. Jacupirangite is the most mafic lithology in this series. It contains, in decreasing abundance, titanaugite, titaniferous magnetite, perovskite and phlogopite. Accessory minerals include apatite, calcite, pyrrhotite, cancrinite and natrolite; the latter two minerals are present as alteration of nepheline.

Ijolites are the most common component of the layered series. They vary from a slightly more mafic variety (mela-ijolite) to true ijolite. The meta-ijolites contain clinopyroxene, either titanaugite or hedenbergite, nepheline, phlogopite, magnetite and perovskite or sphene, in order of decreasing abundance. Accessory minerals include calcite, apatite, cancrinite and natrolite. Some varieties contain significant amounts of black melanite garnet and biotite. True ijotites differ in that the pyroxene:nepheline ratio is 1:1 and opaques are uncommon. Locally, kaersutite amphibole replaces pyroxene.

Urtites contain greater amounts of nepheline than pyroxene (generally aegirine) and wollastonite may be present. They are generally coarse grained, with a fabric developed due to the parallel orientation of elongate pyroxene or wollastonite. kaersutite, melanite, albite, nepheline alteration products, sphene, calcite and apatite may also be present.

Zoned Syenite Complex

The younger portion of the Ice River complex has intruded the older mafic portion and consists of feldspar-rich syenitic rocks. The syenites are unlayered, however, strong alignment and segregation of minerals does occur. They form an elliptical pipe-like mass, zoned from a greenish sodalite syenite core through pale grey nepheline syenite to darker coloured mafic-rich rocks at the margin. The complex is surrounded by a thin rim of saturated fine-grained leucosyenite in contact with the country rocks. This phase is commonly full of inclusions.
The syenites are all dominated by the presence of alkali feldspar, generally with subordinate amounts of perthite and albitic plagioclase. Mafic minerals vary from being present in minor amounts to comprising approximately 50 per cent of the rock. Melanocratic varieties are characterized by the presence of titan augite to hedenbergitic pyroxene + kaersutite + biotite. Leucocratic syenites generally contain minor amounts of aegirine; hedenbergitic pyroxene, kaersutite, hastingsite or biotite may also be present. In all varieties, nepheline may comprise up to 30 per cent of the rock. Sodalite may be present in quantities from trace amounts to 20 per cent, and is generally more abundant in leucocratic syenites. Accessory minerals include sphene (no perovskite), apatite, cancrinite and minor opaques. Locally, zeolite-rich syenites are present. Fluorite and pyrochlore have also been reported.

Carbonatites
Carbonatites occur in a number of localities in the Ice River Complex and display considerable lithologic variation. Complex relationships with other alkaline rocks preclude the unambiguous establishment of an emplacement sequence. Currie suggests there may be some remobilization of carbonatite during deformation and metamorphism which results in complex crosscutting relationships, alternatively there may be more than one period of carbonatite emplacement.

Carbonatite occurs in the layered ultramafic sequence, west of the Ice River as layered lenticular masses and as smaller dykes. Three types are recognized: a black-weathering, iron-rich variety which is associated with a buff-weathering calcite-rich type, and a red-weathering variety, which crosscuts the buff carbonatite. The black carbonatites commonly occur as dykes containing elemental carbon and tetr natrolite concentrated near the margins, with calcite, siderite and grass-green berthierine (a serpentine mineral) as major components. Other minerals in the black carbonatite are: iron-rich biotite, aegirine, edingtonite (a barium zeolite), perovskite, ilmenite, minor sphalerite and traces of pyrite. The red weathering carbonatite is similar to the black, but it contains fewer non-carbonate minerals.
(less than 10 per cent); both siderite and zeolites are absent, serpentine is distinctly yellow-brown rather than grass-green, and pyrochlore and xenotime are present. The buff carbonatite is generally coarse grained and composed of calcite, aegirine, apatite, pyrite and trace pyrochlore.

White-weathering carbonatite dykes intrude the ultramafics exposed on Sharp Mountain. They consist predominantly of calcite and fluorapatite with aegirine (occasionally containing hedenbergitic cores), phlogopite, pyrite and ilmenite/magnetite. Some samples contain feldspar-rich zenoliths (microcline plus albite) and garnet (metanite?), analcime, natrotite, cancrinite and sphene.

The carbonatite associated with the syenites is radically different from that occurring within the ultramafic series in that the only silicate minerals present are feldspars (albite and in some localities microcline), zeolites natrolite, analcime and rarely, edingtonite) and rare phlogopite. In some localities the carbonate is pure calcite, in others ankerite, barytocalcite and strontianite have been identified in addition to calcite. Minor and trace minerals include ilmenite, pyrite, rutile, barite and apatite.

Lamprophyres

Many dark-weathering lamprophyric dykes occur within the Ice River complex and contiguous country rocks. They contain phenocrysts of strongly pleochroic orange-brown phlogopite, zoned crystals of augite/titanaugite, zoned kaersutite and olivine in a groundmass of pyroxene, pale orange phlogopite, calcite, alkali feldspar and opaque oxides. Sphene and apatite have also been reported. Field relationships indicate that the lamprophyre dykes were emplaced late in history of the complex.
PROPERTY GEOLOGY AND MINERALIZATION

The western portion of the Kim property overlies rocks of the Ice River Complex, while Cambrian and Ordovician sediments of the McKay, Ottertail, and Chancellor Formations dominate the eastern region. The Gust claims completely cover iron-rich intrusives at the headwaters of Moose Creek, and contain the majority of the magnetite resource outlined on the property.

At least four separate possible economic entities have been identified on the property, and have been visited by the author. All have been subjected to various degrees of investigation, and are summarized as follows:

Magnetite:
The Gust claims were staked by P. Demcoe, founder of Magtite Minerals to cover an occurrence of high-purity titaniferous magnetite found to occur in a talus slope at the headwaters of Moose Creek. In 1993, Kilborne Engineering studied the occurrence, and concluded that an estimated mineral resource of 4,973,000 tonnes grading 5.35% magnetite was present, based on sampling of detrital material exposed in steep creek banks cut through debris slope. Late in 1993, Magtite Minerals conducted a bulk sampling program which employed a small heliportable backhoe. Two pits were dug to depths up to 3m, with 1 cubic metre samples recovered.

A ground penetrating radar survey was carried out by Surface Search Inc., in an attempt to define the overall dimensions of the deposit. The study was inconclusive as penetration was not deep enough to encounter bedrock, but a minimum depth of 10m was indicated throughout the survey area.

Metallurgical testing of magnetite material was carried out at the Canada Centre for Mineral and Energy Technology at Devon Alberta. Samples were tested for the recovery of magnetite suitable for use in coal washing plants. Test results indicated that a product suitable for heavy medium use may be recoverable from this deposit.
Waterloo Polymetallic Prospect

The Waterloo showing was examined briefly during the one-day property inspection by the author. It has seen limited development consisting of two short adits located at 2200m, driven along the general strike of the sediments. The lead-zinc showing was discovered in the early 1900s, and has seen only limited development since that time. No diamond drilling has been documented at or near the exposure.

The prospect consists of a 1-2m conformable band of fine-grained mineralization hosted by dark, thin bedded limestones of the upper Cambrian Ottertail Formation sediments. A minette sill forms the footwall to mineralization.

Mineralization consists of sphalerite, galena, chalcopyrite, pyrrhotite, arsenopyrite, and pyrite. Gangue minerals are quartz and calcite. A single grab sample taken from the ore dump of the lower adit returned 3.64% Pb and 150g/t Ag, with highly anomalous Bi, Cu, Mn, and Zn. Past workers have identified uranium minerals within ore samples, in quantities sufficient to cause the area to be uranium/thorium "designated", which requires that future exploration be strictly regulated under Part 11 of the Health, Safety and reclamation Code for Mines in British Columbia. Local Ministry of Mines officials are aware of the Waterloo's designation, and have been monitoring the progress of Magtites' development plans carefully. They have indicated that baseline studies for uranium content must be completed before any major development will be permitted, including road-building.

Sodalite

A potentially economic resource of ornamental sodalite is located within the boundaries of the Kim B-E claims. Brilliant blue-green material was observed by the author in large float boulders strewn across a talus slope that straddles the Kim B and Kim C common claim boundary. These boulders are up to 2m x 3m in size, indicating a large source area. To the west of the claim area,
within Yoho National Park, Sodalite Creek flows westward from the Kim claim area, and suggests that sodalite material is in abundance locally. The location of source rocks for the brilliant float material has not been found, though areas of 1-2cm-wide sodalite veinlets and more massive, less colorful material has been found. Veins in outcrop were oriented 150/90, and 150/40NE. Sodalite in float material which contained sedimentary wallrock was found to be at right angles to bedding planes. The presence of float laterally across the talus slope suggest that the sodalite occurs primarily as vein material, and is hosted by both sedimentary and igneous rocks. It is interesting to note that sodalite float material which was located downslope from an inferred sedimentary host appeared to have a much more rich coloration than that hosted by nepheline syenites.

Tonnage calculations made by Addie (1990), suggest that over 6 million long tons of sodalite material may be present within two zones.

Magtite Minerals have sent samples of sodalite material to a number of ornamental stone companies, who have expressed interest in the project (L. Fiss, personal communication).

Nepheline Syenite

A large amount of nepheline syenite has been mapped within property boundaries of the Kim B and Kim C claims. Currently nepheline syenite is produced in Ontario and within the eastern United States. It is used as a building material, and is a source of feldspar. Currently, there is no production of nepheline syenite in British Columbia, though western provinces and Pacific Northwest users consume 25,000 short tons/year, all of which is delivered from Ontario (Addie, 1990). Addie (1990), calculates an estimated resource of approximately 130,000,000 long tons of nepheline syenite within current property boundaries.

1998 PROGRAM

The primary focus of the 1998 exploration program on Kim and Gust claims was to facilitate extraction and transport of an 800 lb sample of sodalite material, and to provide an overview
of property physiography and geology to the author. The author was accompanied by L. Dove and E. Clemens of Magtite Minerals, who have been involved in past programs carried out on the property. Access was gained by helicopter from Golden. The total cost of the 1998 program was $7,253, and saw the collection of 7 samples (including the 800lb sodalite sample). Analytical results for these samples are presented on Figure 2; in pocket, and are appended with descriptions following this report.

All samples were shipped to Eco-Tech Labs at Kamloops, BC. Samples were then dried, sieved to -80 mesh and analyzed for 30 element ICP using aqua-regia digestion. High-grade samples were further fire-assayed.
CONCLUSIONS and RECOMMENDATIONS

Based on a visit to the property and review of available data, it is readily apparent that the Kim and Gust claims overlie a complex, unique group of rocks with a high economic potential. Past workers have been frustrated by a reluctance of authorities to allow road access to the area, due primarily to its proximity to Yoho and Kootenay National Parks, and in part its' uranium/thorium designation (though apparently localised to one small, specific area). To ensure the viability of the project, it is imperative that assurances be received from authorities to allow future access to the area in order that any substantial feasibility studies may be carried out. Though it is the opinion of the author that road access is not necessary to physically carry out the next stages of work, it is crucial to any potential investors that this access will be allowed for future advanced resource definition, and ultimate economic extraction. Recent legislation in the Province of British Columbia has opened a window for the holders of mineral titles in the province to access their resources. The Mining Rights Amendment Act, introduced in early 1998, ensures that a mineral tenure holder will be issued a special-use permit by the Ministry of Forests for appropriate ground-based access to his or her tenure, if the tenure holder also holds a permit under the Mines Act for mining activities and meets other prescribed conditions.

In order to be considered candidates for the above, conditions previously imposed by Ministry of Mines officials should be carefully addressed. Those include conducting a background radioactivity survey in any area proposed for future development. It is the opinion of the author that this survey would not be unduly time-consuming, nor expensive. This study should preclude any further work on the property.

A small-scale, helicopter-supported seismic survey should be undertaken on the magnetite debris field within the Gust claim area. This survey should be completed in the area studied in 1993 by ground-penetrating radar, and could be very useful in determining depth to bedrock, and overall resource dimensions. It is suggested that discussions be made with a qualified
contractor regarding parameters of the survey. Assuming this study indicates sufficient tonnage to warrant further definition, a helicopter-supported drill program is recommended.

A road-layout engineer should be engaged, and a proposed route established to the claim area. A qualified professional would be best able to address concerns of both the government, and public stakeholders in the area. Following this review and proposed plan, application should be made for a road permit.

Consultation should be made with companies specializing in ornamental sodalite. A large sample of sodalite float material should be extracted and studied for its quality as a viable ornamental stone. Some effort should be made to define the source and tonnage of the larger and more colourful boulders present in float.

A study should be conducted regarding the potential extraction of nepheline syenite as an industrial mineral.
REFERENCES

Allan, J.A. (1914): Geology of Field Area, B.C. and Alberta; G.S.C. Memoir No. 55, Map 142A

A.R.#20,207

APPENDIX I

Certificate of Qualification
CERTIFICATE OF QUALIFICATION

I, Tim J. Termuende, of 2720-17th St. South in the City of Cranbrook in the Province of British Columbia hereby certify that:

1) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia (#19201).

2) I am a graduate of the University of British Columbia (1987) with a B.Sc. degree in Geology, and have practised my profession as geologist continuously since graduation.

3) This report is supported by data collected under my supervision during fieldwork conducted on August 24th, in addition to private reports made available to me by Magtite Minerals, and through research of publicly accessed data.

4) I have no interest, directly or indirectly in the Kim and Gust mineral properties described in this report, or in Magtite Minerals Ltd. NPL. I do not expect to receive any interest, directly or indirectly in the Kim and Gust mineral properties, or in Magtite Minerals Ltd. NPL in the future.

Dated this 18th day of November, 1998 in Cranbrook, British Columbia.

Toklat Resources Inc.

Tim J. Termuende, P. Geo.
APPENDIX II

Statement of Expenditures
STATEMENT OF EXPENDITURES- KIM GROUP PROGRAM

The following expenses were incurred on the KIM CLAIM GROUP for the purpose of mineral exploration:

PERSONNEL:

- T.J. Termuende, P.Geo.; 4.5 days x $425/day .. $1,912.50
- L. Fiss: 2.0 days x $350/day .. 700.00
- E. Klemens: 2.0 days x $350/day .. 700.00
- L. Dove: 2.0 days x $350/day .. 700.00

EQUIPMENT RENTAL:

- Truck Rentals and Mileage Charges .. 553.00

EXPENDITURES:

- Field Supplies: .. 75.00
- Helicopter Charter: .. 1,605.00
- Analytical: .. 81.57
- Fuel: ... 55.98
- Drafting/Reproduction (estimated): .. 600.00
- Meals and Accommodations: .. 270.00

Total Costs: $7,253.05
APPENDIX III

Analytical Results
Values in ppm unless otherwise reported

| Ef. # | Tag # | Ag | Al % | As | Ba | Bl | Ca % | Cd | Co | Cr | Cu | Fe % | La | Mg % | Mn | Mo | Na % | Ni | P | Pb | Sb | Sn | Sr | Ti % | U | V | W | X | Y | Zn |
|-------|-----------|----|------|-----|----|--------|------|----|-----|----|----|------|----|------|----|-----|------|----|----|----|----|----|-----|----|----|----|----|----|----|
| 1 | TTKM98R01 | <0.2 | 2.11 | <5 | 210 | 10 | 4.76 | <1 | 70 | 36 | 90 | 9.32 | 60 | 1.51 | 361 | <1 | 0.64 | 10 | 8620 | <2 | <5 | 20 | 383 | 0.29 | <10 | 456 | <10 | 6 | 32 |
| 2 | TTKM98R02 | <0.2 | 2.23 | <5 | 55 | 10 | 6.17 | 1 | 115 | 60 | 236 | 9.31 | 20 | 1.31 | 538 | <1 | 0.41 | 17 | 6590 | 4 | <5 | <20 | 248 | 0.49 | <10 | 149 | <10 | 13 | 47 |
| 3 | TTKM98R03 | <0.2 | 1.30 | <5 | 125 | 10 | 4.19 | <1 | 39 | 36 | 52 | 6.67 | 20 | 1.06 | 210 | 1 | 0.14 | 16 | 6280 | 2 | <5 | <20 | 215 | 0.15 | <10 | 261 | <10 | 6 | 23 |
| 4 | TTKM98R04 | <0.2 | 3.88 | 10 | 530 | 5 | 1.54 | <1 | 16 | 27 | 39 | 2.00 | 50 | 0.62 | 440 | <1 | 2.41 | 9 | 2250 | 26 | <5 | <20 | 470 | 0.20 | <10 | 73 | <10 | 8 | 49 |
| 5 | TTKM98R05 | <0.2 | 3.49 | 10 | 285 | <5 | 0.35 | <1 | <1 | 17 | 5 | 0.55 | 20 | 0.03 | 88 | <1 | 2.78 | 1 | 480 | 24 | <5 | <20 | 467 | 0.04 | <10 | 4 | <10 | 2 | 9 |
| 6 | TTKM98R06 | >0.3 | 0.17 | 1765| 80 | 1420 | 0.25 | <1 | 69 | 5 | 3492| >10 | <10 | 0.02 | 2658| 420 | 0.04 | 38 | <10 | >10000 | <5 | <20 | 38 | 0.02 | <10 | 179 | <10 | <1 | 5979|
| 7 | TTKM98R07 | 0.2 | 5.21 | 25 | 535 | <5 | 0.95 | <1 | <1 | 15 | 14 | 1.05 | 70 | 0.14 | 853 | 10 | 5.35 | 1 | 540 | 180 | <5 | <20 | 540 | 0.04 | <10 | 4 | <10 | 18 | 141|

QC/DATA:

Resplit:
- 1 TTKM98R01 <0.2 1.99 <5 215 <5 4.58 <1 77 42 55 9.07 80 1.40 340 <1 0.60 10 8700 <2 <5 <20 365 0.25 <10 439 <10 7 31

Repeat:
- 1 TTKM98R01 <0.2 2.08 <5 205 <5 4.05 <1 77 36 88 9.21 60 1.49 353 <1 0.63 10 8520 2 <5 <20 370 0.28 <10 452 <10 9 33

Standard: GEO'98 1.2 1.75 65 160 <5 1.75 <1 20 60 81 4.08 <10 0.96 663 <1 0.03 22 710 22 <5 <20 57 0.11 <10 78 <10 5 72

17-Sep-98

ECO-TECH LABORATORIES LTD.
10041 East Trans Canada HWY
KAMLOOPS, B.C.
V2C 6T4

Phone: 604-573-5700
Fax: 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK98-531R

TOKLAT RESOURCES INC.
2720-176 STREET SOUTH
CRANBROOK, B.C.
V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received: 7
Sample Type: Rock
PROJECT #: KM98
SHIPMENT #: KM98-01
Samples submitted by: T. Termuende

df/334
XLS/98Tkld
Fax:250-425-6999

Page 1
CERTIFICATE OF ASSAY AK 98-531R

TOKLAT RESOURCES INC.
2720-17th STREET SOUTH
CRANBROOK, B.C.
V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received: 7
Sample Type: Rock
PROJECT #: KM98
SHIPMENT #: KM98-01
Samples submitted by: T. Termuende

<table>
<thead>
<tr>
<th>T #</th>
<th>Tag #</th>
<th>Ag (g/t)</th>
<th>Ag (oz/t)</th>
<th>Pb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>TTKM98R06</td>
<td>150.0</td>
<td>4.37</td>
<td>3.64</td>
</tr>
</tbody>
</table>

QC/DATA:

Standard:
Mp-IA

<table>
<thead>
<tr>
<th></th>
<th>Ag (g/t)</th>
<th>Ag (oz/t)</th>
<th>Pb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>69.7</td>
<td>2.03</td>
<td>4.33</td>
</tr>
</tbody>
</table>

ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

XLS/98
APPENDIX IV

Rock Sample Descriptions
ROCK SAMPLE DESCRIPTIONS- KIM, GUST CLAIMS

TTKM98R01: Float 2270m: magnetite/ilmenite material.

TTKM98R02: In-situ, 1905m: massive pyrrhotite within marble/limestone and auto-brecciated ultramafic. Non-magnetic, associated with highly fractured light-green sodalite.

TTKM98R03: In-situ, 1860m: Magnetite exposed in balst pit 3m x 4m. Highly magnetic

TTKM98R04: 1860m: Continuous sample of 4m high bank of rusty silt within creek banks.

TTKM98R05: 1830m, float: nepheline syenite

TTKM98R06: In-situ, upper adit, Waterloo prospect: banded fine-grained pb, zn, cu within massive pyrrhotite from dump.

TTKM98R07: Float 1900m: sodalite