SAMPLING ON THE OS, PT, PD, AND IR CLAIMS

Omineca Mining Division

93-N-6W/093N023

U. MOWAT, P. Geo.

May, 2005
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.0 Location and Access</td>
<td>1</td>
</tr>
<tr>
<td>3.0 Claim Data</td>
<td>2</td>
</tr>
<tr>
<td>4.0 History</td>
<td>2</td>
</tr>
<tr>
<td>5.0 Regional Geology</td>
<td>3</td>
</tr>
<tr>
<td>6.0 Property Geology and Sample Description</td>
<td>9</td>
</tr>
<tr>
<td>7.0 Mineralization</td>
<td>12</td>
</tr>
<tr>
<td>8.0 Work Program</td>
<td>12</td>
</tr>
<tr>
<td>9.0 Results</td>
<td>13</td>
</tr>
<tr>
<td>10.0 Conclusions</td>
<td>13</td>
</tr>
<tr>
<td>11.0 References</td>
<td>14</td>
</tr>
<tr>
<td>12.0 Statement of Costs</td>
<td>15</td>
</tr>
<tr>
<td>13.0 Statement of Qualifications</td>
<td>17</td>
</tr>
<tr>
<td>14.0 Analytical Data</td>
<td>18</td>
</tr>
</tbody>
</table>

Figure

- **Location Map:** Chromite Occurrences 6

Maps

- **Location Map/Regional Geology** in pocket
- **Claim Map and Sample Numbers** in pocket
- **Geology of the Mitchell Range Ultramafic** in pocket
1.0 Introduction

On July 4, 2004 four two-post claims were staked to cover several areas of interest on an ultramafic massif located in the southern part of the Mitchell Range. The claims cover 4 of 17 known chromite showings, some of which are reported to be mineralized with laurite (RuS₂), erlichinanite (OsS₂) and IrS₂. One sample of chromite returned a value of 850 ppb Ru, 55 ppb Rh, 80 ppb Pt, 440 ppb Os, 450 ppb Ir and 110 ppb Pd.

Samples were collected from the 4 claims after staking. Five rock samples were collected from the IR claim and analysed for 30 elements by ICP and Au, Pt, Pd, Rh by ICP-ES. One sample was also analysed for Pt, Pd, Ir, Os, Rh, Ru, Au by ICP-AES. Seven rock samples were collected from the OS claim and analysed for 30 elements by ICP and Au, Pt, Pd by ICP-ES. Five rock samples and 2 silt samples were collected from the PT claim and analysed for 30 elements by ICP and Au, Pt, Pd by ICP-ES. Two samples were also analysed for Pt, Pd, Ir, Os, Rh, Ru, and Au by ICP-AES. Five rock samples were collected from the PD claim and analysed for 30 elements by ICP and Au, Pt, Pd by ICP-ES.

2.0 Location and Access

The Mitchell Range and the IR, PT, OS, PD claims are located south of Tsayta Lake and in between Takla Lake and Indata Lake a distance of 130 km northwest of Fort St. James.

Claim Name: IR
Map Sheets: 93-N-6W
093N023
Co-ordinates: 55° 16.9'N/125° 27'W
UTM: 344150E/6128800N

Claim Name: PT
Map Sheets: 93-N-6W
093N023
Co-ordinates: 55° 15.5'N/125° 28'W
UTM: 3430000E/6126000N
Claim Name: OS
Map Sheets: 93-N-3W 093N023
Co-ordinates: 55° 14.5'M/125° 29.5'W
UTM: 341700E/6124750N

Claim Name: PD
Map Sheets: 93-N-3W 093N023
Co-ordinates: 55° 12.8'N/125° 28.5'W
UTM: 342500E/6121300E

The IR, PT, OS and PD claims are located in the Omenica Mining Division.

Access to the IR, PT, OS and PD claims is by helicopter from Fort St. James.

3.0 Claim Data

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Record No.</th>
<th>No. of Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>411784</td>
<td>1</td>
</tr>
<tr>
<td>PD</td>
<td>411785</td>
<td>1</td>
</tr>
<tr>
<td>PT</td>
<td>411787</td>
<td>1</td>
</tr>
<tr>
<td>IR</td>
<td>412009</td>
<td>1</td>
</tr>
</tbody>
</table>

4.0 History

Exploration of the Mitchell Range has dominantly been concentrated on locating chromite deposits within the ultramafic portions of the range. Chromite, the Simpson Deposit, was discovered by the GSC in 1940. In the spring of 1941, the Simpson Deposit was staked by Hunter Simpson and associates and called the Alloy Group. In 1942, nine chromite occurrences were located by the GSC.

In 1978, 1979 and 1980, Placer Development Limited explored the Don, John and Dairy properties for their molybdenum potential. In 1987 the Cyprus claims were explored for their gold-copper potential.

No other exploration activity is recorded since 1987.
5.0 Regional Geology

The Mitchell Range where the OS, IR, PT and PD claims are located lies within a north northwesterly trending belt of predominantly Permian or earlier Cache Creek Group rocks. The belt is bounded on the east by the Pinchi Fault and on the west by the Takla fault an easterly dipping zone approximately 1 km wide. Both the Pinchi Fault and the Takla Fault separate the Permian or earlier Cache Creek Group from the Upper Jurassic-Lower Cretaceous Omineca Intrusions and the Upper Triassic-Jurassic Takla Group.

The dominant lithologies of the Cache Creek Group are argillaceous quartzite, chert, argillite, slate, greywacke, conglomerate, andesitic flows, tuffs and breccias and massive limestone.

Chert in the Cache Creek Group forms bands of white, grey or black ranging from a few mm to 10 cm and are separated by layers of argillite.

Fine grained, grey or green greywacke with interbedded black laminated siltstone and green tuff is found as a 2 km wide and 10 km long belt in the northern part of the Cache Creek belt.

Dark green greenstone consisting of andesite lavas, tuffs, pillows and pillow breccias occurs as lenses throughout the area and is found in chert, cherty phyllite and limestone. Lenses average 1 km wide and 4 km long. Occasionally flows have calcite-filled amygdules and feldspar or augite phenocrysts.

Grey or white massive recrystallized limestone up to 10 km long and 3 km wide form discontinuous lenses in cherty phyllite. At the southern end of the Mitchell Range a 2 km wide belt of limestone occurs in contact with Trembleur ultramafics. The limestone is blue-grey, medium grained, dense to massively bedded with some chert nodules.

The Cache Creek Group is tightly folded in a north northwest direction.
The Cache Creek Group belt has been intruded by Upper Jurassic-Lower Cretaceous Omineca Intrusions consisting of granodiorite, quartz diorite, diorite with minor granite, gabbro and pyroxenite, the largest granitic body being the Mitchell Range batholith. The Mitchell Range batholith consists of coarse grained pink granite which is occasionally porphyritic. The border phase is composed of grey, medium grained equigranular diorite.

The Cache Creek Group belt of rocks has also been intruded by Trembleur ultramafics consisting of peridotite, pyroxenite, dunite, serpentine, gabbro and carbonated alteration products. The southeastern portion of the Mitchell Range consists of an 8 km long and 5 km wide alpine-type ultramafic massif which has intruded cherty and argillaceous rocks forming a tremolite schist aureole which grades into talc-carbonate-serpentine alteration and chloritic cherty rocks. Harzburgite forms approximately 80% of the ultramafic massif with lesser amounts of dunite and chromitite. The harzburgite which weathers dark brown to greyish brown is black green on fresh surface. It is composed predominantly of medium grained to coarse grained olivine and orthopyroxene with evenly disseminated chromite. Generally, the harzburgite is sheared with moderate to intense foliation. There are some unsheared harzburgite blocks within the sheared harzburgite. The dunite which weathers orange brown is fine to medium grained with up to 3% chromite.

The ultramafic has been cut by a variety of dykes including gabbro, rodingite and norite. Near the western border of the ultramafic, a small stock of uralitized and saussuritized gabbro approximately 150 meters in diameter cuts the Mitchell Range ultramafic. Two dykes of garnet-diopside-vesuvianite also cut the gabbro stock.

Gabbro dykes are found in the central and southwest parts of the ultramafic massif and generally form swarms. On the southwest flank of Chrome Peak and on the South Ridge, the dykes compose as much as 15% of the ridge. The dykes have a northerly trend with steep to shallow dip and are deformed pinching and swelling, forming boudins or en echelon segments that are separated by foliated harzburgite. Contacts with the harzburgite as generally sharp but occasionally have a chlorite-rich gabbro aureole with microcrystalline quartz-carbonate in the harzburgite. The dykes are variably altered with the core being most highly altered with apple green epidote and white to pale buff rodingitized zones.
Rodingite dykes composed of grossularite, wollastonite, quartz and feldspar are found on the Northwest Ridge and central areas. The dykes are white, aphanitic on weathered surface. On fresh surface the dykes are very fine grained, saccaroidal with vague brecciated fragments. The dykes range from 10 cm to 1 meter wide and pinch and swell into boudins. Dykes have a 1 to 3 cm black green chlorite selvage.

A 1 to 2 meter wide dyke of anorthositic gabbro is found on the Northeast Ridge. The dyke which weathers pale grey is medium grained, equigranular and is composed of 75% plagioclase with some radiating clusters of actinolite and pale brown biotite. The dyke has a thin chill margin and apparently represents part of a recumbent fold.

Norite dykes are found in the North Cirque, central and southern parts and are medium to coarse grained, massive up to 10 meters thick. The dykes are composed of 45% plagioclase, 53% orthopyroxene and 2% opaques.

Within the Mitchell Range ultramafic massif, particularly on the Northeast Ridge, Chrome Peak and south central areas, previous work by others report the presence of blocks of Cache Creek Group metasediments measuring several 100 meters in size. The blocks are found in foliated harzburgite. The Cache Creek blocks are primarily recrystallized cherty limestone which has been metamorphosed to medium to coarse grained marble with grey and black chert nodules with anastomising microcrystalline quartz veins 1 to 4 mm thick. The original cherty limestone is interbedded with black, thinly bedded, laminated pyritic shale which is highly contorted. On the Northeast Ridge the zone of blocks is mapped by others with a steep easterly dip. No fault blocks were seen during sampling. However, on the IR claim a roof pendant of black pyritic argillite was noted.

The eastern side of the Mitchell Range ultramafic massif consists of a tectonic breccia striking north northeast and dipping up to 60°E. The breccia consists of 90% fine grained harzburgite fragments in a finely ground serpentinized harzburgite matrix.

Mineralization within the Cache Creek Group belt consists of placer gold on several creeks approximately 20 km north of the Mitchell Range and numerous mercury showings along the Pinchi Fault including the past producer Bralorne Takla Mine. Within the Mitchell Range, mineralization consists of one gold showing in the northern end of the Mitchell Range, one molybdenite in quartz veins showing on the western edge of the Mitchell Range granitic batholith and at least 17 chromite occurrences on the Mitchell Range ultramafic massif.
Figure 1: Location Map Chromite Occurrences
Occurrence X-1, 2
These two chromite occurrences are also known as the Irish deposit and is reported to be the largest chromite occurrence on the Mitchell Range ultramafic. Lenses are exposed over 20 meters and trend N26°W. The largest lens is approximately 10 meters long and averages 3.0 meters wide. Chromite occurs as massive and disseminated blebs of 1 cm diameter. The host rock is altered talcose foliated harzburgite.

Occurrence X-3
The Bob chromite deposit is reported to have 10 chromite lenses over 33 meters in a serpentine zone trending N50°W. Lenses range from 45 cm by 5 cm to 120 cm by 90 cm. Chromite occurs as massive to 50% disseminated.

Occurrence X-4
This chromite occurrence consists of a train of chromite pods in foliated harzburgite.

Occurrence X-5
This chromite occurrence consists of an isoclinally folded layer 30 cm long and 1 to 3 cm wide in dunite. Chromite occurs as 90% disseminations.

Occurrence X-6
This chromite occurrence consists of multiple layers and pods in a 20 meter long and 3 meter wide zone. Chromite layers are 0.5 to 10 cm thick. Eleven chromite layers separated by 1 to 3 cm of medium grained harzburgite have been found. Pods reach up to 30 cm in length.

Occurrence X-7
This chromite occurrence consists of several pods:
- a) a 30 cm long ovoid in foliated harzburgite
- b) 5 meters north of (a) a 40 cm in diameter pod
- c) 1 meter north of (b) a 8 cm in diameter pod
- d) 10 meters north of (c) a 50 cm long augen-shaped pod adjacent to a 20 cm wide shear of friable harzburgite

Occurrence X-8
Chromite occurs in highly sheared harzburgite and is massive and nodular (grape ore). Chromite is exposed for 1.5 meters and is 3 to 40 cm thick. Nodules occur in pale green to blue grey serpentine.
Occurrence X-9
Chromite occurs in unsheared but foliated harzburgite below a shear zone which hosts occurrence X-8 and 100 meters to the east. The chromite layer is massive, 75 cm wide and 2 meters long, parallels the foliation and is in sharp contact with harzburgite.

Occurrence X-10
This occurrence consists of a succession of small rounded pods up to 8 cm long. The train of pods is 40 cm long and is adjacent to foliated harzburgite.

Occurrence X-11
This occurrence consists of a 1.3 meter long by 60 cm wide chromite pod with a massive core and disseminated outer portion. The pod is in foliated harzburgite.

Occurrence X-12
This occurrence consists of a highly disseminated pod in foliated medium grained harzburgite.

Occurrence X-13
This occurrence consists of a pod of massive and heavily disseminated chromite.

Occurrence X-14
Occurrence X-14 is also known as the Simpson Deposit or the Alloy Group and consists of 10 small northerly trending chromite lenses exposed over 6 meters. The flat-lying lenses occur in buff, pink or yellow-brown weathering medium grained foliated harzburgite which is altered to talc-serpentine. The lenses parallel a thin sheet of dunite. Some of the larger lenses are: South Pod (40 cm x 15 cm), Central Pod (50 cm x 10 cm) and North Pod (40 cm x 10 cm).

Occurrence X-15
This occurrence consists of chromite layers exposed over 3 meters which are subparallel to foliation in harzburgite.

Occurrence X-16
This occurrence consists of chromite layers up to 1 meter long and from 4 to 20 cm thick. The layers are subparallel to foliation in harzburgite.

Occurrence X-17
This chromite occurrence consists of a pod 25 cm long and 4 cm wide in harzburgite. One meter below this pod are three 2 to 4 cm patches of 75 to 80% disseminated chromite.
6.0 Property Geology and Sample Descriptions

No attempt was made to map the IR, OS, PD or PT claims and the following is general observations made during sampling.

IR Claim
The IR claim covers an area known as the Irish chromite deposit. The claim is predominantly underlain by reddish weathering black dunite which is occasionally weakly serpentinized. At the south end of the claim a roof pendant of rusty weathering pyritic argillite is exposed on the ridge.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>158723</td>
<td>Very rusty weathering dark blackish grey argillite with 5% vvgf disseminated sulphide; non-magnetic</td>
</tr>
<tr>
<td>158724</td>
<td>Pinkish weathering dark blackish grey dunite with minor amounts of vvgf white mica; cut by black chromite veinlets; very magnetic; no visible sulphides</td>
</tr>
<tr>
<td>158725</td>
<td>Rusty weathering black grey dunite cut by black chromite veinlets; trace silvery white vvgf disseminated metallic; very magnetic</td>
</tr>
<tr>
<td>158726</td>
<td>Red orange weathering dark greenish black dunites; no visible sulphides; non-magnetic</td>
</tr>
<tr>
<td>158727</td>
<td>Red brown weathering black weakly serpentinized dunite; no visible sulphides; weakly magnetic</td>
</tr>
</tbody>
</table>

OS Claim
The OS claim is predominantly underlain by red brown weathering peridotite with variable degrees of serpentinization. The western part of the claim is underlain by a 25 to 50 meter thick layer of black, laminated argillite with minor siltstone. The layer dips approximately 50 to 60° to the west. The argillite shows no sign of brecciation and is serpentinized at the contact with the peridotite.
Sample No.	Description
158731 | Dark greenish black highly serpentinized argillite; no visible sulphides; strongly magnetic
158731A | Brownish weathering dark grey dense peridotite; trace vvfg disseminated sulphide; weakly magnetic
158732 | Red brown knobby weathering dark grey dense slightly serpentinized peridotite; trace vvfg disseminated sulphide; strongly magnetic
158749 | Slightly rusty to sooty weathering dark grey serpentinized peridotite with 0.5 cm whitish ovoids of coarse grained talc; 0.5% vvfg disseminated sulphide; strongly magnetic
158750 | Rusty weathering dark grey silty argillite or argillaceous siltstone; massive; 1% vvfg disseminated sulphides; non-magnetic
158751 | Beige weathering talcose dark grey dense peridotite with 10% magnetite-looking material; non-magnetic; trace vvfg disseminated sulphides concentrated in blackish magnetite? areas
158752 | Rusty weathering dark grey argillaceous siltstone with trace vvfg disseminated sulphides; non-magnetic; patches of deep brown hornblende? and minor white vuggy patches

PD Claim
The PD claim is underlain by peridotite and dunite with variable serpentinization ranging from weak to intense. The ultramafic is in contact with pale grey limestone.

Sample No	Description
158733 | Slightly rusty weathering dark grey moderately serpentinized peridotite; trace vvfg disseminated sulphides; very strongly magnetic
158734 | Slightly brownish weathering dark grey very serpentinized peridotite; trace vvfg disseminated sulphides; very strongly magnetic
158735 | Dark grey dense highly serpentinized peridotite; surface and fractures yellow green serpentine; trace vvfg disseminated sulphides; very strongly magnetic
Sample No. | Description
--- | ---
158736 | Deep red brown weathering dark grey peridotite; slightly serpentinized; 0.5% vvfg disseminated sulphides and silvery metallic; very magnetic
158737 | Deep orange brown weathering dark grey moderately to highly serpentinized peridotite; 0.5% vvfg disseminated sulphides and silvery metallic; strongly magnetic

PT Claim
The PT claim is underlain by variably serpentinized peridotite and norite. Float of rodingite is also present.

Sample No.	Description
158738 | Brownish weathering with 5 mm knobs; dark grey very talcose peridotite; trace vvfg disseminated sulphides and silvery white metallic; abundant magnetite clots; very strongly magnetic
158739 | Black norite? with occasional coarse grained pyroxene crystals; main rock dense dark grey; cut by white carbonate? veinlets; 10% magnetite as fine grained cubes; trace vvfg disseminated white silvery metallic; very strongly magnetic
158740 | Light brownish weathering dark grey norite with coarse grained pyroxene crystals; altered to talc in patches; cut by irregular white carbonate veinlets; magnetite in concentrated patches and fine grained clots; trace vvfg disseminated sulphides; very strongly magnetic
158741 | Brownish weathering dark grey dense peridotite; no visible sulphides; strongly magnetic
158742 | Dark green highly serpentinized peridotite with what appears to be abundant magnetite; only weakly magnetic; no visible sulphides; cut by irregular orange veinlets and patches of carbonate

738 | Silt
739 | Silt
7.0 Mineralization

The only mineralization noted on the OS, PD, IR and PT claims consists of vuggy to fine grained disseminated sulphides in both the ultramafic and the argillite.

8.0 Work Program

The object of exploration activities was to locate documented chromite occurrences and analyze the chromite samples for its PGE potential.

IR Claim
No chromite was located on the IR claim although a claim post for the Irish 1 and Irish 2 were found. Five rock samples were collected and analyzed for 30 elements by ICP and Au, Pt, Pd and Rh by ICP-ES. One sample was also analyzed for Pt, Pd, Ir, Os, Rh, Ru, and Au by ICP-AES.

OS Claim
No chromite was located on the OS claim. Seven rock samples of rusty weathering were collected and analyzed for 30 elements by ICP and Au, Pt, Pd, Rh by ICP-ES.

PT Claim
Five rock samples and two silt samples were collected to determine the source of a silt sample collected in a regional government silt sampling program. The regional silt sample returned values of 1130 ppm Ni and 30 ppm As. The five rock samples and two silt samples were analyzed for 30 elements by ICP and Au, Pt, Pd, Rh by ICP-ES. Two rock samples and the silt samples were also analyzed for Pt, Pd, Ir, Os, Rh, Ru, and Au by ICP-AES.

PD Claim
Five rock samples were collected from an intense aeromagnetic anomaly and analyzed for 30 elements by ICP and Au, Pt, Pd, Rh by ICP-ES.
9.0 Results

Results of the sampling were disappointing in that no chromite was located and the rock samples that were analysed contained no significant PGE values. Elevated nickel values were encountered in the ultramafics especially on the IR and PD claims. On the OS claim, argillaceous siltstone returned an elevated gold value of 72 ppb. On the PT claim the ultramafic rocks returned elevated an elevated uranium value of 30 ppm.

10.0 Conclusions

It would appear from the limited sampling that PGE values are confined to the chromite occurrences.
11.0 References

12.0 Statement of Costs

Shared

Helicopter
2.4 hours at $800.00/hour $1920.00
273.6 liters at $0.95/liter 259.92
GST 152.60
$2332.20

Labour
7 days at $400.00/day $2800.00

Accommodation
3 nights at $64.40/night $193.20

Airfare
$ 190.18

Taxi
$ 57.00

Freight
$ 21.60

Meals
$ 84.28

TOTAL $5678.46

Analyses

OS Claim
7 rock samples analysed for 30 $115.50
elements by ICP and Au, Pt,
Pd, Rh by ICP-ES at
$16.50/sample
7 rock preps at $4.46/sample 31.22
GST 10.27
$ 156.99

IR Claim
5 rock samples analysed for 30 $82.50
elements by ICP and Au, Pt,
Pd, Rh by ICP-ES at
$16.50/sample
5 rock preps at $4.46/sample 22.30
GST 7.34
$ 112.14

IR Claim
1 sample analyzed for Pt, Pd, Ir,
Os, Rh, Ru, Au by ICP-AES at $135.75/sample $135.75
GST 9.50
$ 145.25
Analyses continued

PT Claim
8 rock samples analysed for 30 elements by ICP and Au, Pt, Pd, Rh by ICP-ES at $16.50/sample
6 rock preps at $4.46/sample
2 silt preps at $1.36/sample
GST

6 rock preps at $4.46/sample
2 silt preps at $1.36/sample
GST

$192.78

PT Claim
2 samples analysed for Pt, Pd, Ir, Os, Rh, Ru, Au by ICP-AES at $135.75/sample
GST

$290.51

PD Claim
5 rock samples analysed for 30 elements by ICP and Au, Pt, Pd, Rh by ICP-ES at $16.50/sample
5 rock preps at $4.46/sample
GST

$112.14
13.0 Statement of Qualifications

1.0 I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.

2.0 I am a graduate of the University of British Columbia having graduated in 1969 with a Bachelor of Science in Geology.

3.0 I have practiced my profession since 1969 in mineral, oil and gas, and coal exploration.

4.0 I have a direct interest in the OS, IR, PT and PD claims.

Ursula G. Mowat, P. Geo

Dated this 5th day of August, 2005 at Vancouver, B. C.
SAMPLE# |
No	Cu	Pb	Zn	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	Al	Na	K			
S1	1 1	3 < 1.3	4	1	3.03	< 2	< 2	2	0.5	< 3	1	0.11	< 0.01	< 1	19	1.95	726	0.24	1.60	0.12	0.79	< 2	< 2	< 2	< 2				
B 158723	< 1 63	< 5 < 1.3	27	27	307	3.73	2	< 2	< 2	2	0.5	< 3	0.99	0.79	117	3	19	726	0.24	1.60	0.12	0.79	< 2	< 2	< 2	< 2			
B 158724	< 1 2	< 27	3	1464	87	1001	4.93	2	< 2	2	5	0.8	< 3	15	0.02	1	621	12.70	12	0.01	36	0.18	< 0.01	< 2	2	7	3	2	
B 158725	< 1 15	5	< 24	3	1840	98	1074	6.10	7	< 2	2	5	0.3	< 3	11	0.13	0.01	2	599	17.44	10	0.01	58	0.30	< 0.01	< 2	5	4	2
B 158726	< 1 16	< 32	3	1552	88	859	5.41	9	< 2	2	5	0.5	< 3	15	0.86	0.03	1	663	13.93	17	0.01	36	0.27	< 0.01	< 2	2	7	2	2

Standard DS

<table>
<thead>
<tr>
<th>STANDARD DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 139</td>
</tr>
</tbody>
</table>

Standard is STANDARD DSS/FA-10K.

GROUP 10 - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(-) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS < 1%, AG > 30 PPM & Au > 1000 PPB.

SAMPLE TYPE - ROCK 1550 60C, Au

ASSAY/ANALYSIS BY ICP-ES. (30 gm)

Samples beginning ‘RE’ are Reruns and ‘RRE’ are Reject Reruns.

Data FA

DATE RECEIVED: JUL 8 2004
DATE REPORT MAILED: JUL 8 2004

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.
| SAMPLE# | Mo | Cu | Pb | Zn | Ag | Ni | Co | Mn | Fe | As | U | Au | Th | Sr | Cd | Sb | Bi | V | Ca | P | La | Cr | Mg | Ba | Ti | B | Al | Na | K | W | Au** | Pt** | Pd** | Rh** |
|---------|
| B 158755 | <1 | 21 | 3 | 15 | .3 | 1979 | 99 | 788 | 4.75 | 19 | <8 | <2 | <2 | 10 | <.5 | <3 | <3 | 26 | .29 | .004 | <1 | 1145 | 14.40 | 5 | <.01 | 41 | .35 | .01 | <.01 | <2 | 5 | 11 | 4 | <2 |
| B 158756 | <1 | 19 | <3 | 33 | <.3 | 1965 | 106 | 907 | 5.97 | 6 | <8 | <2 | <2 | 2 | <.5 | <3 | 4 | 31 | .12 | .003 | <1 | 1463 | 18.70 | 7 | <.01 | 27 | .60 | <.01 | <.01 | <2 | 4 | 9 | <2 | <2 |
| STANDARD | 14 | 146 | 23 | 135 | <.3 | 26 | 12 | 784 | 3.03 | 18 | <8 | <2 | 3 | 46 | 5.7 | 4 | 6 | 61 | .76 | .093 | 12 | 191 | .69 | 136 | .10 | 14 | 2.09 | .04 | .15 | 5 | 476 | 474 | 482 | - |

Standard is STANDARD DS5/FA-IOR.
Standard is STANDARD DS5/FA-l00S.

GROUP ID - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-HZO AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

- SAMPLE TYPE: SILT

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.
CERTIFICATE VA04049303

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEI-21</td>
<td>Received Sample Weight</td>
</tr>
<tr>
<td>LOG-24</td>
<td>Pulp Login - Rcd w/o Barcode</td>
</tr>
</tbody>
</table>

SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM-MS26</td>
<td>PGE Nickel Sulfide Collection</td>
</tr>
<tr>
<td>PGM-ICP23i</td>
<td>Pt, Pd, Au 5g FA ICP</td>
</tr>
</tbody>
</table>

ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM-ICP23i</td>
<td>ICP-AES</td>
</tr>
</tbody>
</table>

This report is for 7 Pulp samples submitted to our lab in Vancouver, BC, Canada on 29-JUL-2004.

The following have access to data associated with this certificate:

URSULA MOWAT

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: [Signature]

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>We-21</th>
<th>PGM-MS26</th>
<th>PGM-MS26</th>
<th>PGM-MS26</th>
<th>PGM-MS26</th>
<th>PGM-MS26</th>
<th>PGM-MS26</th>
<th>PGM-MS26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recvd Wt.</td>
<td>Pt</td>
<td>Pd</td>
<td>Ir</td>
<td>Os</td>
<td>Rh</td>
<td>Ru</td>
<td>Au</td>
</tr>
<tr>
<td></td>
<td>kg</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
<td>ppb</td>
</tr>
<tr>
<td>738-739</td>
<td>0.02</td>
<td>16</td>
<td>11</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td><5</td>
</tr>
<tr>
<td>B158725</td>
<td>0.18</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td><5</td>
</tr>
<tr>
<td>B158728</td>
<td>0.22</td>
<td>3</td>
<td>10</td>
<td>82</td>
<td>62</td>
<td>14</td>
<td>132</td>
<td><5</td>
</tr>
<tr>
<td>B158742</td>
<td>0.18</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td><2</td>
<td>8</td>
<td><5</td>
</tr>
<tr>
<td>B158744</td>
<td>0.20</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td><5</td>
</tr>
<tr>
<td>B158754</td>
<td>0.20</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td><5</td>
</tr>
<tr>
<td>B158755</td>
<td>0.22</td>
<td>11</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td><5</td>
</tr>
</tbody>
</table>