Geological Assessment Report

on the

Queen Victoria Property

4 Mineral Claims
located in the

Nelson Mining Division
British Columbia

NTS: 82F/11
UTM: 467500E, 5482650N
49°29.5' North Latitude, 117°27' West Longitude

Prepared for

(Copper Cat Resources Inc.)
LIBERTY INTERNATIONAL MINERALS CORP.

by

W. Kushner, B.Sc.

Vancouver, BC

MARCH 16, 2009
Copper Cat Resources Inc., a wholly owned subsidiary of Liberty International Minerals Corp., is the registered owner of the Queen Victoria property. It consists of 4 claims covering a total of 100 hectares, located in the Nelson Mining Division of south-eastern British Columbia. A one day property visit was conducted in the summer of 2008, during which a total of 3 rock samples were collected from the property and sent to Eco Tech Laboratories in Kamloops for analysis.

Hoy and Andrew (1989) and Hoy and Dunne (1997) have discussed the geology of the area. The claims lay within a broad belt of Lower Jurassic volcanic and sedimentary rocks of the Rossland Group. The structure in the area is dominated by tight northerly trending folds, associated with shear zone that contort and disrupt the Rossland Group in the Nelson area (Hay and Andrew, 1989). The immediate structure in the Nelson area consists of a tight south-plunging fold called the Hall Creek syncline, which is cored by volcanics and sediments of the Rossland Group, and immediately to the east by older sedimentary rocks of the Ymir Group. The area covered by the Queen Victoria property is underlain by an inlier of sedimentary rocks of the lower Jurassic Hall and Beaver Mountain Formations of the Rossland Group.

The Queen Victoria mine area was first discovered in 1890 and put into production in 1907. Production between 1908 and 1961 yielded over 49,000 tons grading 1.48% Cu, 0.61 oz/ton Ag and 0.005 oz/ton Au. Copper mineralization occurs in an easterly dipping folded sequence of silicified limestone, dark grey quartzite and argillites of the Ymir Group.

Further work is recommended for the property.
Table of Contents

SUMMARY .. 1
1.0 INTRODUCTION AND TERMS OF REFERENCE ... 4
2.0 RELIANCE ON OTHER EXPERTS ... 4
3.0 DISCLAIMER.. 4
4.0 LOCATION, ACCESS, CLIMATE AND PHYSIOGRAPHY .. 4
4.1 Location .. 4
4.2 Access ... 7
4.3 Climate.. 7
4.4 Physiography .. 7
5.0 STATUS OF MINERAL TENURE .. 7
6.0 PROPERTY HISTORY .. 9
7.0 REGIONAL GEOLOGY .. 10
8.0 PROPERTY GEOLOGY .. 11
9.0 2008 EXPLORATION PROGRAM .. 12
10.0 SAMPLE PREPARATION AND ANALYSIS .. 12
11.0 DATA VERIFICATION ... 12
12.0 OTHER RELEVANT DATA ... 12
13.0 CONCLUSIONS AND RECOMMENDATIONS .. 13
14.0 EXPLORATION EXPENDITURES .. 14
15.0 REFERENCES.. 14
16.0 CERTIFICATE OF QUALIFICATION.. 15

Figure 1: Location Map .. 5
Figure 2: Access Map .. 6
1.0 INTRODUCTION AND TERMS OF REFERENCE

The author was contracted by Liberty International Minerals Corp. (Liberty) to compile a geological assessment report on the Queen Victoria property. This report summarizes the information supplied to the author by the company. Sources of information are drawn mainly from a private Summary Report written for the company (Buss, 2008). Other sources of information included available published sources including industry assessment reports on the Property and on the general area, as well as other sources of information that were made available to the author by Liberty.

2.0 RELIANCE ON OTHER EXPERTS

The author has relied wholly on the truth and accuracy of the aforementioned private and public data in the preparation of this assessment report. The author has not personally visited the property, supervised any of the work performed or examined any samples collected from the property. This report is a compilation of materials presented to the author in order to satisfy requirements to file a Geological Assessment Report. All conclusions and recommendations regarding the exploration potential of the Queen Victoria property are based entirely on the material reviewed and references cited.

3.0 DISCLAIMER

The author is not responsible for data collected and prepared by others, nor has he reviewed the data to ensure accuracy. He is responsible solely for the compilation of this report and the maps from the information supplied as well as the conclusions and recommendations contained herein. With respect to mineral tenure information for the subject claims, the author has relied solely on the information available for public access on the Mineral Titles Online website and the disclaimers associated with this site.

4.0 LOCATION, ACCESS, CLIMATE AND PHYSIOGRAPHY

4.1 LOCATION

The Queen Victoria property is located in the Kootenay region of southeast British Columbia (Figure 1). It is composed of 4 contiguous mineral claims, situated within the Nelson Mining Division.

The claims are situated approximately 12 kilometres west-northwest of Nelson, B.C. on NTS map sheet 82F/11. The geographical centre of the property is approximately 49°29.5' north latitude and 117°27' west longitude.
Figure 1: Location Map
Figure 2: Access Map
4.2 **Access**

Access to the property is by provided from Queen Victoria Road off of Highway 3A (Figure 2). The road is well maintained, offering year round access to the property. Abundant logging roads in the area provide access to the entire property.

4.3 **Climate**

The climate of the area is mild with average summer highs in July of 27°C and January winter lows averaging -5°C. Rainfall averages 25 mm a month from March to October, with July being the wettest month. Snow cover occurs from November to March with averages of 70 mm a month falling in December and January.

4.4 **Physiography**

The claims are situated on the northern slopes above the Kootenay River in the drainage areas of Garrity, Smallwood and Sproule Creeks. The area has been logged from the early 1900’s extending through to the present with numerous clear cut and second growth areas. Vegetation consists of cedar, pine and spruce with cottonwood and alders in the lower elevations. The topography is moderate to rugged; elevations range from 750 metres in the southeast to 1200 metres on the northwest corner of the property.

5.0 **Status of Mineral Tenure**

Copper Cat Resources Inc. owns a 100% interest in 4 contiguous mineral claims totalling 100 hectares, in the Nelson Mining Division of British Columbia (Figure 3). Copper Cat Resources Inc. is a wholly owned subsidiary of Liberty International Minerals Corp., which holds extensive mineral claims throughout the Kootenay region. Claim information is summarized in Table 1. The current claim boundaries represent converted legacy claim boundaries. The original legacy claims had been staked using the traditional system of physical demarcation of claim boundaries on the ground.

There are numerous historical Crown granted mineral claims throughout the Kootenays, under which either surface and/or mineral rights are owned by third parties. The Ministry of Energy, Mines and Petroleum Reserves defines a Crown granted mineral claim as a tenure administered under the Land Act which was originally a staked mineral claim that was subsequently surveyed and issued as a Crown granted tenure. The last Crown granted mineral claims were issued in 1957.

The Crown grant is maintained by payment of an annual assessed mineral tax. It is important to note that Crown granted mineral claims are not within the jurisdiction of the Mineral Tenure Act. It should also be noted that the area is populated and as such contains private landholders holding surface rights to the land. The author has not checked for the location or ownership of private properties or Crown granted...
Figure 2: Claim & Sample Location Map
mineral claims and is unaware if the company has dealt with any of the same in the area. Two survey parcels or crown grants occur on the eastern edge of the property with unknown ownership. The surveyed parcels include DL 6875 and DL 8433 of unknown surface and/or subsurface mineral rights.

The Queen Victoria property claims will be in good standing until 30 September, 2009, pending the acceptance of this report. Fieldwork conducted prior to this date can be applied to hold the claims in good standing up to a maximum of ten years from the date of application. If no work is performed, cash may be paid in lieu. In British Columbia, work performed on a claim must equal or exceed the minimum specified value per hectare; excess value of work in one year can be applied to cover work requirements on the claim for additional years. During the first three years of a claim’s existence, the minimum work value is $4 per hectare (plus an additional $10 per unit recording fee); this amount increases to $8 per hectare after the third year.

The minimum annual assessment required to maintain the 4 claims of the Queen Victoria property in good standing is $800 per year plus recording fees.

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Tenure Number</th>
<th>Area (Ha)</th>
<th>Expiry Date*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deb 2</td>
<td>349881</td>
<td>25</td>
<td>30/Sep/2009</td>
</tr>
<tr>
<td>Deb 3</td>
<td>349882</td>
<td>25</td>
<td>30/Sep/2009</td>
</tr>
<tr>
<td>Deb 4</td>
<td>349883</td>
<td>25</td>
<td>30/Sep/2009</td>
</tr>
<tr>
<td>Queen</td>
<td>358264</td>
<td>25</td>
<td>30/Sep/2009</td>
</tr>
</tbody>
</table>

*Pending acceptance of this report

With respect to mineral tenure information for the subject claims, the author has relied solely on the information available for public access on the Mineral Titles Online website and the disclaimers associated with this site.

6.0 PROPERTY HISTORY

The old Queen Victoria mine is located in the southeast portion of the Queen claim (Figure 3). It was in production from 1907 to 1961 and produced 30,543 ounces of silver, 246 ounces of gold and almost 1.5 million pounds of copper. Most, if not all of the mining was concentrated on the high grade core of the zones. There is a possibility that additional tonnage of low grade ore is present.

The Queen Victoria mine area was first discovered in 1890 and put into production in 1907. Production between 1908 and 1961 yielded over 49,000 tons grading 1.48% Cu, 0.61 oz/ton Ag and 0.005 oz/ton Au. J.T. Fyles; in a 1961 Mines and Petroleum Resources Report, outlines the "copper mineralization in an easterly dipping lens of skarn in a series of beds whose trace runs diagonally westward and upward (north) across the face of the hill. The skarn consists of mixtures of a reddish brown granular rock rich in garnet, a greenish rock rich in epidote and
diopside, and a dark green medium-grained amphibolite. Calcite is common in some of the skarn, and in one place a small lens of limestone is exposed." Fyles describes mineralization as being irregular consisting of disseminated grains and irregular clusters of chalcopyrite, pyrite, and minor bornite within the skarn. Exact deposit dimensions are unknown but a maximum thickness of 100' and an exposed strike length of approximately 400' is known. A large adit was noted on the south end of the property with unknown development work (Buss, 2008).

A 12 hole diamond drilling program was conducted in 1962 and regional geological mapping was done in 1990. Three chip samples from the main adit graded an average of 0.1.92 % copper and 17 g/t silver (Buss, 2008).

7.0 REGIONAL GEOLOGY

A thorough discussion of the regional geology of the area is summarized by Scott and Evans (1999):

The Nelson Map area incorporates a varied range of rocks representing systems from the Windermere (late Precambrian) to the Cretaceous. All units are intruded by plutonic rocks, mainly acidic, of two distinct ages, the dominant body being the Cretaceous Nelson and Valhalla plutonic rocks. Evidence suggests a metasomatic origin, although locally derived magmatic injections appear to exist. The younger plutonic rocks are of more alkaline in composition, Tertiary in age, and mainly of magmatic origin [Coryell type] (Little, 1964).

The regional stratigraphy consists of laterally and vertically pinching narrow lenses of Middle Jurassic Elise Formation which can broadly be divided into an upper and lower member. The lower member is comprised of massive flow breccias and flows with associated sub-volcanic intrusions and overlain by the upper Elise - dominated by basic to intermediate volcanic and volcanoclastic rocks (Hoy and Andrews, 1988). These are underlain by metasedimentary rocks of the Archibald Formation or correlative Ymir Group; and, overlain by generally coarser clastic rocks of the Hall Formation (Mulligan, 1952; Little, 1960, 1982).

Regional structure is dominated by northerly trending tight folds and associated shears. The Hall Creek Syncline is the most prominent fold in the area; a west dipping, south-plunging overturned fold, and incorporates a zone of intensely sheared Hall Formation at its core, locally being referred to as the Silver King Shear (Hoy and Andrews, 1988). A localized feature known as the "Forty-Nine Creek Fault" is a roughly north-south trending normal fault system that is an important structure in association to the localized geology of the Liberty Claims.

Regional metamorphism of the area is in the order of lower to middle greenschist facies with associated chlorite, epidote and minor amphibole (actinolite) alterations. Contact metamorphism is varied and usually localized to the volcanic and/or associated sediments in contact with the Nelson and later magmatic intrusives. Skarn type alteration (metasomatic) may be compared with Tillicum Mountain G.1
quartz skarn, and the Queen Victoria and Monarch garnet, epidote skarn mineral occurrences.

Bed orientation is generally flat lying to 15' dipping to the north making accurate strike measurements difficult in the field. The northerly dip is thought to represent a plunging fold axis to the north at 10-15° with a gently folded sequence from west to east. Localized variations in strike and dip are complicated by uplift caused by variable levels of the intruding Nelson Complex.

Shearing is best displayed in the Nelson Intrusives reflecting the competency of this unit. Strikes range from 340° to 040° dipping vertically to 80° east and west. A projection of these shear directions show a rough correlation with the Smallwood Creek geographic break which projects on strike with the Silver King shear mapped by Hoy and Andrews (1988) to the south of the Claim Group. A direct relationship may not occur between these features and is mentioned as a point of interest here.

A normal strike slip fault structure was mapped corresponding to the Garrity Creek basin (Figure 3). This is a moderate to weak structure striking NNE/SSW at 350°, dipping east at 50-70°. This structure may correspond to the Forty-Nine Creek fault mapped by Hoy and Andrews to the south.

8.0 PROPERTY GEOLOGY

The main mineralized zone is described as irregular bands of garnet, epidote and actinolite with minor disseminated grains of magnetite and pyrrhotite. These bands alternate with other bands of quartzite and schist material and vary in width up to 15 meters. The footwall material is generally highly fractured k-spar porphyry, while the hanging wall is of altered quartzite composition (Buss, 2008).

Copper mineralization occurs in an easterly dipping folded sequence of silicified limestone, dark grey quartzite and argillites of the Ymir Group (Buss, 2008).

The irregular disseminated and clusters of chalcopyrite, pyrite, with minor bornite mineralization are most abundant at the contact with the granodiorite. A number of small exploration projects were conducted over the years of 1955, 1960, 1967 and 1990. Most notable was the 1960 program which included a short 12 hole diamond drill program of which the Minfile record states that four of the southwest holes intersected a 12 meter thick mineralized zone but did not explain the grades. Copper mineralization occurs in an easterly dipping folded sequence of silicified limestone, dark grey quartzite and argillites of the Ymir Group. The irregular disseminated and clusters of chalcopyrite, pyrite, with minor bornite mineralization are most abundant at the contact with the granodiorite (Buss, 2008).

The local geology is a repetition sequence of tuffaceous sediments in the west, with lenses of augite flows. Moving eastward and the sequence becomes volcanic flow material with abundant pyroxenite. Mixed pyroclastics and banded tuffs are next, followed by massive volcanic flows. A mixture of pyroclastics flows and sediments
of both the Elise and Ymir Groups occur on the eastern edge of the sequence (Buss, 2008).

Field measurements of the fold system resulted in an axial plunge of 64 degrees to the southeast. One limb measured 110 degrees striking at 76 degrees west. The other limb was determined to be 135 degree strike with a 78 degree dip to the west. The contact between the mineralized zone and the porphyry was measured at 005 degrees strike and dipping 68 degrees west (Buss, 2008).

9.0 2008 EXPLORATION PROGRAM

Two prospectors employed by Liberty collected a total of three rock samples from the Queen Victoria property during their visit on 12 August, 2008. Select analyses of the samples are presented in Table 2, below. Complete laboratory results of analysis are presented in Appendix I.

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Au ppb</th>
<th>Ag ppm</th>
<th>Cu %</th>
</tr>
</thead>
<tbody>
<tr>
<td>8R203698</td>
<td>25</td>
<td>4.6</td>
<td>0.60</td>
</tr>
<tr>
<td>8R203699</td>
<td>195</td>
<td>28.6</td>
<td>3.34</td>
</tr>
<tr>
<td>8R203700</td>
<td>110</td>
<td>17.8</td>
<td>1.83</td>
</tr>
</tbody>
</table>

10.0 SAMPLE PREPARATION AND ANALYSIS

Samples collected from the property were shipped by Greyhound bus to Eco Tech Laboratory Ltd. in Kamloops, BC. They were prepared and analyzed according to industry standards for 29 elements using ICP methods. Over-limit values were analyzed by fire assay.

The author did not participate in the collection of the samples or supervise shipment to the lab.

11.0 DATA VERIFICATION

Methods employed by the Eco Tech were relied upon for quality checks and assurances.

12.0 OTHER RELEVANT DATA

The author is not aware, at the time of writing, of other relevant data that would further contribute to the understanding of the status or potential of the subject property.
13.0 CONCLUSIONS AND RECOMMENDATIONS

Lawrence Buss, (2008), noted, “The geological setting of the property does appear favourable for large tonnage – low grade copper – silver, porphyry type deposit. Geological mapping resulted in the location of a mineralized syenite porphyry, along the western perimeter of the main folded mineralized zone. The syenite unit has not been explored much and the potential for other porphyries on the property are likely. The workings on the main fold lenses are relatively shallow, and still contain good grade on the walls. Only the high grade core was mined”.

Work conducted on the property in 2008 appears to have consisted of examining the area to locate and compare workings with historical reports. Check samples appear to have been collected only from the area of the adit. The following is recommended to further assess the prospects of the Queen Victoria property:

1. A thorough search should be conducted of the historical data available. Any historical samples and workings should be digitized and compiled along with geological information.
2. A grid should be established over the entire property to serve as a base for geological mapping and prospecting. Detailed geological mapping of the property and sampling of mineralized zones should be conducted.
3. Old workings and adits should be sampled and mapped in detail if they can be safely accessed.
4. Test soil samples should be collected in areas of known mineralization to determine if a full soil sample survey should be conducted over the entire grid.
5. A magnetic survey should be conducted over the grid, and an IP survey should be considered if budget allows.
6. Detailed geological sampling should then be conducted in prospective areas that are identified. Trenching should be conducted in areas with limited or no outcrop.
7. Drill targets can then be considered. Drilling should be conducted to test any new targets located through exploration as well as to test whether significant lower grade ores remains in the mined areas.
14.0 EXPLORATION EXPENDITURES

Personnel
- Mark Peabody, Prospector 1 day @ $250
- Cris Morricett, Prospector 1 day @ $200

Rentals
- Vehicle 1 day @ $50
- Equipment 1 day @ $78

Food
$100

Sample Analysis
- 3 samples @ $35 / smpl $105

Shipping
$40

Report
$1,000

Total: $1,823

15.0 REFERENCES

16.0 CERTIFICATE OF QUALIFICATION

I, Willie Kushner, B.Sc., do hereby certify that:

1. I graduated with a Bachelor of Science degree in Geology from the University of Alberta, Edmonton, Alberta, in 1987.
2. I have been practicing my profession as an Exploration Geologist continuously since my graduation.
3. I am a consulting geologist and I was contracted by Liberty International Minerals Corp. to compile the report titled “Geological Assessment Report on the Queen Victoria Property, Nelson Mining Division, for Liberty International Minerals Corp.” dated 16 March, 2009.
4. The information contained within this report is based on information received from the company and information compiled from past reports, the sources of which are quoted in the report.
5. I am responsible for all of the maps contained within.
6. I have not visited the subject property in person. I did not supervise any portion of the exploration program.
7. I hold no interest, directly or indirectly in the Queen Victoria property or any surrounding properties. I hold no securities in Liberty International Minerals Corp. and have no agreements, arrangements or understandings with the issuer.

Dated this 16th day of March, 2009

Willie Kushner, B.Sc.
APPENDIX I

SAMPLE DESCRIPTIONS AND RESULTS
ICP Analysis:

<table>
<thead>
<tr>
<th>Certif. Smpl Nbr</th>
<th>Au ppb</th>
<th>Ag %</th>
<th>Al %</th>
<th>As</th>
<th>Ba</th>
<th>Bi</th>
<th>Ca %</th>
<th>Cd</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe %</th>
<th>La</th>
<th>Mg %</th>
<th>Mn</th>
<th>Mo</th>
<th>Na %</th>
<th>Ni</th>
<th>Pb</th>
<th>Sb</th>
<th>Sn</th>
<th>Sr</th>
<th>Ti</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>Y</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKB-1233i 203698</td>
<td>25</td>
<td>4.6</td>
<td>1.19</td>
<td><5</td>
<td>230</td>
<td><5</td>
<td>8.99</td>
<td>3</td>
<td>20</td>
<td>151</td>
<td>6030</td>
<td>9.76</td>
<td><10</td>
<td>0.90</td>
<td>2309</td>
<td>49</td>
<td>0.01</td>
<td>66</td>
<td>250</td>
<td>52</td>
<td><5</td>
<td><20</td>
<td>65</td>
<td>0.12</td>
<td><10</td>
<td><10</td>
<td><1</td>
<td>189</td>
</tr>
<tr>
<td>AKB-1233i 203699</td>
<td>195</td>
<td>28.6</td>
<td>0.71</td>
<td><5</td>
<td>60</td>
<td><5</td>
<td>7.61</td>
<td>9</td>
<td>63</td>
<td>74</td>
<td>>10000</td>
<td>9.99</td>
<td><10</td>
<td><0.01</td>
<td>2529</td>
<td>28</td>
<td><0.01</td>
<td>25</td>
<td><10</td>
<td>32</td>
<td><5</td>
<td><20</td>
<td>6</td>
<td>0.04</td>
<td><10</td>
<td><10</td>
<td><1</td>
<td>239</td>
</tr>
<tr>
<td>AKB-1233i 203700</td>
<td>110</td>
<td>17.8</td>
<td>0.80</td>
<td><5</td>
<td>70</td>
<td><5</td>
<td>7.87</td>
<td>7</td>
<td>106</td>
<td>69</td>
<td>>10000</td>
<td>>10</td>
<td><10</td>
<td><0.01</td>
<td>3047</td>
<td>28</td>
<td><0.01</td>
<td>38</td>
<td><10</td>
<td>16</td>
<td><5</td>
<td><20</td>
<td>20</td>
<td>0.05</td>
<td><10</td>
<td><10</td>
<td><1</td>
<td>170</td>
</tr>
</tbody>
</table>

Fire Assay:

<table>
<thead>
<tr>
<th>Certif. Tag #</th>
<th>Cu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKB-1233a 8R203699</td>
<td>3.34</td>
</tr>
<tr>
<td>AKB-1233a 8R203700</td>
<td>1.83</td>
</tr>
<tr>
<td>Smpl Nbr</td>
<td>Type</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>203698</td>
<td>Chip</td>
</tr>
<tr>
<td>203699</td>
<td>Chip</td>
</tr>
<tr>
<td>203700</td>
<td>Chip</td>
</tr>
</tbody>
</table>