GEOLOGICAL REPORT

on the

PASS PROPERTY
Pass 1, 2 Claims
Omineca Mining Division
British Columbia

NTS 94D/08W
56° 18' North Latitude
126° 16' West Longitude

by

S. Wetherup, B.Sc.
R. Cameron, B.Sc., P. Geo

PHELPS DODGE CORPORATION OF CANADA, LIMITED
#1409 - 409 Granville Street
Vancouver, BC, V6C 1T8

Work paid for by
PHELPS DODGE CORPORATION OF CANADA, LIMITED

December 2, 1988
TABLE OF CONTENTS

SUMMARY ... i
INTRODUCTION ... 1
LOCATION AND ACCESS .. 1
CLAIMS ... 1
HISTORY ... 3
REGIONAL GEOLOGY ... 3
PROPERTY GEOLOGY .. 6
1999 WORK PROGRAM... 7
RESULTS ... 8
CONCLUSIONS and RECOMMENDATIONS ... 8
DISBURSEMENTS ... 9
BIBLIOGRAPHY .. 10
CERTIFICATES ... 11

List of Tables

Table 1 - Claim Data .. 1

List of Figures

Figure 1 - Claim Locations ... 2
Figure 2 - Regional Geology .. 4
Figure 3 - Property Geology in pocket
Figure 4 - Rock Sample Locations and Results .. in pocket

Appendices

Appendix I - Sample Descriptions and Selected Analytical Results 13
Appendix II - Analytical Technique and Certificates .. 14
INTRODUCTION

This report describes a program of prospecting and geological mapping that was conducted on the Pass property during 1999. A total of 4 man-days was spent exploring the property on August 28 and August 29, 1999. Details of the work program and results are presented herein.

LOCATION AND ACCESS

The Pass property (Figure 1) is located in the Hogem Ranges of north-central British Columbia, approximately 190 kilometres north of Smithers, British Columbia. The claims lie amid a rugged group of mountain peaks that are bounded by Quenada Creek and Carruthers Creek. Elevations range from approximately 1370 metres at Carruthers Pass on the northeast side of the Pass 2 claim to 2020 metres on a peak centre of the claim area. There are no roads and access is by helicopter from Smithers or from seasonal helicopter bases at or near Germansen Landing, some 120 kilometres southeast of the property. For this limited work program access was from a helicopter based at Tchentlo Lake located some 140 kilometres south of the property.

CLAIMS

The Pass property (Figure 1) at the time of this work program comprised two 4-post mineral claims totalling 40 units. A subsequent third claim was staked in September bringing the total land position to 60 units. The claims are centred at 56° 18' north latitude, 126° 16' west longitude and shown on Ministry of Energy and Mines claim map 94D08W. Pertinent details are tabulated below. Expiry dates shown assume that current work is accepted for assessment purposes.

<table>
<thead>
<tr>
<th>Table 1: CLAIM DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claim Name</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Pass 1</td>
</tr>
<tr>
<td>Pass 2</td>
</tr>
<tr>
<td>Pass 3</td>
</tr>
<tr>
<td>Total Units</td>
</tr>
</tbody>
</table>

Phelps Dodge Corporation of Canada, Limited
1409-409 Granville Street, Vancouver, BC V6C 1T8
Telephone (604) 669-2934 Fax (604) 681-3920
SUMMARY

The Pass property lies 190 kilometres north of Smithers, just south of Carruthers Pass. There are no roads into the area, which must be accessed by helicopter. The Pass 1 and 2 claims were staked, by Phelps Dodge in 1998 to cover ground with copper-gold potential, recognized from GIS analysis of government regional stream sediment survey data. The claims overlie upper Triassic Takla Group Dewar Formation and Asitka Group volcanic and sedimentary rocks from which stream sediments returned elevated copper, gold, lead, and antimony.

Phelps Dodge performed reconnaissance prospecting with rock, silt and soil sampling in 1998 to evaluate the copper potential of the property. Preliminary prospecting identified a pyritic zone surrounding a diorite intrusion with abundant quartz veins containing pyrrhotite +/- galena +/- chalcopyrite +/- sphalerite +/- arsenopyrite. Anomalous concentrations of copper, zinc, silver, cobalt, arsenic, antimony, bismuth and selenium were delineated in soils from several cirque valleys on both Pass 1 and 2.

Work in 1998 consisted of geological mapping and further prospecting and rock sampling. Prospecting has resulted in the discovery of a pyrite/pyrrhotite rich shale horizon that hosts massive sulphide lenses and pods. Preliminary rock sampling of the massive sulphide bodies in the horizon has returned assay values up to 0.85% copper and 1g/t silver. The Pass 3 was staked to cover possible extension of the massive sulphide bearing shale horizon south of Pass 2.
HISTORY

The first recorded work in the area was done on the Car 1-64 and Ani 1-64 claims, in 1973 by Interior Syndicate (B.C Department of Mines and Petroleum Resources, 1974). They performed 1" to 1000' geological mapping on the Car claims and a silt and soil sampling program that totalled 118 samples, on the Ani claims. During Interior Syndicate’s 1973 work they discovered quartz-sulphide veins and pyrite alteration around a diorite intrusion and cutting Dewar Formation host rocks. One sample taken from one of these veins during regional mapping in 1948 by the Geological Survey of Canada (Lord, 1948) was assayed and returned 0.34 g/t Au, 327 g/t Ag, 0.82% Cu, 7.15% Pb, 1.0% Zn.

British Columbia regional geochemical survey released in July 1997 documented results of stream sediment samples collected from five creeks draining the property area that returned 74 to 240 ppm copper and 142 to 342 ppm zinc.

In 1998, based on the results of the 1997 BC regional geochemical survey, Phelps Dodge Corp. of Canada Ltd. conducted a reconnaissance soil and stream sediment sampling program of the anomalous drainages. From the results of the reconnaissance sampling, two twenty-unit claim blocks were staked by Phelps Dodge, later that year.

REGIONAL GEOLOGY

The Pass property is situated in the eastern Intermontane belt of the Canadian Cordillera, just west of the Pinchi/Ingenika fault (Figure 2)(Richards, 1975). East of the fault, upper Triassic Takla Group basic to intermediate volcanic rocks is intruded by the large, early Jurassic Hogem Batholith, some 5.5 kilometres east of the claim block. On the western side of the fault, the Stikinia, Quesnellia and Cache Creek terranes meet in a structurally complex zone of numerous, easterly dipping thrust sheets. Upper Triassic Takla Group arc volcanics of Quesnellia and Mississippian to upper Triassic Cache Creek ocean derived volcanic and sedimentary rocks have both been thrust over lower and middle Jurassic Hazelton Group arc volcanic rocks of Stikinia. Permian Asitka Group volcanic and sedimentary rocks are sporadically exposed throughout the area, often at the bases of thrust sheets. Several late Cretaceous Axelgold layered gabbroic plutons cut Cache Creek and Hazelton Group rocks south of the property.

The Pass property lies within a shallow, east dipping thrust sheet, bounded on the west by the Quenada Fault and, on the east, by the Ingenika Fault. Most of the property is underlain
REGIONAL GEOLOGY LEGEND

STRATIFIED ROCKS

UPPER TERTIARY and/or QUATERNARY
TQvb basalt; flow breccia, plugs and dykes

UPPER CRETACEOUS to EOCENE
ITB BROTHERS PEAK FORMATION: conglomerate, sandstone, siltstone, acid tuff; minor coal
uKT TANGO CREEK FORMATION: conglomerate, sandstone, siltstone: minor coal

MIDDLE and UPPER JURASSIC

BOWSER LAKE GROUP
uJv Volcanics: basalt and andesite flow, breccia, tuff, lahar
uJS Sediments: sandstone, siltstone, argillite, conglomerate; minor coal
muJA ASHMAN FORMATION: argillite, siltstone; minor sandstone, tuff

LOWER and MIDDLE JURASSIC

HAZELTON GROUP
ImJS SMITHERS FORMATION: greywacke, siltstone; sandstone, tuff
IJC CARRUTHERS MEMBER: basalt and andesite flow, breccia, pillow breccia, tuff
IJT TELKWA FORMATION: calc-alkaline basalt, andesite, dacite and rhyolite flow, breccia, tuff, lahar, intravolcanic fanglomerate, conglomerate, sandstone, siltstone: (III) polymictic conglomerate with Asitka, Takla and granitic clasts

UPPER TRIASSIC

TAKLA GROUP
uTRM MOOSEVALE FORMATION: andesitic and basaltic volcanic conglomerate, breccia, sandstone, tuff, argillite
uTRSM SAVAGE MOUNTAIN FORMATION: basic augite porphyry basalt flow, breccia, pillow breccia, tuff, interbedded bladed feldspar porphyry
uTRD DEWAR FORMATION: tuff, sandstone, argillite; minor limestone, breccia
uTRv Volcanics: basic to intermediate flow, breccia, tuff; green phyllite, phyllitic schist; minor sediments
uTRs Sediments: argillite, tuff, sandstone, phyllite and phyllitic schist: limestone, skarn

PERMIAN, TRIASSIC and JURASSIC

LAY RANGE ASSEMBLAGE and TAKLA GROUP
PTRLT CACHE CREEK GROUP: (s) siliceous phyllite, metachert, marble; (v) greenstone, amphibolite

PERMIAN
PA ASITKA GROUP: basalt, rhyolite, tuff, chert, argillite, carbonate

PENNSYLVANIAN and PERMIAN

LAY RANGE ASSEMBLAGE: basic volcanics, calcareous phyllite, quartzite, limestone

UPPER PROTEROZOIC

Pe ESPEEE FORMATION: limestone; minor dolostone
Pt TSAYDIZ FORMATION: sericitic phyllite
Ps SWANEELL FORMATION: quartz-feldspathic, gritty sandstone, siltstone, shale and conglomerate, metamorphic equivalents from chlorite to kyanite grade

INTRUSIVE ROCKS

EOCENE
ETqm KASTBERG INTRUSIONS: quartz monzonite, quartz-eye porphyry, felsite

LATE CRETACEOUS
Lkgd AXELGOLD LAYERED INTRUSIVES: gabbro, diabase

EARLY CRETACEOUS and LATER
EK quartz monzodiorite, quartz diorite, granodiorite, quartz diorite

EARLY JURASSIC
EJ quartz monzodiorite, monzodiorite, quartz diorite, diorite, leucocratic porphyry plugs

LATE TRIASSIC
LTRgh gabbro, diabase, hypabyssal augite porphyry
+++ Alaskan-type ultramafics

LATE PALEOZOIC and TRIASSIC
++++ Alpine ultramafics; serpentinite, serpentinized peridotite, greenstone
by intermediate igneous and sedimentary rocks belonging to the upper Triassic Dewar Formation of the Takla Group. A secondary thrust fault, sub-parallel to the Quenada Fault cuts the eastern part of the property and separates rocks of the Dewar Formation and the Asitka Group.

PROPERTY GEOLOGY

Upper Triassic Takla Group volcanic and sedimentary rocks of the Dewar Formation underlie the most of the claims with a fault bounded sliver of Permian Asitka Group in the easternmost portion (Figure 2). Dewar Formation shale, siltstone, cherty siltstone, and intermediate to mafic volcanic rocks and sills and minor chert comprise much of the rock in the central and eastern claims. Shale units are black and pyritic/pyrrhotitic with minor siltstone, andesitic tuff and limestone interbeds. Grey to light grey siltstone is well bedded, locally siliceous and is intercalated with minor shale, basalt and andesitic tuff. Chert is white to dark grey and well layered, with minor siltstone and shale interbeds. Igneous rocks consist of olive green andesitic sills with some reworked epiclastic units, basalt to andesite flows and tuff and rare finely laminated felsic tuff. Mafic to intermediate epiclastic breccias, conglomerates, and greywackes with minor intercalated shale beds of the Dewar Formation underlies the western portion of the claims (Pass 1).

Asitka Group rocks were not observed during this years fieldwork but are described as consisting of argillite, chert, basalt, tuffaceous and argillaceous carbonate (Monger, et al., 1991). These rocks are separated from the Dewar Formation on the claims by a shallow to moderate dipping west directed thrust fault. Deformation within the Dewar Formation rocks increases with proximity to the thrust fault. Within the fault, the competent limestone and siltstone layers are broken into sigmoidal lenses between tightly folded shale layers. The wavelength of folds decreases from centimetre scale folds within 100 m of the fault to broad 10 to 100 m scale folds throughout much of the property.

A small hornblende-diorite stock occurs within the centre of the claims. It is medium grained and appears to have induced the formation of quartz veins +/- arsenopyrite, chalcopyrite, sphalerite, and galena which occur in the Dewar Formation rocks to the north of the intrusion.

Disseminated pyrite or pyrrhotite is common as well as along fracture fillings and bedding planes in sedimentary rocks and locally in igneous rocks. Concentrations up to 20% have been observed generally within black shale where pyrite/pyrrhotite occurs locally as pods or beds.
Reconnaissance silt sampling, and soil contours in 1998 identified two drainages anomalous in copper, gold, silver, and zinc. Follow-up prospecting later that season resulted in the discovery of the diorite intrusion and the quartz veins north of the intrusion that locally contains arsenopyrite, chalcopyrite, sphalerite and galena. Massive sulphide cobbles were also observed in the talus downhill from the vein occurrences but had not been seen in outcrop.

In 1999, further prospecting on Pass 1 uncovered a shale horizon containing 0.1 to 1cm thick pyrite beds, north of the diorite intrusion. On Pass 2 a sulphide rich shale horizon with massive sulphide cobbles was discovered with samples grading 0.17% and 0.85% Cu (Figure 4) and anomalous silver. Shale samples taken east of the massive sulphide showing returned 1.1 to 3.0 g/t Ag with little Cu.

1999 WORK PROGRAM

The 1999-work program on Pass 1 and 2 consisted of 1:10,000 scale geological mapping (Figure 3) and prospecting on August 28th and 29th. During this time, twenty-two grab samples were taken and sent to Acme Analytical Laboratories Ltd. in Vancouver, B.C. for crushing (to -100 mesh) and analysis by Ultratrace ICP-MS. Sample descriptions are compiled in Appendix I, analytical procedures and certificates are included in Appendix II. Sample locations and results for copper and zinc are shown in Figure 4.
RESULTS

Prospecting and mapping discovered rocks similar to those that host the massive sulphide showing on the Phelps Dodge owned Carruthers Property five kilometres to the north. Samples taken on the east-side of Pass 2 from sulphide rich shale yield elevated copper (up to 620 ppm) and silver (up to 3 g/t) assay values. Also, a pyrite/pyrrhotite rich (1-10%) black shale horizon hosting semi-massive to massive sulphide lenses and pods (10 cm to 2 m in size), was discovered on the east side of Pass 2. Samples from these massive-sulphide bodies and the host shale, grade between 0.17% to 0.85% copper with up to 1 g silver and are anomalous in Bi, Se, and Te (Figure 4; Appendix II).

CONCLUSIONS AND RECOMMENDATIONS

The 1999 exploration program has identified on the Pass property strata similar to that on the nearby Carruthers Property, which there hosts a poly-metallic massive sulphide showing. A horizon containing small copper bearing massive sulphide pods and lenses was discovered on the east side of the Pass 2 claim.

A program of further and more thorough prospecting and mapping accompanied by soil sampling in specific areas of interest (i.e. the area surrounding the massive sulphide showing) is recommended.
DISBURSEMENTS

Expenditures for the 1998 exploration program on the Pass property total $7,282.46 as itemised below. A sum of $4000 was used to apply one year of work on the claims as documented in this report.

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accommodation and Board</td>
<td>6 mandays @ $49.93/manday</td>
<td>$299.60</td>
</tr>
<tr>
<td>Assays</td>
<td>21 Rock samples</td>
<td>$408.95</td>
</tr>
<tr>
<td>Labour</td>
<td>Steve Wetherup, geologist</td>
<td>$400.00</td>
</tr>
<tr>
<td></td>
<td>L. Poznikoff, geologist</td>
<td>$400.00</td>
</tr>
<tr>
<td>Transportation, Helicopter</td>
<td>Interior Helicopters</td>
<td>$5773.91</td>
</tr>
<tr>
<td></td>
<td>6.7 hours @ $862/hour</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$7282.46</td>
</tr>
</tbody>
</table>

Prepared by;

PHELPS DODGE CORPORATION OF CANADA, LIMITED

[Signature]

Stephen W. Wetherup, BSc.
Vancouver, B.C.
December 2, 1999

[Signature]

Robert Scott Cameron, B. Sc., P. Geo.
Vancouver, B.C.
December 2, 1999

Phelps Dodge Corporation of Canada, Limited
1409-409 Granville Street, Vancouver, BC V6C 1T8
Telephone (604) 669-2954 Fax (604) 681-3920
BIBLIOGRAPHY

British Columbia Department of Mines and Petroleum Resources (1974)

Geological Survey Branch (1997)

Lord, C.S. (1948)

Richards, T. (1975)
CERTIFICATE

I, Stephen William Wetherup, certify to the following:

1. I am a consulting geologist currently residing at #404 - 3285 West 4th Avenue, Vancouver, B.C.

2. I am a Geoscientist in Training (G.I.T.) in the Association of Professional Engineers and Geoscientists of British Columbia.

3. My academic qualifications are:
 B.Sc., University of Manitoba, Winnipeg, Manitoba.

4. I have been engaged in geological work since graduation in 1995.

[Signature]

Stephen W. Wetherup, BSc.
Vancouver, B.C.
December 2, 1999
CERTIFICATE

I, Robert Scott Cameron certify to the following:

1. I am a geologist employed by Phelps Dodge Corporation of Canada Limited, 1409-409 Granville Street, Vancouver, BC.

2. I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia.

3. My academic qualifications are:

 B.Sc. Hons., 1981, Carleton University, Ottawa, Ontario

4. I have been engaged in geological work since graduation in 1981.

Robert Scott Cameron, B. Sc., P. Geo.
Vancouver, B.C.
December 2, 1999
APPENDIX I

Sample Descriptions and Selected Analytical Results
1999 Geochemical Data with Selected Analytical Results

Pass Property

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date</th>
<th>Material</th>
<th>Type</th>
<th>Northing NAD83</th>
<th>Easting NAD83</th>
<th>Cu ppm</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
<th>Ag ppm</th>
<th>Co ppm</th>
<th>As ppm</th>
<th>Au ppm</th>
<th>Sb ppm</th>
<th>Bi ppm</th>
<th>Ba ppm</th>
<th>Hg ppm</th>
<th>Se ppm</th>
<th>Te ppm</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>74991</td>
<td>8/29/1999</td>
<td>talus</td>
<td>grab</td>
<td>6243490</td>
<td>668740</td>
<td>125</td>
<td>10</td>
<td>326</td>
<td>2042</td>
<td>2</td>
<td>23</td>
<td>52</td>
<td>1.4</td>
<td>3.1</td>
<td>92</td>
<td>6</td>
<td>3.7</td>
<td>1.0 rusty altered tuff with vuggy & banded qtz in frac</td>
<td></td>
</tr>
<tr>
<td>74992</td>
<td>8/29/1999</td>
<td>talus</td>
<td>grab</td>
<td>6243430</td>
<td>668635</td>
<td>167</td>
<td>8</td>
<td>61</td>
<td>198</td>
<td>34</td>
<td>3</td>
<td>1</td>
<td>0.5</td>
<td>0.1</td>
<td>4</td>
<td>7</td>
<td>6.6</td>
<td>0.1 rusty shale with py on fractures</td>
<td></td>
</tr>
<tr>
<td>74993</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6244040</td>
<td>668565</td>
<td>58</td>
<td>2</td>
<td>22</td>
<td>193</td>
<td>21</td>
<td>8</td>
<td>2</td>
<td>6.0</td>
<td>0.0</td>
<td>18</td>
<td>60</td>
<td>0.3</td>
<td>0.1 trace aspy in c.g. pyroxene phryic intrusive or fl</td>
<td></td>
</tr>
<tr>
<td>74994</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6244115</td>
<td>668580</td>
<td>106</td>
<td>6</td>
<td>70</td>
<td>159</td>
<td>15</td>
<td>50</td>
<td>0</td>
<td>10.6</td>
<td>0.1</td>
<td>47</td>
<td>122</td>
<td>14.8</td>
<td>0.3 f.g. sulphide layers <4mm within shale</td>
<td></td>
</tr>
<tr>
<td>74995</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6244350</td>
<td>668700</td>
<td>197</td>
<td>2</td>
<td>96</td>
<td>109</td>
<td>28</td>
<td>5</td>
<td>0</td>
<td>0.2</td>
<td>0.0</td>
<td>23</td>
<td>10</td>
<td>4.0</td>
<td>0.1 3% py & trace cpy in black shale</td>
<td></td>
</tr>
<tr>
<td>74996</td>
<td>8/29/1999</td>
<td>colluvium</td>
<td>grab</td>
<td>6244525</td>
<td>669140</td>
<td>83</td>
<td>5</td>
<td>32</td>
<td>40</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>0.2</td>
<td>0.0</td>
<td>5</td>
<td>0</td>
<td>0.8</td>
<td>0.1 galena & aspy in carbonate boulder</td>
<td></td>
</tr>
<tr>
<td>74997</td>
<td>8/29/1999</td>
<td>colluvium</td>
<td>grab</td>
<td>6244525</td>
<td>669140</td>
<td>83</td>
<td>103</td>
<td>564</td>
<td>2617</td>
<td>10</td>
<td>4819</td>
<td>35</td>
<td>12.4</td>
<td>2.0</td>
<td>11</td>
<td>21</td>
<td>1.1</td>
<td>0.3 shale with 1cm carbonate vein with minor aspy</td>
<td></td>
</tr>
<tr>
<td>74998</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6244525</td>
<td>669140</td>
<td>86</td>
<td>155</td>
<td>363</td>
<td>1211</td>
<td>12</td>
<td>20</td>
<td>1</td>
<td>1.9</td>
<td>0.1</td>
<td>11</td>
<td>0</td>
<td>0.8</td>
<td>0.1 2cm carbonate vein with galena & aspy</td>
<td></td>
</tr>
<tr>
<td>75666</td>
<td>8/29/1999</td>
<td>talus</td>
<td>grab</td>
<td>6243490</td>
<td>668040</td>
<td>179</td>
<td>6</td>
<td>83</td>
<td>186</td>
<td>25</td>
<td>8</td>
<td>0</td>
<td>0.8</td>
<td>0.2</td>
<td>8</td>
<td>15</td>
<td>4.1</td>
<td>0.1 al tip of cirque, pyritic shale</td>
<td></td>
</tr>
<tr>
<td>75667</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6244200</td>
<td>668625</td>
<td>142</td>
<td>3</td>
<td>54</td>
<td>66</td>
<td>27</td>
<td>0</td>
<td>2</td>
<td>0.1</td>
<td>0.0</td>
<td>80</td>
<td>18</td>
<td>1.0</td>
<td>0.0 bleached tuff w/py & cpy</td>
<td></td>
</tr>
<tr>
<td>75668</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6244520</td>
<td>668925</td>
<td>125</td>
<td>6</td>
<td>76</td>
<td>76</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
<td>10</td>
<td>5</td>
<td>1.4</td>
<td>0.1 silstone/w/carbonate py cpy veins</td>
<td></td>
</tr>
<tr>
<td>75669</td>
<td>8/29/1999</td>
<td>talus</td>
<td>grab</td>
<td>6244330</td>
<td>669310</td>
<td>258</td>
<td>2</td>
<td>35</td>
<td>171</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
<td>8</td>
<td>0</td>
<td>3.8</td>
<td>0.1 qtz vein in pyritic siltstone, possible trace cpy</td>
<td></td>
</tr>
<tr>
<td>75670</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6243830</td>
<td>669390</td>
<td>658</td>
<td>3</td>
<td>69</td>
<td>136</td>
<td>13</td>
<td>10</td>
<td>0.3</td>
<td>0.0</td>
<td>63</td>
<td>0</td>
<td>5.4</td>
<td>0.1 minor cpy in fractures & qtz carbonate veins in si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75671</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6243560</td>
<td>669390</td>
<td>22</td>
<td>16</td>
<td>65</td>
<td>137</td>
<td>13</td>
<td>10</td>
<td>0.7</td>
<td>0.2</td>
<td>330</td>
<td>38</td>
<td>0.5</td>
<td>0.1 rusty c.g. qzite layer with chaledonic qtz & car</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75672</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6243580</td>
<td>669390</td>
<td>13</td>
<td>13</td>
<td>44</td>
<td>152</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>1.4</td>
<td>0.0</td>
<td>58</td>
<td>0</td>
<td>4.0</td>
<td>0.0 rusty c.g. qzite layer with chaledonic qtz & car</td>
<td></td>
</tr>
<tr>
<td>75673</td>
<td>8/29/1999</td>
<td>talus</td>
<td>grab</td>
<td>6243200</td>
<td>670250</td>
<td>108</td>
<td>8</td>
<td>83</td>
<td>385</td>
<td>23</td>
<td>6</td>
<td>0</td>
<td>2.2</td>
<td>0.0</td>
<td>77</td>
<td>18</td>
<td>13.6</td>
<td>0.7 f.g qtz (chert?) w/rusty surfaces</td>
<td></td>
</tr>
<tr>
<td>75674</td>
<td>8/29/1999</td>
<td>talus</td>
<td>grab</td>
<td>6243160</td>
<td>670270</td>
<td>153</td>
<td>6</td>
<td>97</td>
<td>278</td>
<td>25</td>
<td>13</td>
<td>0</td>
<td>2.4</td>
<td>0.1</td>
<td>84</td>
<td>12</td>
<td>3.4</td>
<td>0.7 f.g qtz (chert?) w/rusty surfaces</td>
<td></td>
</tr>
<tr>
<td>75675</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6243125</td>
<td>670325</td>
<td>1700</td>
<td>7</td>
<td>69</td>
<td>261</td>
<td>19</td>
<td>7</td>
<td>0</td>
<td>0.5</td>
<td>7.2</td>
<td>22</td>
<td>11</td>
<td>28.5</td>
<td>3.5 cleat in the rock (fault) w/milled siltstone and 2</td>
<td></td>
</tr>
<tr>
<td>75676</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6243150</td>
<td>670350</td>
<td>8487</td>
<td>2</td>
<td>74</td>
<td>1115</td>
<td>82</td>
<td>33</td>
<td>26</td>
<td>0.6</td>
<td>11.2</td>
<td>88</td>
<td>40</td>
<td>99.8</td>
<td>12.5 massive sulphide</td>
<td></td>
</tr>
<tr>
<td>75677</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6243100</td>
<td>670350</td>
<td>316</td>
<td>1</td>
<td>38</td>
<td>72</td>
<td>18</td>
<td>6</td>
<td>2</td>
<td>0.2</td>
<td>1.1</td>
<td>18</td>
<td>0</td>
<td>11.1</td>
<td>0.2 cherty siltstone bx adjacent to massive sulphilde</td>
<td></td>
</tr>
<tr>
<td>75678</td>
<td>8/29/1999</td>
<td>bedrock</td>
<td>grab</td>
<td>6243960</td>
<td>669485</td>
<td>115</td>
<td>4</td>
<td>55</td>
<td>271</td>
<td>27</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>0.1</td>
<td>9</td>
<td>0</td>
<td>1.2</td>
<td>0.2 minor cpy in carbonate veins in altered siltstone</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX II

Analytical Technique and Certificates

ANALYTICAL METHOD

ICP-MS A 15 gram sample is digested with 90 millilitres 3-1-2 HCl-HNO₃-H₂O at 95° C for one hour and is diluted to 300 millilitres with water. This leach is partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K, Ga and Al. The solution is analysed directly by ICP-MS.
SAMPLE	Mo	Cu	Pb	Zn	Ag	As	Sb	Bi	Cd	Hg	Pb	Sn	Sb	Bi	Cu	I	Pb	Cr	Ni	Al	Si	Ca	Mn	Fe	Cr	Ni	Al	Si	Ca	Mn	Fe		
14991	6.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
14992	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
14993	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
14994	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
14995	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3

GROUP TFS - 15.00 GM SAMPLE, 90 MLS Z-2-Z-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 500 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS: AG, Au, Ag, W, SE, TE, TL, GA, SN = 100 PPM; Mo, Co, Cu, Pb, Zn, Ni, Cr, As, Sb, Bi, Th, U = 2000 PPM; Cu, Pb, Zn, Ni, Cr, Cu, As, Sb, Bi, Th, U = 10,000 PPM.

SAMPLE TYPE: ROCK

Samples beginning 'R' are Rebars and 'RE' are Rejects.

DATE RECEIVED: SEP 1, 1999

DATE REPORT MAILED: Sept 9/99

SIGNED BY: C. Leong, J. Wang; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA