MOBILE METAL ION GEOCHEMICAL REPORT

on the

DUFFY MINERAL CLAIM
BEATON GROUP

Kamloops Mining Division
British Columbia

N.T.S. 092I/10E
Latitude 50° 41’N
Longitude 120° 37’W

for
operator and owner

Charles Boitard
2245 West 13th Avenue
Vancouver, B.C.
V6K 2S4

by

Charles Boitard
July 9, 1999

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

25,947
TABLE OF CONTENTS

1. SUMMARY .. 2
2. INTRODUCTION ... 2
3. LOCATION, ACCESS AND PHYSIOGRAPHY 2
4. CLAIM STATUS ... 3
5. HISTORY .. 4, 5
6. GEOLOGY .. 4, 5
7. M.M.I SURVEY .. 5
8. CONCLUSION .. 5
9. REFERENCES .. 6

LIST OF FIGURES

FIGURE 1 B.C. LOCATION MAP PAGE 2
FIGURE 2 CLAIM MAP PAGE 3
FIGURE 3 REGIONAL GEOLOGY PAGE 4
FIGURE 4 M.M.I. PROCESS PAGE 5
FIGURE 5 LOCATION MAP, 1+10,000 IN POCKET

APPENDICES

APPENDIX 1 CERTIFICATE OF ANALYSIS PAGE 2
APPENDIX 2 ASSAY SHEETS PAGE 3
APPENDIX 3 M.M.I RESPONSE CHART, COPPER PAGE 4
APPENDIX 4 M.M.I. RESPONSE CHART, GOLD PAGE 5
APPENDIX 5 M.M.I. RESPONSE CHART, SILVER PAGE 6
APPENDIX 6 M.M.I. RESPONSE CHART, NICKEL PAGE 7
APPENDIX 7 M.M.I. RESPONSE CHART, PALADIUM ... PAGE 8
APPENDIX 8 STATEMENT OF COSTS PAGE 9
1. SUMMARY

1.1 The Beaton Group East and the Beaton Group West consists of 16 mineral claims, representing 113 units. The property is located approximately 5 kilometres west of Afton Mine and 20 kilometres from the town of Kamloops, B.C. The claim is accessible from the Trans-Canada Highway, then Greenstone Mountain Road and Duffy Lake Road.

1.2 The property is underlain by andesites of the Nicola Volcanics.

1.3 Induced Polarization Magnetometer Surveys, Soil Sampling and a few percussion drill holes have been carried out on the property, but no commercial mineralization has been encountered.

2. INTRODUCTION

2.1 This report has been prepared for assessment purposes.

2.2 Previous percussion drilling carried out on the property intercepted many zones of alteration, bleaching and quartz. Mobile Metal Ion (M.M.I.) Survey is a new exploration tool, the soil sampling carried out on line 1050 south was to test a zone of interest.

2.3 The Beaton East and West Groups are registered under my name; Charles Boitard. The property lies approximately 20 kilometres west of Kamloops B.C.

3. LOCATION ACCESS AND PHYSIOGRAPHY

3.1 The Beaton property is located on the Thompson Plateau approximately 20 kilometres west of Kamloops, B.C. The claims are centered at 50° 41' north latitude and 120° 37' west longitude on NTS map sheet 09211/10E. The claims are in the Kamloops Mining Division.

3.2 Access is provided by the Trans-Canada Highway and then south along the Greenstone Mountain Road which branches off the highway approximately two kilometres west of the Afton Mine. Good dirt roads provide access to most of the claim area.

3.3 The property lies between elevations 700 to 885 metres above sea level. Vegetation consists of pockets of Pine within grasslands. Water for all stages of exploration is available from Beaton Creek, the main drainage on the Beaton claims. The climate is semi-arid with an average annual precipitation of 250 to 280 millimetres.
4. CLAIM STATUS

4.1 The Beaton property comprises 16 mineral claims totalling 113 units. Complete claim information is as follows:

<table>
<thead>
<tr>
<th>NAME</th>
<th>UNITS</th>
<th>RECORD NO.</th>
<th>EXPIRY DATE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEATON #1</td>
<td>20</td>
<td>217820</td>
<td>JUNE 15, 2002</td>
</tr>
<tr>
<td>BEATON #2</td>
<td>20</td>
<td>217821</td>
<td>JUNE 15, 2002</td>
</tr>
<tr>
<td>BEATON #4</td>
<td>20</td>
<td>217973</td>
<td>MARCH 8, 2000</td>
</tr>
<tr>
<td>BEATON #5</td>
<td>5</td>
<td>217974</td>
<td>MARCH 8, 2000</td>
</tr>
<tr>
<td>BEATON #6</td>
<td>4</td>
<td>217971</td>
<td>MARCH 8, 2000</td>
</tr>
<tr>
<td>BEATON #7</td>
<td>4</td>
<td>217972</td>
<td>MARCH 8, 2000</td>
</tr>
<tr>
<td>DUFFY</td>
<td>20</td>
<td>355486</td>
<td>MAY 1, 2000</td>
</tr>
<tr>
<td>ROSE #1</td>
<td>12</td>
<td>316736</td>
<td>MARCH 23, 2000</td>
</tr>
<tr>
<td>ROSE #2</td>
<td>1</td>
<td>316737</td>
<td>MARCH 20, 2000</td>
</tr>
<tr>
<td>ROSE #3</td>
<td>1</td>
<td>316738</td>
<td>MARCH 20, 2000</td>
</tr>
<tr>
<td>ROSE #4</td>
<td>1</td>
<td>316739</td>
<td>MARCH 22, 2000</td>
</tr>
<tr>
<td>ROSE #5</td>
<td>1</td>
<td>316740</td>
<td>MARCH 23, 2000</td>
</tr>
<tr>
<td>ROSE #6</td>
<td>1</td>
<td>316741</td>
<td>MARCH 22, 2000</td>
</tr>
<tr>
<td>ROSE #7</td>
<td>1</td>
<td>316742</td>
<td>MARCH 23, 2000</td>
</tr>
<tr>
<td>ROSE #10</td>
<td>1</td>
<td>316745</td>
<td>MARCH 19, 2000</td>
</tr>
<tr>
<td>ROSE #11</td>
<td>1</td>
<td>316746</td>
<td>MARCH 19, 2000</td>
</tr>
</tbody>
</table>

Includes assessment currently being applied.

4.2 All the claims in the Beaton Group East and West are recorded under the name of Charles Boitard.

5. HISTORY

5.1 The Afton orebody, located five kilometres east of the Beaton claims, began production in 1977 and continued through 1991 when it was shut down for economic reasons. At start-up, Afton had drill proven ore reserves of 30.84 million tonnes grading 1.0% copper, 0.58 ppm gold and 4.19 ppm silver at a cut off grade of 0.25% copper (Carr & Reed, 1976). It is reported that underground reserves still exist and that with an improvement in copper and/or gold prices the mine could be re-opened.

5.2 In 1972, the TT claims were explored by Bow River Resources Ltd. A magnetic survey on the TT claims reportedly revealed Coast Intrusives, and Tertiary volcanics as well as Nicola Volcanics within portions of the present day Beaton claims (Sookochoff, 1992)
5.3 In 1980, Asarco completed a magnetometer survey on the Red 1–4 claims, two of which occupied a portion of the northeast corner of the present Beaton claims. The resultant magnetic highs were determined to be the result of outcroppings of Nicola volcanics. Percussion drilling in 1981 revealed chalcopyrite but no economic concentrations of copper were discovered.

5.4 In 1983, De Baca resources explored the Akila claim which included the southwest corner of the present day Beaton claims. One diamond drill hole was completed to test a silicified shear zone that strikes 070°. This hole reportedly returned assays of nominal copper and silver.

5.5 Since 1987 exploration on the Beaton claims has consisted of IP surveys, localized soil geochemical surveys and the drilling of nine percussion drill holes in 1992.

6. GEOLOGY

6.1 The Duffy Claim (Beaton Group) lie within the Quesnel Trough, a 30 to 60 kilometre wide belt of Lower Mesozoic volcanic and related sedimentary rocks bounded by older sedimentary rocks of the Cache Creek Group to the east and younger Coast Intrusions to the west. In the area of the Beaton claims the Quesnel Trough is dominated by Upper Triassic Nicola Group andesites, basalts, tuffs and argillites. The Nicola Group is intruded by Upper Triassic – Lower Jurassic diorite, syenite and monzonite of the Iron Mask Batholith. This batholith represents a major northwest trending structure that crosscuts the north–northwesterly trending Nicola volcanics. Portions of this area or obscured by later plateau lavas.

6.2 Bedrock exposure in this area amounts to only about ten percent, the rest being covered by glacial drift deposited from Pleistocene ice sheets that moved from northwest to southeast.

6.3 No systematic, property scale geological mapping has been carried out on the property. The Duffy claim is underlain by andesite of the Nicola Group and quartz monzonite of the Iron Mask pluton. A rhyolite flow has been observed in the centre of the Beaton Group.

7. M.M.I. SURVEY

7.1 During the period from April 4, 1999 to April 7, 1999, a soil sampling survey was carried out on the Duffy Mineral Claim. The topography of the Duffy Claim and the adjoining Rose Claim (see claim map) and the canyon, cut by Beaton Creek indicate a northeast structure. Using compass and hip chain, a Base Line was established by blazing and flagging stations at 50 metre intervals, starting from the Rose L.C.P. going
north 45° for 850 metres, the survey lines are located at 315°. Line 0 starting at the Rose L.C.P Azimuth 315°, was blazed and flagged for 1400 metres, with stations at 50 metre intervals.

7.2 29 samples were collected at 50 metre intervals on Line 0 with a pick and a small hand shovel from the B Horizon, from small pits of approximately 25 centimetres deep. A pound to a pound and a half of fine sieved material was collected at each station and placed in a plastic snap seal bag, clearly marked with the property name, the line and the station number. The tools used to collect and sieve the samples were brushed clean after use at each station to avoid contamination.

7.3 A maximum of six sample bags were placed in a larger plastic bag and carried to the truck for transportation to Vancouver. The samples were then placed in cardboard boxes and shipped for assay to XRAL LABORATORIES, at 1885 Leslie Street, Don Mills, Ontario M3B 3J4.

7.4 Xral Labs assayed the samples with the method code M.M.I. A and B for nine elements: CU, PD, ZN, CD, CO, AU, AG, PD, NI.

7.5 RESULTS for copper, nickel, palladium, gold and silver have been plotted on a chart to facilitate interpretation.

8. CONCLUSION

8.1 Keeping in mind that the samples were taken at 50 metre intervals, the copper, gold and silver correlation at 250 W and 550 W; Line 0 could be veins of mineralization. Additional samples should be taken at close intervals on each side of 250 W and 550 W to determine the width of the mineralization. The high nickel values at the beginning of Line 0 could reflect the change in the lithology of the bedrock, but could also indicate a nickel deposit. The soil sampling survey on Line 0 should be extended east for at least 600 to 700 metres. If the nickel value remains high, it could probably be caused by different rock formations of the bedrock, but if a background is established the high nickel values could indicate the presence of nickel mineralization.

"The D.D.H. 94–1 drilled on the Ned Mineral claim intercepted 60 feet (from 387 ft. to 447 ft.) assaying 0.165% Nickel and 0.18% chromium; in sulphide). The D.D.H. 94–1 is located 5.5 km. due east of the high nickel values on Line 0 of the Duffy Claim."
1.0 INTRODUCTION

'Mobile Metal Ions' is a term used to describe ions which have moved in the weathering zone and that are only weakly or loosely attached to surface soil particles. It is a widely-held belief that these Mobile Metal Ions are transported from deeply-buried ore bodies to the surface. Studies from Australia and overseas have shown that such Mobile Metal Ions are useful in locating buried mineralization. Mobile Metal Ions are generally at very low concentrations in the soil. To successfully interpret these weak signals, a series of very carefully quality controlled steps have been developed that, when put together, constitute an integrated package 'The MMI Process'.

The steps which are necessary to ensure the successful application of Mobile Metal Ion geochemistry for mineral exploration include:

- A field, commodity and exploration situation appropriate for application of MMI geochemistry;
- An understanding of landform and regolith relationships;
- Application of appropriate specialized digestions;
- Access to advanced ICP-MS analytical equipment/techniques; and
- Correct interpretation of the partial extraction analytical data.

Detailed information on a number of these steps, remains confidential. At this point in the development of MMI technology and its role in exploration, orientation surveys are recommended, where possible, to develop a level of confidence for any particular prospect or project area.

Currently, the optimum application for MMI geochemistry is to define specific mineralization targets for detailed drilling, making broad reconnaissance RAB programmes redundant. In this scenario, the assumption is that a number of target areas have been defined and MMI is used to prioritize and more accurately define targets for RC drill programmes.

Developmental work is ongoing to allow extension of the technique to a regional application, and ultimately a target definition role is envisaged. Research is also underway to explore its applicability down hole.

Integral to the successful transition to these new applications will be the continued development in the understanding of Mobile Metal Ion anomalies and a competitive cost structure allowing the technique to deliver cost effective exploration programmes aimed at reducing first pass drilling campaigns. Both matters have been addressed via ongoing research programmes, and the initiative to Licence commercial laboratories to undertake MMI digestions and analyses on a non-exclusive basis.
2.0 BACKGROUND INFORMATION

The key attributes of Mobile Metal Ion surface soil geochemical anomalies include:

- Constrained, precise anomalies, vertically above mineralization and occasionally at up-dip projection positions on the surface;
- Commodity elements respond reducing the need for pathfinders;
- The anomalies can precisely target base metals mineralization at significant depths (greater than 700 m);
- The incidence of false anomalies is very low in comparison to conventional geochemistry;
- Surface soil anomalies are repeatable and persist over time; and
- Anomalies have a better signal to noise ratio related to mineralization in a much wider range of regolith units when compared with conventional techniques.

The Mobile Metal Ion geochemical technique has been developed over the past six years and resulted from a series of 13 case studies where the attributes summarized above were first observed. After this initial field testing in Australia and off-shore, a larger scale research and development initiative was instigated culminating in the establishment of The Geochemistry Research Centre at Technology Park in Perth. In an effort to understand and effectively apply MMI geochemistry to mineral exploration, its first project, The Mechanism of Formation of Mobile Metal Ion Anomalies, was supported by 11 mining companies, WAMTECH and the Western Australian State Government.

It is important to realize that the MMI approach to geochemical exploration is significantly different to that used in conventional surveys. The principal aim of the process is to remove the smallest amount of metal ions from the exterior of soil particles whilst leaving the substrate unaffected. This is the essential difference between MMI and other partial digestion techniques that specifically attack substrates, such as iron oxides and manganese oxides. This approach optimizes the use of improved analytical instrumentation with lower detection limits now available. While absolute metal concentration levels are significantly less than those from total digestions; the signal to noise ratios are significantly enhanced using MMI procedures.

Early case studies clearly suggested that, on an empirical basis, better contrast was achieved over a number of different styles of mineralization using MMI when compared to conventional (total) techniques. It was postulated that the very loosely-attached ions were sourced from mineralization and that input from other sources of metals, for example lateritic or lithological contributions would be minimized.

Currently the element suite for MMI analysis includes the following nine elements:

Cu, Pb, Zn, Ni, Cd, Au, Ag, Co, and Pd.

The concept of the MMI Process has been introduced to reinforce the requirement that the method is not simply an analytical technique. It is a series of integrated steps that, when combined correctly and intelligently, is proving to be a powerful addition to the existing exploration geochemistry techniques.

A cautionary note: as initial scepticism starts to abate, history confirms the tendency to regard a new technique as a panacea and usually it is grossly mis-applied. MMI technology will be no different. There is a current practical limit to its usefulness and cost effective application. As MMI TECHNOLOGY's on-going research progresses and a better understanding of the technique continues to develop, those limits will be revised, extended and up-dated in this manual.
3.0 APPROPRIATE LANDFORM AND REGOLITH SITUATIONS

Mobile Metal Ion geochemistry has proved successful in a broad range of landform situations including relict, erosional, and depositional regimes. It is also proving effective in lateritic terrains by identifying primary sources of mineralization from the surface within broader conventional anomalies influenced by specific regolith units.

Surface Mobile Metal Ion geochemistry essentially responds to sources of mineralization, so that weakly-mineralized structures, like subsurface supergene mineralization blankets, are defined at a lower contrast level than the primary zones from which they are derived.

3.1 Relict and Erosional Regimes
Surface regolith units developed on relict and erosional landforms respond well to MMI geochemistry. The key advantage is a superior signal to noise ratio over mineralization. Compared to conventional geochemistry, it allows better focusing on follow-up exploration, either further surface sampling or more precise target drilling. Conventional responses are usually broader and maxima are often not directly over mineralization, particularly in deeply-weathered terrains. MMI responses are more constrained, and provided that the correct background levels are applied when calculating MMI Response Ratio values during interpretation, commodity element anomalies are usually closely related to primary mineralization.

This does not automatically ensure that a commercially-viable deposit is identified beneath each MMI anomaly. However, the success rate for ore-grade drill intercepts early within an exploration programme can be significantly improved.

At an operational level, MMI samples can easily be collected from the surface of these regimes in a straightforward manner as discussed below.

3.2 Depositional Regimes
Surface soils on depositional regimes need to be addressed with extra care. Case studies have shown clearly that the MMI technique extends the range of effective surface soil geochemistry further into more complex transported regolith units, when compared to conventional geochemical techniques. Again it is the superior signal to noise or anomaly to background responses provided by MMI geochemistry that allow the technique to identify and highlight anomalous responses from mineralization while reducing the effects of spurious background levels.

Terrains with colluvial soils, where coarser components are obvious, usually respond well to the MMI technique. In terrains with extensive alluvium, particularly within larger tracts of sheetwash with intermittent flood activity, care is required with any geochemical technique. MMI anomalies in this terrain type can be of the order of 1 ppb or less. At these analytical levels, great care must be taken to ensure quality of data, and correct interpretation.

An effective orientation study is strongly recommended if possible to provide data before embarking on a survey.
4.0 ORIENTATION STUDIES

Although MMI geochemistry is a powerful technique, it should not be regarded as a panacea for exploration. Field inspection can be important to establish whether any major landform or regolith changes are likely to influence the MMI results. Other relevant background material that can contribute to a successful MMI survey programme and interpretation includes: geological maps, aerial photographs, geophysical data including aeromagnetic maps and any interpretation thereof, conventional geochemistry results showing broader anomalies or corridors, and styles of any known mineralization.

As with any geochemical survey, an orientation programme can provide valuable information if a suitable target can be accessed and soils collected at the surface. Prior to any orientation, it is also important for the explorationist to define the parameters for minimum target size, especially when considering sample spacing for future exploration surveys. An important feature of MMI geochemistry is that it essentially responds to primary mineralization. Weakly-mineralized structures may not respond clearly or distinctly to an MMI programme so an orientation should preferably test a target considered significant.

A 50-metre interval sample spacing along lines is recommended for orientation surveys.

To obtain the maximum benefit from the analytical data generated using commercial MMI analyses, response ratios (discussed below) should be calculated. Background samples provide the necessary data to allow meaningful response ratios to be calculated and therefore orientation sampling must include soils collected off the known mineralization.

5.0 SAMPLE DENSITY AND GRID ORIENTATION

Density of sampling is largely influenced by the type and style of mineralization being sought. Narrow higher grade styles require a maximum of 50-m sample intervals along lines spaced according to the required strike length of mineralization considered as an economic target within the specific project area. If the minimum strike length is 200 m, then the maximum line spacing should be 400 m. This is assuming that the target mineralization is likely to produce a geochemical halo, giving rise to an anomaly that may extend further than 200 m (for example along strike of a mineralized structure). However, it is recommended that the line spacing be equal or less than the target mineralization length. Generally for gold targets a sample spacing of 100 m x 50 m will allow a focused drill programme to commence eliminating blanket RAB drilling.

Larger sedimentary styles (for example Mississippi Valley style) can have expanded sample patterns. However, in these cases it is vital that background is also sampled. Very specific targets, for example massive Ni sulphides along basal contacts, have in the past required 25 m x 25 m spacing to allow detailed anomaly definition prior to the first phase of drilling. This pattern density may represent the second or third infill phase of MMI sampling after an initial broader-spaced programme to identify contacts.

One important aspect of incorporating MMI geochemistry into an exploration programme is that it can substantially reduce drilling costs (see Figure 1). If anomalies remain strong along significant strike lengths and more precise targets are desired, it is still more cost effective to undertake infill surface sampling at 50 m x 50 m spacing within the anomalous trend rather than to blanket drill.
5.1 Sampling Grids
Pre-designated sample grids and numbers should be established prior to sampling to avoid irregular sample spacing/numbering which disrupts later data interpretation and any subsequent follow-up work. Sampling should be conducted in a methodical way, preferably starting from the lowest easting and northing and working upwards. Avoid allocating negative eastings and northings for sample coordinates.

For orientation, survey traverses across known targets are ideal. These traverses can be assessed independently; however, it is imperative that background samples are collected for the general area, even at the expense of maintaining a consistent spacing along the line once the mineralized zone has been covered.

6.0 SAMPLE COLLECTION

6.1 Equipment
- A 30-cm diameter plastic garden sieve or kitchen colander with minus 5-mm apertures, available from hardware and supermarkets, is ideal for sample collection;
- Plastic collection dish with similar diameter and a kitchen floor brush used for cleaning the sieve and dish between samples;
- A bare steel (no paint) garden spade; and
- Plastic snap seal bags, do not use calico.

6.2 Sample specification
A 500-gram sample is collected and stored in a plastic bag (a 90 x 150-mm plastic snap seal sample bag is recommended). Once sealed in the snap seal plastic bags, samples should be placed in polyweave sample dispatch bags (maximum 40 per bag). Stored in this manner, samples can be carried on tray-back vehicles during summer without problems and be stored for long periods.

6.3 Sample site
Sample sites should be undisturbed and preferably away from any major contamination: creek beds, drainage, drilling lines, pads, roads, etc. Wind borne contamination should also be eliminated during sample collection by sampling just below the surface.

6.4 Sample collection
It is imperative that during sample collection and handling no jewellery should be worn, (for example rings, bracelets, and chains), as this can be a possible major source of contamination. It is advisable that all field and laboratory staff be informed.

The initial step in taking an MMI soil sample requires the surface soil layer to be scraped away eliminating organic matter, debris, and any possible contamination. In undisturbed environments samples are collected approximately 150 to 200 mm below the surface. Before actually taking the soil sample material, the sieve and collection dish should be brushed to eliminate residue from previous samples and preferably flushed with the soil from the new sample site.
9. REFERENCES

CERTIFICATE OF ANALYSIS
Work Order: 055383

To: Green Valley Mine Incorporated
Attn: Charles Boltard

2245 West 13th Avenue,
VANCOUVER
B.C., CANADA V6K 2S4

Date: 15/06/99

Copy 1 to

Copy 2 to

P.O. No.:
Project No.:
No. of Samples: 29 SOIL
Date Submitted: 02/06/99
Report Comprises: Cover Sheet plus Pages 1 to 2

Distribution of unused material:
Pulps: STORE
Rejects: STORE

Certified By: Dr. Hugh de Souza, General Manager XRAL Laboratories

ISO 9002 REGISTERED

Report Footer: L.N.R. = Listed not received I.S. = Insufficient Sample n.a. = Not applicable -- = No result
*INF = Composition of this sample makes detection impossible by this method
M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Member of the SGS Group (Société Générale de Surveillance)
<table>
<thead>
<tr>
<th>Element</th>
<th>Cu MMIA</th>
<th>Zn MMIA</th>
<th>Cd MMIA</th>
<th>Pb MMIA</th>
<th>Au MMIB</th>
<th>Co MMIB</th>
<th>Ni MMIB</th>
<th>Pd MMIB</th>
<th>Ag MMIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Det.Lim. Units</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
</tr>
<tr>
<td>LINE 0: 0W</td>
<td>229</td>
<td>204</td>
<td><10</td>
<td>130</td>
<td>0.31</td>
<td>3</td>
<td>8650</td>
<td>1.16</td>
<td>23.2</td>
</tr>
<tr>
<td>LINE 0: 050W</td>
<td>454</td>
<td>175</td>
<td><10</td>
<td>72</td>
<td>0.34</td>
<td>7</td>
<td>2590</td>
<td><0.25</td>
<td>4.43</td>
</tr>
<tr>
<td>LINE 0: 100W</td>
<td>168</td>
<td>205</td>
<td><10</td>
<td>130</td>
<td><0.25</td>
<td>6</td>
<td>5770</td>
<td><0.25</td>
<td>6.10</td>
</tr>
<tr>
<td>LINE 0: 150W</td>
<td>818</td>
<td>246</td>
<td><10</td>
<td>144</td>
<td><0.25</td>
<td>3</td>
<td>49</td>
<td><0.25</td>
<td>5.77</td>
</tr>
<tr>
<td>LINE 0: 200W</td>
<td>336</td>
<td>67</td>
<td><10</td>
<td>61</td>
<td>0.65</td>
<td>8</td>
<td>11100</td>
<td><0.25</td>
<td>6.18</td>
</tr>
<tr>
<td>LINE 0: 250W</td>
<td>1180</td>
<td>131</td>
<td><10</td>
<td><20</td>
<td>2.23</td>
<td>36</td>
<td>4830</td>
<td>0.64</td>
<td>19.4</td>
</tr>
<tr>
<td>LINE 0: 300W</td>
<td>12</td>
<td>12</td>
<td><10</td>
<td><20</td>
<td><0.25</td>
<td>6</td>
<td>3030</td>
<td>4.15</td>
<td>3.60</td>
</tr>
<tr>
<td>LINE 0: 350W</td>
<td>360</td>
<td>114</td>
<td><10</td>
<td>36</td>
<td><0.25</td>
<td>10</td>
<td>7710</td>
<td><0.25</td>
<td>3.49</td>
</tr>
<tr>
<td>LINE 0: 400W</td>
<td>181</td>
<td>100</td>
<td><10</td>
<td>98</td>
<td><0.25</td>
<td>18</td>
<td>824</td>
<td><0.25</td>
<td>6.25</td>
</tr>
<tr>
<td>LINE 0: 450W</td>
<td>143</td>
<td>54</td>
<td><10</td>
<td>43</td>
<td><0.25</td>
<td>9</td>
<td>554</td>
<td>0.35</td>
<td>6.83</td>
</tr>
<tr>
<td>LINE 0: 500W</td>
<td>193</td>
<td>392</td>
<td><10</td>
<td>104</td>
<td><0.25</td>
<td>36</td>
<td>1750</td>
<td><0.25</td>
<td>3.29</td>
</tr>
<tr>
<td>LINE 0: 550W</td>
<td>2150</td>
<td>208</td>
<td><10</td>
<td>88</td>
<td>4.00</td>
<td>21</td>
<td>1960</td>
<td>0.86</td>
<td>10.3</td>
</tr>
<tr>
<td>LINE 0: 600W</td>
<td>523</td>
<td>143</td>
<td><10</td>
<td>89</td>
<td>0.29</td>
<td>19</td>
<td>3080</td>
<td><0.25</td>
<td>3.03</td>
</tr>
<tr>
<td>LINE 0: 650W</td>
<td>152</td>
<td>273</td>
<td>12</td>
<td>152</td>
<td><0.25</td>
<td>13</td>
<td>946</td>
<td><0.25</td>
<td>2.94</td>
</tr>
<tr>
<td>LINE 0: 700W</td>
<td>187</td>
<td>1920</td>
<td>27</td>
<td>67</td>
<td><0.25</td>
<td><1</td>
<td>603</td>
<td><0.25</td>
<td>1.50</td>
</tr>
<tr>
<td>LINE 0: 750W</td>
<td>111</td>
<td>367</td>
<td>12</td>
<td>29</td>
<td><0.25</td>
<td>1</td>
<td>702</td>
<td><0.25</td>
<td>1.61</td>
</tr>
<tr>
<td>LINE 0: 800W</td>
<td>206</td>
<td>463</td>
<td>16</td>
<td>84</td>
<td><0.25</td>
<td>2</td>
<td>777</td>
<td><0.25</td>
<td>3.19</td>
</tr>
<tr>
<td>LINE 0: 850W</td>
<td>161</td>
<td>87</td>
<td><10</td>
<td>49</td>
<td><0.25</td>
<td>1</td>
<td>2710</td>
<td><0.25</td>
<td>3.01</td>
</tr>
<tr>
<td>LINE 0: 900W</td>
<td>276</td>
<td>131</td>
<td><10</td>
<td>95</td>
<td><0.25</td>
<td>2</td>
<td>2600</td>
<td><0.25</td>
<td>3.52</td>
</tr>
<tr>
<td>LINE 0: 950W</td>
<td>509</td>
<td>187</td>
<td>10</td>
<td>67</td>
<td>1.29</td>
<td>2</td>
<td>4020</td>
<td><0.25</td>
<td>3.28</td>
</tr>
<tr>
<td>LINE 0: 1000W</td>
<td>120</td>
<td>398</td>
<td><10</td>
<td>108</td>
<td><0.25</td>
<td>2</td>
<td>679</td>
<td><0.25</td>
<td>5.03</td>
</tr>
<tr>
<td>LINE 0: 1050W</td>
<td>171</td>
<td>199</td>
<td><10</td>
<td>89</td>
<td><0.25</td>
<td>2</td>
<td>1490</td>
<td><0.25</td>
<td>4.26</td>
</tr>
<tr>
<td>LINE 0: 1100W</td>
<td>114</td>
<td>361</td>
<td>14</td>
<td>35</td>
<td><0.25</td>
<td>1</td>
<td>1210</td>
<td><0.25</td>
<td>2.69</td>
</tr>
<tr>
<td>LINE 0: 1150W</td>
<td>610</td>
<td>693</td>
<td>21</td>
<td>35</td>
<td>0.29</td>
<td>9</td>
<td>1300</td>
<td><0.25</td>
<td>6.89</td>
</tr>
<tr>
<td>LINE 0: 1200W</td>
<td>314</td>
<td>239</td>
<td><10</td>
<td>100</td>
<td><0.25</td>
<td>7</td>
<td>1420</td>
<td><0.25</td>
<td>5.58</td>
</tr>
<tr>
<td>LINE 0: 1250W</td>
<td>726</td>
<td>152</td>
<td>21</td>
<td>84</td>
<td>0.37</td>
<td>30</td>
<td>2640</td>
<td><0.25</td>
<td>16.0</td>
</tr>
<tr>
<td>LINE 0: 1300W</td>
<td>712</td>
<td>246</td>
<td><10</td>
<td>114</td>
<td>0.75</td>
<td>7</td>
<td>2560</td>
<td><0.25</td>
<td>4.88</td>
</tr>
<tr>
<td>LINE 0: 1350W</td>
<td>659</td>
<td>155</td>
<td>18</td>
<td>89</td>
<td>0.74</td>
<td>5</td>
<td>762</td>
<td>0.29</td>
<td>8.08</td>
</tr>
<tr>
<td>LINE 0: 1400W</td>
<td>691</td>
<td>218</td>
<td>19</td>
<td>66</td>
<td>0.81</td>
<td>3</td>
<td>1120</td>
<td><0.25</td>
<td>7.22</td>
</tr>
<tr>
<td>*Dup LINE 0: 0W</td>
<td>226</td>
<td>207</td>
<td><10</td>
<td>97</td>
<td><0.25</td>
<td>2</td>
<td>8440</td>
<td><0.25</td>
<td>5.09</td>
</tr>
<tr>
<td>Element</td>
<td>Method</td>
<td>Det.Lim.</td>
<td>Units.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>MMI-A</td>
<td>5</td>
<td>ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>MMI-A</td>
<td>5</td>
<td>ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>MMI-A</td>
<td>10</td>
<td>ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>MMI-A</td>
<td>20</td>
<td>ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>MMI-B</td>
<td>0.25</td>
<td>ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>MMI-B</td>
<td>1</td>
<td>ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>MMI-B</td>
<td>5</td>
<td>ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td>MMI-B</td>
<td>0.25</td>
<td>ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>MMI-B</td>
<td>0.25</td>
<td>ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values:

- *Dup LINE 0: 600W*
 - Cu: 562 ppb
 - Zn: 156 ppb
 - Cd: <10 ppb
 - Pb: 68 ppb
 - Au: <0.25 ppb
 - Co: 16 ppb
 - Ni: 2750 ppb
 - Pd: <0.25 ppb
 - Ag: 3.15 ppb

- *Dup LINE 0: 1200W*
 - Cu: 337 ppb
 - Zn: 255 ppb
 - Cd: <10 ppb
 - Pb: 115 ppb
 - Au: <0.25 ppb
 - Co: 7 ppb
 - Ni: 1510 ppb
 - Pd: <0.25 ppb
 - Ag: 5.44 ppb
DUFFY CLAIM. LINE 0

CHART OF M.M.I. RESPONSE IN PPB

COPPER
DUFFY CLAIM. LINE 0

CHART OF M.M.I. RESPONSE IN PPB

GOLD
DUFFY CLAIM. LINE 0

CHART OF M.M.I. RESPONSE IN PPB

SILVER
DUFFY CLAIM. LINE 0

CHART OF M.M.I. RESPONSE IN PPB

NICKEL
DUFFY CLAIM. LINE 0

CHART OF M.M.I. RESPONSE IN PPB

PALADIUM
STATEMENT OF COSTS

Soil Sampling on the Duffy Mineral Claim Kamloops M.D.

Driving from Vancouver to Kamloops and return trip to Vancouver:
- 1 day, 2 men: $300.00
- 4X4 Truck Rental and fuel: $450.00
- Field work: 2 men, 2 days: $600.00
- Restaurant expenses: 2 men, 3 days: $270.00
- Motel: 2 men, 2 days: $180.00
- Field Supplies: $35.00
- Shipping soil samples to Toronto: $928.00
- Assay: 29 Samples, M.M.I. A and B:
 - Fax Charge: $65.59
 - GST: $9.00

Total: $2,837.59

CHARLES BOITARD