<table>
<thead>
<tr>
<th>TITLE OF REPORT</th>
<th>TOTAL COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROSPECTING ON THE SCOTCH CREEK PROPERTY</td>
<td>$3,200</td>
</tr>
</tbody>
</table>

AUTHOR(S): BRUCE SQUINAS
SIGNATURE(S): BRUCE SQUINAS

EDITORIAL ASSISTANCE FROM: JOHN OSTLER, M.Sc., P.Geo.

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):

STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S): 4620371, 4620392, 4620432, 4643131, 4620311

PROPERTY NAME: SCOTCH CREEK

CLAIM NAME(S) (on which work was done):
- MARION (604366)
- PENNY (604887)
- GLORIA (604873)
- KARALEE (604938), MARION 2 (605310)

COMMODITIES SOUGHT: COPPER, LEAD, ZINC, SILVER, GOLD

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 08ALNW046

MINING DIVISION: KAMLOOPS

LATITUDE: 50° 57′ 15″
LONGITUDE: 119° 49′ 26″ (at centre of work)

OWNER(S):
1) BRUCE SQUINAS 2) JOSEPH LAWRENCE

MAILING ADDRESS
1) 1-438 9TH AVENUE
 WILLIAMS LAKE, B.C. V2G 2K4

OPERATOR(S) [who paid for the work]:
1) BRUCE SQUINAS

MAILING ADDRESS
1) 1-438 9TH AVENUE
 WILLIAMS LAKE, B.C. V2G 2K4

PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

ASS.REFS: 17643, 13048, 12216, 7671, 6419, 3511

(OVER)
<table>
<thead>
<tr>
<th>TYPE OF WORK IN THIS REPORT</th>
<th>EXTENT OF WORK (IN METRIC UNITS)</th>
<th>ON WHICH CLAIMS</th>
<th>PROJECT COSTS APportioned (incl. support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGICAL (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground, mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo interpretation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOPHYSICAL (line-kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induced Polarization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOCHEMICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(number of samples analysed for ...)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRILLING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(total metres; number of holes, size)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELATED TECHNICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling/assaying</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralogic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallurgical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROSPECTING (scale, area)</td>
<td>1:5000</td>
<td>78 HECTARES</td>
<td>MARION 604826 MARION 8 $3200</td>
</tr>
<tr>
<td>PREPARATORY/PHYSICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line/grid (kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topographic/Photogrammetric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal surveys (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road, local access (kilometres)/trail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trench (metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground dev. (metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COST</td>
<td></td>
<td></td>
<td>$3200</td>
</tr>
</tbody>
</table>
PROSPECTING ON THE SCOTCH CREEK PROPERTY

Map-staked Claims

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Area</th>
<th>Claim Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARION</td>
<td>162.86 ha. (402.17 A.)</td>
<td>604866</td>
</tr>
<tr>
<td>PENNY</td>
<td>81.43 ha. (201.13 A.)</td>
<td>604872</td>
</tr>
<tr>
<td>GLORIA</td>
<td>81.43 ha. (201.13 A.)</td>
<td>604873</td>
</tr>
<tr>
<td>KARALEE</td>
<td>162.82 ha. (402.26 A.)</td>
<td>604938</td>
</tr>
<tr>
<td>MARION 2</td>
<td>366.36 ha. (904.91 A.)</td>
<td>605310</td>
</tr>
<tr>
<td>Total Property Area</td>
<td>854.90 ha. (2,111.60 A.)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: UNDERLINED NAME denotes claims worked on

Owners

Bruce M. Squinas
1-438 9th Avenue
Williams Lake, British Columbia
V2G 2K4

Joseph T. Lawrence
1513 Stanley Parke Place, Box 753
Cache Creek, British Columbia
V0K 1H0

Location:
Kamloops Mining Division
N.T.S.: 82 L/13 + L/14 B.C.: 082L 093
50° 57' 15" N., 119° 29' 26" W.
U.T.M.: 5,647,460 N., 324,840 E.

By:
Bruce Squinas, Prospector and Claim Owner
1-438 9th Avenue
Williams Lake, British Columbia
V2G 2K4

As of:
May 6, 2010

With editorial assistance from:
John Ostler; M.Sc., P.Geo.
1015 Clyde Avenue
West Vancouver, British Columbia
V7T 1E3
PROSPECTING ON THE SCOTCH CREEK PROPERTY

SUMMARY

The Scotch Creek property occupies a southeasterly facing slope adjacent with the southeastern part of Adams Plateau. The property is located in Shuswap Highland in south-central British Columbia on N.T.S. map sheets 82 L/13 and L/14, and on B.C. map sheet 082L093 (Figures 1 and 2).

The property area comprises 5 map-staked claims covering 854.9 hectares (2,111.60 acres) in the Kamloops Mining Division and in the Kamloops Land District.

No parts of the Scotch Creek property cover private land. There are no aboriginal homelands on or adjoining the property. There is no plant or equipment, inventory, mine or mill structure of any value on these claims.

Elevations range from 1,375 m (4,511 ft) at its northwestern corner on the MARION 2 (605310) claim to 950 m (3,117 ft) on the PENNY (604872) claim at the southeastern corner of the property area. Adequate fresh water for a mining operation could be drawn by gravity from Corning (Lee) Creek from a location about 1.2 km (0.73 mi) northwest of the northwestern corner of the property.

The Scotch Creek property hosts a second-growth forest comprised mostly of cedar, spruce, fir, and cottonwood trees which is in various states of growth. There is insufficient timber suitable for mining on the claims. Two parallel, high-voltage power transmission lines cross the PENNY (604872) claim near the property’s southeastern corner. A three-phase power transmission line services residences along Lee Creek Road, within 2.2 km (1.34 mi) of the southern boundary of the property.

There are two terrain domains on the claims. The northwestern part of the property area is occupied by gentle slopes generally less than 10°; its southeastern part hosts steep slopes averaging 30°. Although the till cover generally seems to be thin, most of the rock outcrops are in road cuts. Outcrop was found to be quite sparse in the 2010 prospecting area. Soil profiles observed in road cuts were deemed to be sufficiently mature for soil-survey results to be meaningful. Soil geochemical surveys have been used successfully during previous exploration programs.

The Scotch Creek property hosts a second-growth forest comprised mostly of cedar, spruce, fir, and cottonwood trees which is in various states of growth. There is insufficient timber suitable for mining on the claims. Two parallel, high-voltage power transmission lines cross the PENNY (604872) claim near the property’s southeastern corner. A three-phase power transmission line services residences along Lee Creek Road, within 2.2 km (1.34 mi) of the southern boundary of the property.

There are two terrain domains on the claims. The northwestern part of the property area is occupied by gentle slopes generally less than 10°; its southeastern part hosts steep slopes averaging 30°. Although the till cover generally seems to be thin, most of the rock outcrops are in road cuts. Outcrop was found to be quite sparse in the 2010 prospecting area. Soil profiles observed in road cuts were deemed to be sufficiently mature for soil-survey results to be meaningful. Soil geochemical surveys have been used successfully during previous exploration programs.

The Scotch Creek property hosts a second-growth forest comprised mostly of cedar, spruce, fir, and cottonwood trees which is in various states of growth. There is insufficient timber suitable for mining on the claims. Two parallel, high-voltage power transmission lines cross the PENNY (604872) claim near the property’s southeastern corner. A three-phase power transmission line services residences along Lee Creek Road, within 2.2 km (1.34 mi) of the southern boundary of the property.

Chloritic schist was observed in a 2.5-km (1.53 mi) wide band that seems to trend west-northwestward across the property-area. Chloritic schist is flanked to the northeast by quartz-feldspar schist and to the southwest by impure black marble hosting white calcite bands. Chloritic schist is the most prospective rock unit on the Scotch Creek property.
1.0 INTRODUCTION

1.1 National Instrument 43-101

This report of exploration work is an assessment report produced in compliance with the regulations of the Mineral Tenure Act of British Columbia. This document is not a "summary technical report" compliant with National Instrument 43-101.

1.2 Management, Extent, and Duration of the Current Work Program

The writer, being one of the owners of the Scotch Creek property managed and conducted a program of prospecting on the property for Noranda-type massive sulphide mineralization. A total of XX hectares (XX acres) was prospected on the MARION (604866, PENNY (604872), GLORIA (604873), and KARALEE (604938) claims. Field work was conducted from April 17 to 22, 2010 and comprised a total of 20 man-days (160 man-hours) of work including transport time. Data compilation and reporting continued intermittently using Corel WordPerfect 10 for word processing until after the effective date of this report. For details concerning this work, see sections 5.1, 5.2, and 6.0 of this report.

1.3 Property Description and Location

The Scotch Creek property occupies a southeasterly facing slope adjacent with the southeastern part of Adams Plateau. The property is located in Shuswap Highland in south-central British Columbia on N.T.S. map sheets 82 L/13 and L/14, and on B.C. map sheet 082L 093 (Figures 1 and 2).

The property area comprises 5 map-staked claims covering 854.9 hectares (2,111.60 acres) in the Kamloops Mining Division and in the Kamloops Land District.
SCOTCH CREEK PROPERTY

58° 57' 15" N., 119° 29' 26" W.
U.T.M.: 5,647,460 N., 324,848 E.
N.T.S.: 82 L/13 + L/14, KAMLOOPS M.D., B.C.
BRUCE SOUINAS
MAY, 2010

CASSIAR EAST YUKON EXP. LTD.
Figure 2

CASSIAR EAST YUKON EXP. LTD.

PROPERTY, TERRAIN, and MINERALIZATION

SCOTCH CREEK PROPERTY
20° 37' 15" N., 119° 29' 26" W.
U.T.M.: 5,647,460 N., 324,340 E.
N.T.S.: 82 L/13 + W/14, KAMLOOPS M.D., B.C.
BRUCE SQUINAS
MAY, 2010
The locations of the property center and significant exploration areas within the property area are as follow (Figure 2):

Table 1
Locations of Significant Areas on the Scotch Creek Property

<table>
<thead>
<tr>
<th>Center of Entity</th>
<th>U.T.M. Co-ordinates</th>
<th>Longitude and Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>property centre</td>
<td>5,647,460 N., 324,840 E.</td>
<td>50° 57' 15" N., 119° 29' 26" W.</td>
</tr>
<tr>
<td>Centre of anomalies and previous main drilling area on the MARION claim</td>
<td>5,647,483 N., 324,938 E.</td>
<td>50° 57' 17" N., 119° 29' 44" W.</td>
</tr>
<tr>
<td>Pegmatitic scarn sulphide mineralization on the 671 road on the northeastern KARALEE claim</td>
<td>5,649,465 N., 326,022 E.</td>
<td>50° 58' 20" N., 119° 28' 48" W.</td>
</tr>
<tr>
<td>Massive sulphide pebbles at road junction on the western KARALEE claim</td>
<td>6,037,304 N., 537,161 E.</td>
<td>50° 58' 08" N., 119° 29' 22" W.</td>
</tr>
<tr>
<td>Disseminated sulphide boulder northwest of the drilling area on the MARION claim</td>
<td>5,647,588 N., 324,763 E.</td>
<td>50° 57' 22" N., 119° 29' 53" W.</td>
</tr>
<tr>
<td>Disseminated sulphide cobbles on 671 road on the GLORIA claim</td>
<td>5,647,533 N., 323,915 E.</td>
<td>50° 57' 18" N., 119° 30' 37" W.</td>
</tr>
</tbody>
</table>

The tenures of the claims comprising the Scotch Creek property (Figure 2) are as follow:

Table 2
Map-staked Claims

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Record No.</th>
<th>Area: hectares (Acres)</th>
<th>Record Date</th>
<th>Expiry Date prior to current work</th>
<th>Expiry Date upon filing current work</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENNY</td>
<td>604872</td>
<td>81.43 ha. (201.13 A.)</td>
<td>May 22, 2009</td>
<td>May 2, 2010</td>
<td>Nov. 22, 2010</td>
<td>Joseph T. Lawrence</td>
</tr>
<tr>
<td>KARALEE</td>
<td>604938</td>
<td>162.82 ha. (402.26 A.)</td>
<td>May 25, 2009</td>
<td>May 25, 2010</td>
<td>Nov. 25, 2010</td>
<td>Joseph T. Lawrence</td>
</tr>
<tr>
<td>Total Property area</td>
<td></td>
<td>854.90 ha. (2,111.60 A.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No parts of the Scotch Creek property cover private land. There are no aboriginal homelands on or adjoining the property. There is no plant or equipment, inventory, mine or mill structure of any value on these claims.
1.4 Accessibility, Climate, Local Resources, Infrastructure, and Physiography

Elevations of the Scotch Creek property range from 1,375 m (4,511 ft) at its northwestern corner on the MARION 2 (605310) claim to 950 m (3,117 ft) on the PENNY (604872) claim at the southeastern corner of the property area.

Adequate fresh water for a mining operation could be drawn by gravity from Corning (Lee) Creek from a location about 1.2 km (0.73 mi) northwest of the northwestern corner of the property.

The Scotch Creek property hosts a second-growth forest comprised mostly of cedar, spruce, fir, and cottonwood trees which is in various states of growth. There is insufficient timber suitable for mining on the claims. Two parallel, high-voltage power transmission lines cross the PENNY (604872) claim near the property’s southeastern corner. A three-phase power transmission line services residences along Lee Creek Road, within 2.2 km (1.34 mi) of the southern boundary of the property.

There are two terrain domains on the claims. The northwestern part of the property-area is occupied by gentle slopes generally less than 10°; its southeastern part hosts steep slopes averaging 30°. Although the till cover generally seems to be thin, most of the rock outcrops are in road cuts. Outcrop was found to be quite sparse in the 2010 prospecting area. Soil profiles observed in road cuts were deemed to be sufficiently mature for soil-survey results to be meaningful. Soil geochemical surveys have been used successfully during previous exploration programs.

The Scotch Creek area experiences cold winters and hot, dry summers. Winter snow falls in the property area by late November and stays on the ground until April in open areas, and until June on shady northerly facing slopes at higher elevations in the north-western part of the claim-area.

The property is accessible by road from the west, south, and east. The eastern route is the easiest way to gain access to the property. Directions are as follow:

Between Little Shuswap and Shuswap lakes, leave B.C. Highway 1 and take the Squilax Road for about 3 km (1.8 mi) northward to near Adams River where the road divides. At the divide, turn to the right onto the Scotch Creek-Celista road and follow it for 10.4 km (6.3 mi) to the 670 (Scotch Creek Main) road. Leave the pavement by turning left onto the 670 road. The logging roads in this area are maintained by Federated
Co-operatives Limited which uses F.M. radio frequency 157.320 to control road traffic. At about 7.1 km (4.3 mi) up the 670 road turn left (north-westward) up the 671 road toward the high-voltage power line. The Scotch Creek property is crossed by the 671 road from about 6 to 13 km (3.7 to 7.9 mi) along it.

Scotch Creek, located on the Scotch Creek-Celista road about 20 km from the claims, is the nearest supply and service center to the property. Services at Scotch Creek are sufficient to support surface exploration programs such as prospecting, mapping, or soil sampling. The town of Chase, located on B.C. Highway 1 about 50 km (30.5 mi) southwest of the property, hosts the nearest helicopter base and a rail yard where mineral products can be loaded into covered gondolas for transport to a smelter. The city of Kamloops, located on B.C. Highway 1 about 99 km (60.4 mi) southwest of the property, is the nearest regional service and supply centre. Kamloops has services necessary to support a mining operation.

2.0 HISTORY

B.W. Kyba (1988) of Brican Resources Ltd. described recorded exploration on and around the Scotch Creek property as follows:

The first of exploration activity in the area ... is a reference to the IRON POT showing on Acid (Ruby) Creek, about 1000 m (3,280 ft) northeast of the property. In the 1930 Annual Report of the B.C. Minister of Mines it is reported that two short adits were driven in a narrow zone of massive pyrrhotite with pyrite, and minor chalcopyrite. Apparently the objective was precious metal mineralization but no values were obtained on sampling.

Scotch Creek has had some placer gold production, about 2000 ounces (62,200 gm) being reported to date.

In the 1960s claims were staked by major companies to cover the copper showings on Nikwikwaia Creek, 7 km (4.3 mi) northwest of the property but apparently no major exploration work was carried out.

In 1970, during the course of a regional exploration project, strong geochemical anomalies in copper and zinc were detected in stream sediments on Corning and Nikwikwaia Creeks. Follow-up prospecting resulted in the discovery of massive and disseminated stratabound pyrrhotite-pyrite-chalcopyrite-sphalerite mineralization on Nikwikwaia, Corning and Acid Creeks. The most attractive mineralization found at this stage was a 1-ton (0.91 tonne) boulder of massive sulphide mineralization discovered on the east fork on Corning Creek. A grab sample of this boulder contained over 10% copper. Two hundred claims were staked to cover the potentially favourable geological setting.

In 1971, a reconnaissance scale grid was flagged out over the southern part of the claim block and soil sampling and magnetometer surveys were conducted 41 line miles (66 km). This work indicated the presence of a 10,000 foot (3,048-m long) magnetically anomalous zone which was coincident with anomalous copper and zinc values in soils. The magnetic anomaly appeared to lie parallel with the stratigraphy and was correlative with a sulphide-bearing sequence in phyllites. Two
holes were diamond drilled to test this zone and intersected sulphide bearing phyllite with varying amounts of pyrrhotite, pyrite and chalcopyrite.

K.L. Daughtry staked the SCOTCH claim to cover the magnetic anomaly in 1976 and sold the property to Brican Resources Ltd. Craigmont Mines Ltd. optioned the claim shortly afterward and subsequently staked six additional claims, totalling 104 units, covering much of the old claim block.

Craigmont then conducted a regional airborne DIGHEM survey which included the ground around the SCOTCH claim. Many conductors were indicated and a strong magnetic anomaly was delineated co-incident with one of these in the area of the previously known magnetic anomaly. A ground follow-up programme was initiated in which a total of 48 line-kilometers (29.3 line-miles) of grid was installed. Geochemical soil, magnetometer and VLF EM-16 surveys were carried out over the entire grid. The large anomaly on the SCOTCH claim was better defined as a co-incident geochemical, magnetic and electromagnetic anomalous zone. Several other attractive anomalies were also discovered.

In 1977 Craigmont drilled 4 holes to test geophysical targets in the main anomalous zone. Three of these holes were drilled in the same area of the two holes in the 1971 programme. The first two holes intersected the same sulphide zone as previous work. The third hole intersected better copper mineralization than had been previously been found in the heavy to massive sulphide zones. The fourth hole intersected the sulphide zone near the west end of the anomaly. No further work was done and the claim was returned to Brican effective September 30, 1978.

Esso Resources Canada Ltd. optioned the SCOTCH property from Brican in March 1979 and conducted further ground magnetometer and electromagnetic Max Min surveys. This work confirmed the presence of strong magnetic anomalies with a significant apparent displacement from the locations defined by Craigmont. One short hole was drilled by Esso in the western part of the SCOTCH claim to test one of the conductors. This hole intersected both sulphide mineralization and graphitic schist.

In 1983, Esso carried out geological mapping and lithogeochemical studies. The option was subsequently terminated and the claims were returned to Brican in 1984.

In 1985, Brican conducted a programme of backhoe trenching in an attempt to expose the source of the main geophysical anomaly. This trenching revealed an extensive zone of sulphide mineralization but no source of the magnetic anomaly and no strong conductor was evident.

The previous surveys were run with line spacings of at least 20 m (65.6 ft). This lack of detail, coupled with the discrepancies in the location of conductors between previous surveys, prompted Brican to undertake a more detailed magnetic survey in 1986. This work resulted in a more precise delineation of the geophysical targets. Consequently, detailed magnetic, electromagnetic and gravimetric surveys were carried out in the autumn of 1986.

In 1987, Brican acquired the SCOTCH 2 by staking, and carried out additional geophysical surveys that further delineated the anomalous targets in greater detail and tested conductors for gravity response.

Early in 1988, two targets were tested by drilling. On the SCOTCH zone, strong geophysical conductors occur in a favourable setting similar to the Samatosum deposit (Rea Gold) and the Homestake Mine. On the SCOTCH 2 zone, an anomalous concentration of Pb and Zn in souls occurs along a favourable geological contact.

From 1988 to 2010, no work from the area of the current Scotch Creek property was recorded.

The 2010 prospecting program comprising the current work is reported upon herein.

3.0 GEOLOGICAL SETTING

3.1 Regional Geology

The area around the Scotch Creek property was mapped and its geology was interpreted by A.V. Okulitch (1979), of the Geological Survey of Canada, from 1972 to 1974 (Figure 4).

Okulitch mapped the rocks around the property-area as metamorphosed volcanic and sedimentary members of the Cambrian to Ordovician-age Eagle Bay Formation. He correlated the Eagle Bay Formation with the rocks of the Kootenay Arc, the main body of which was exposed in southeastern British Columbia, east of Shuswap Highland. His discussion of the characteristics and correlation of the Eagle Bay Formation with the rest of the Kootenay Arc are as follow:

The Eagle Bay Formation contains numerous distinct lithological units. Their stratigraphic sequence within the formation is not fully understood. Much of the sequence appears to be overturned and parts are repeated by recumbent folds ... All units are discontinuous, primarily because of disruption associated with polyphase folding, but the likelihood of facies changes adds unassessed complexity to any stratigraphic relationships. In general, lowest stratigraphic levels are exposed in the eastern parts of the formation (Shuswap Range) where early Cambrian rocks may be present and the highest levels are seen west of Adams Lake where infolds of younger units ... crop out.

... The Eagle Bay Formation is correlated with the Lardeau Group on the basis of its pre-Devonian age ... and its striking lithologic similarity. Some early Cambrian units may occur within it ... which may be correlative with the Badshot Limestone of the Kootenay Arc ...

Figure 3

CASSIAN EAST YUKON EXP. LTD.

SCALE

0 2 4 6 8 10 km
1 2 3 4 5 mi

NOTE: For legend, see Figure 3A.

REGIONAL GEOLOGY
from G.S.C. OPEN FILE 637

SCOTCH CREEK PROPERTY
83° 57' 15" N., 119° 29' 26" W.
U.T.M.: 556,160 N., 534,880 E.
N.T.S.: 62 L/13 + L/14, KAMLOOPS M.D., B.C.
BRUCE SQUINAS
MAY, 2010
Figure 3A
Legend to Figure 3
Figure 3A
Legend to Figure 3 Continued
The Scotch Creek property is located at the southeastern margin of Adams Plateau. R.C. Wells (1987) summarized the geology of Adams Plateau as follows:

The Barriere Lakes - Adams Plateau region has received fairly comprehensive regional mapping in the 1980s mainly via V.A. Preto, G.P. McLaren and P.A. Schiarizzsa (1980) at 1:100,000 scale, and by V.A. Preto (1981 and 1984). Virtually all of the following text is based on these publications.

Much of the Adams Plateau, east of Adams Lake is underlain by deformed and metamorphosed sediments and volcanics belonging to the Eagle Bay Formation (Devonian to Mississippian age?) ... The Eagle Bay can be divided into two main rock packages in this area as follows:

Eagle Bay Formation (EBG) which is dominated by green, calcareous chloritic schist derived from mafic to intermediate volcanic and volcaniclastic rocks. A thick carbonate unit called the Tshinakin Limestone (EBGt) outcrops over large areas on the northern edge of the plateau.

Eagle Bay Formation (EBA) is dominated by silvery to grey felsic phyllites derived largely from felsic to intermediate volcanic and volcaniclastic rocks. On the southern part off the plateau this sequence contains much quartzo-feldspathic schist and gneiss possibly derived from felsic intrusive rocks.

Quartz-feldspar porphyry (qp) dikes and sills of Cretaceous or Tertiary age cut the Eagle Bay sequence and generally have north to northwesterly strike. Cretaceous, quartz monzonite stocks are generally small and may be related to the Baldy batholith.

On the Adams Plateau the Eagle Bay stratigraphy generally strikes easterly with shallow dip to the north. At least two periods of folding are evident with an early fold set with west to northwest trending axes that plunge gently north. The contact between Eagle Bay units EBG and EBA is defined by Preto (1980) as a north dipping thrust fault ...

3.2 Property Geology

K.L. Daughtry (1986) described the geology of the Scotch Creek property-area as follows:

The Scotch claims are underlain by a tightly folded sequence of metavolcanic and metasedimentary rocks with well developed foliation generally striking east-west and dipping between 25° and 50° northward. A small stock of rhyolitic quartz-eye porphyry outcrops near the southeast corner of the property and numerous rhyolite, quartz porphyry, andesite and microdiorite dykes occur. A large pluton of intermediate composition intrudes the metamorphic rocks northeast of the property. Several north-south fault zones are believed to occur in the area, most notably in Scotch Creek and Corning Creek valleys.

The Sicamous formation, consisting predominantly of black argillaceous limestone and argillite underlies the southern part of the claims. Structurally overlying this unit is the “Lower” Eagle Bay formation, comprising, comprising chlorite phyllite, chlorite-sericite phyllite, sericite phyllite, quartz-eye sericite and quartz-eye chloritic phyllite and minor crystal tuff, limestone, dolomite and chert. This assemblage was originally thought to be entirely metasedimentary. Later work indicated the presence of some tuffaceous horizons, and the most recent interpretation is a metamorphosed series
of felsic to intermediate flows, subaqueous ash flows, crystal tuffs, tuffaceous sediments, and pelitic
calcareous and cherty sediments.

The entire sequence on the property is believed to be overturned. The general north-south
succession of rock types from massive andesite and dacite or rhyolitic flows north of the claims,
through a pyroclastic sequence and exhalite-bearing sequence to sedimentary rocks, supports this
concept. Also, the contact between Sicamous and Eagle Bay rocks is known to be gradational and
conformable, but the Eagle Bay lithology varies markedly at various points along the contact. This
suggests that the Sicamous sediments were deposited upon an uneven surface of the volcanic Eagle
Bay rocks without an erosional break.

The bedding is seen to be parallel or sub-parallel to the foliation in some places, but the
general distribution of rock types suggests a northerly dip of about 15° in some parts of the property,
much flatter than the dip of the foliation. The fold style is recumbent isoclinal with axes parallel to
foliation. Future geological studies must anticipate the possibility of a relatively complex fold
structure, further complicated by facies changes in individual lithologic units typical of a volcanogenic
environment.

During the current prospecting program, the rocks in the southeastern part of the property were found
to be mostly quartz-feldspar schists of the Eagle Bay Formation; the rocks in the southwestern part of the
property were mostly black schists and marbles of the Sicamous Formation with various amounts of white
calcite in bands (Figure 4).

4.0 DEPOSIT TYPE SOUGHT ON THE SCOTCH CREEK PROPERTY

4.1 Noranda-type Massive Sulphide Deposit

The mineral exploration target on the Scotch Creek property is a Noranda-type massive sulphide
deposit. Noranda/Kuroko massive sulphide deposits were described by Trygve Høy (1995) as follows:

NORANDA/KUROKO MASSIVE SULPHIDE Cu-Pb-Zn G06

IDENTIFICATION

SYNONYM: Polymetallic volcanogenic massive sulphide.

COMMODITIES (BYPRODUCTS): Cu, Pb, Zn, Ag, Au (Cd, S, Se, Sn, barite, gypsum)

EXAMPLES (British Columbia (MINFILE # - Canada/ International):
Homestake (082M025), Lara (092B001), Lynx (092B129), Myra (092F072), Price (092F073), H-W
(092F330), Ecstall (103H011), Tulsequah Chief (104K011), Big Bull (104K008), Kutcho Creek
(104J060), Britannia (092G003); Kidd Creek (Ontario, Canada), Buchans (Newfoundland, Canada),
Bathurst-Newcastle district (New Brunswick, Canada), Horne-Quemont (Québec, Canada), Kuroko
district (Japan), Mount Lyell (Australia), Rio Tinto (Spain), Shasta King (California, USA), Lockwood
(Washington, USA).
GEOLOGICAL CHARACTERISTICS

CAPSULE DESCRIPTION:
One or more lenses of massive pyrite, sphalerite, galena, and chalcopyrite commonly within felsic volcanic rocks in a calcalkaline bimodal arc succession. The lenses may be zoned, with a Cu-rich base and a Pb-Zn-rich top; low-grade stockwork zones commonly underlie lenses and barite or chert layers may overlie them.

TECTONIC SETTING:
Island arc; typically in a local extensional setting or rift environment within, or perhaps behind, an oceanic or continental margin arc.

DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING:
Marine volcanism; commonly during a period of more felsic volcanism in an andesite (or basalt) dominated succession; locally associated with fine-grained marine sediments; also associated with faults or prominent fractures.

AGE OF MINERALIZATION:
Any age; In British Columbia typically Devonian; less commonly Permian-Mississippian, Late Triassic, Early (and Middle) Jurassic, and Cretaceous.

HOST / ASSOCIATED ROCK TYPES:
Submarine volcanic arc rocks; rhyolite, dacite associated with andesite or basalt; less commonly, in mafic alkaline arc successions; associated epiclastic deposits and minor shale or sandstone; commonly in close proximity to felsic intrusive rocks. Ore horizon grades laterally and vertically into thin chert or sediment layers called informally “exhalites”.

DEPOSIT FORM:
Concordant massive to banded sulphide lens which is typically metres to tens of metres thick and tens to hundreds of metres in horizontal dimension; sometimes there is a peripheral apron of “clastic” massive sulphides; underlyng crosscutting “stringer” zone of intense alteration and stockwork veining.

TEXTURE / STRUCTURE:
Massive to well layered sulphides, typically zoned vertically and laterally; sulphides with quartz, chert or barite gangue (more common near the top of the deposit); disseminated, stockwork and vein sulphides (footwall).

ORE MINERALOGY (Principal and subordinate):
Upper massive zone: pyrite, sphalerite, galena, chalcopyrite, pyrrhotite, tetrahedrite-tennantite, bornite, arsenopyrite. Lower massive zone: pyrite, chalcopyrite, sphalerite, pyrrhotite, magnetite.

GANGUE MINERALOGY:
Barite, chert, gypsum, anhydrite and carbonate near top of lens, carbonate, quartz, chlorite and sericite near the base.

ALTERATION MINERALOGY:
Footwall alteration pipes are commonly zoned from the core with quartz, sericite or chlorite to an outer zone of clay minerals, albite and carbonate (siderite or ankerite).

ORE CONTROLS:
More felsic component of mafic to intermediate volcanic arc succession; near centre of felsic volcanism (marked by coarse pyroclastic breccias or felsic dome); extensional faults.
ASSOCIATED DEPOSIT TYPES:
Stockwork Cu deposits; vein Cu, Pb, Zn, Ag, Au.

EXPLORATION GUIDES

GEOCHEMICAL SIGNATURE:
Zn, Hg and Mg halos, K addition and Na and Ca depletion of footwall rocks; closer proximity to deposit - Cu, Ag, As, Pb; within deposit - Cu, Zn, Pb, Ba, As, Ag, Au, Se, Sn, Bi.

GEOPHYSICAL SIGNATURE:
Sulphide lenses usually show either an electromagnetic or induced polarization signature depending on the style of mineralization and the presence of conductive sulphides. In recent years borehole electromagnetic methods have proven successful.

OTHER EXPLORATION GUIDES:
Explosive felsic volcanics, volcanic centres, extensional faults, exhalite (chert) horizons, pyritic horizons.

ECONOMIC FACTORS

GRADE AND TONNAGE:
Average deposit size is 1.5 million metric tonnes (1.65 million tons) containing 1.3% Cu, 1.9% Pb, 2.0% Zn, 0.16 g/t (0.047 oz/ton) Au and 13 g/t (0.38 oz/ton) Ag ... British Columbia deposits range from less than 1 to 2 million metric tonnes (1.1 to 2.2 million tons) to more than 10 million metric tonnes (11 million tons). The largest are the H-W 10.1 million metric tonnes (11.1 million tons) with 2.0% Cu, 3.5% Zn, 0.3% Pb, 30.4 g/t (0.89 oz/ton) Ag and 2.1 g/t (0.061 oz/ton) Au, and Kucho with a combined tonnage of 17 million metric tonnes (18.7 million tons) of 1.6% Cu, 2.3% Zn, 0.06% Pb, 29 g/t (0.85 oz/ton) Ag and 0.3 g/t (0.009 oz/ton) Au.

IMPORTANCE:
Noranda/Kuroko massive sulphide deposits are major producers of Cu, Zn, Ag, Au and Pb in Canada. Their high grade and commonly high precious metal content continue to make them attractive exploration targets.

Høy, Trygve
in:

4.2 MINFILE Occurrence on the Scotch Creek Property

Most of the previous drilling was focused on the SCOTCH prospect (MINFILE No. 082LNW046 which was located in the southeastern part of the MARION (604866) claim (Table 1, Figures 2 and 4).

The MINFILE description of that occurrence is as follows:
Name: SCOTCH Observed U.T.M. Location: 5,647,483 N 324,938 E
MINFILE No.: 082LNW046 Elevation a.s.l. 1,212 m
Current Claim: MARION
Record No.: 604866

The Scotch occurrence area is underlain by a tightly folded and overturned sequence of metavolcanic and metasedimentary rocks of the Devonian Skwaam Bay unit and Devonian and/or older Woolford Creek unit, both of the Eagle Bay assemblage. Rocks exhibit a well developed foliation generally striking west and dipping between 25 degrees and 30 degrees north.

Diamond drilling has intersected a stratigraphic sequence comprised of sericite chlorite phyllite, graphitic argillite, interbanded argillaceous marble and calcareous argillite, chlorite sericite schist and calcareous argillaceous siltstone.

Stratabound and strataform dispersed and massive sulphide mineralization has been discovered in several places on and near the property, as well as in drill holes. The predominant sulphide mineral is pyrrhotite, with lesser pyrite and variable amounts of sphalerite, galena and chalcopyrite.

A drill hole located 2000 metres west of the main mineralized area intersected minor interbands and stringers of pyrrhotite, pyrite, chalcopyrite, sphalerite, and galena.

5.0 CURRENT PROSPECTING

5.1 Program Parameters

A total of 78 hectares (192.7 acres) on the southeastern part of the Scotch Creek property was prospected during the current program (Table 3, Figure 4). Work was largely confined to the area down hill from and southeast of the snow line which was at an elevation of about 1,250 m (4,101 ft) during the middle of April, 2010.

Areas away from the roadsides were covered by a series of circular traverses across the hill slopes. This was done to maximize coverage of the area, especially near the previous main drilling area on the southeastern part of the MARION (604866) claim. Prospecting was conducted by 2-man teams to help discourage interaction with the numerous black bears that were foraging on spring growth just down-hill from the snow-covered area.

5.2 Program Results

Various styles of sulphide mineralization were found at four locations on the property during the April, 2010 prospecting program (Table 1).
The flashiest mineralization was found along the west side of the 671 road in the northeastern part of the KARALEE (604938) claim where a roadside outcrop had been blasted and opened up using a bulldozer by previous prospectors or claim owners. Rock was spread over an area of about 15 m2 (49.2 ft2). No record was found of that work. There, fine-grained sericite schist hosted quartz and calcite segregations with very coarse-grained blebs and knots of pyrite, sphalerite, and galena. It was determined that this was a pegmatitic scarn showing that had no size potential.

Several pebbles of chloritic schist containing massive and disseminated pyrite, pyrrhotite, chalcocite, and galena were found in the road gravel at the junction of the 671 road with two other logging roads on the western part of the KARALEE (604938) claim (Figure 4). A chloritic boulder with similar disseminated sulphides was found in a log yard on the eastern part of the MARION 2 (605310) claim about 350 m (1,148 ft) southwest of the road junction. A traverse was conducted around the logged-off slope north of the log yard; no more mineralized rock was found.

A traverse was made up the drill road along the northern side of the main area of previous drilling on the southeastern part of the MARION (604866) claim. A 4-m3 (141 ft3) block containing ribbons of pyrite, sphalerite, and galena in chloritic schist was found on the northern side of the road just beneath snow-line (Figure 4). Three traverses were made across the main drilling area. The slope hosted mixed float with no rock outcrop.

A traverse was made up the 671 road where is crossed the eastern part of the GLORIA (604873) claim. Chloritic schist pebbles containing disseminated pyrrhotite, pyrite, sphalerite, and galena were found in a 16 m2 (172 ft2) area on the east side of the road. That area looked like a kill zone where there was little growth due to a high soil-metal content.

6.0 Duration, Area, Location, Management, and Cost of the Current Exploration Program

Work was conducted on the property from April 17 to 22, 2010 and comprised a total of 20 man-days (160 man-hours) of work including transport time. Data compilation and reporting was not claimed for assessment credit.
Table 3
Duration of the 2010 Work

<table>
<thead>
<tr>
<th>Name</th>
<th>Prospecting</th>
<th>Tspt. + weather days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce Squinas</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Williams Lake, B.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joseph Lawrence</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Cache Creek, B.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradley Lawrence</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Cache Creek, B.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmen McKay</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Cache Creek, B.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total man-days</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Table 4
Area of the 2010 Work

<table>
<thead>
<tr>
<th>Prospecting Activity</th>
<th>Area ha. (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road traverses (7,300 X 10 m)</td>
<td>36.5 (90.16)</td>
</tr>
<tr>
<td>Slope traverses (total of 7)</td>
<td>41.5 (102.5)</td>
</tr>
<tr>
<td>Total area of work</td>
<td>78 (192.66)</td>
</tr>
</tbody>
</table>

Table 5
Location of the 2010 Work

<table>
<thead>
<tr>
<th>Activity</th>
<th>Claims Name</th>
<th>Record No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospecting</td>
<td>MARION</td>
<td>604866</td>
</tr>
<tr>
<td></td>
<td>PENNY</td>
<td>604872</td>
</tr>
<tr>
<td></td>
<td>GLORIA</td>
<td>604873</td>
</tr>
<tr>
<td></td>
<td>KARALEE</td>
<td>604938</td>
</tr>
<tr>
<td></td>
<td>MARION 2</td>
<td>605310</td>
</tr>
</tbody>
</table>
Table 6
Contractor for the 2010 Work

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce Squinas</td>
<td>prospecting</td>
</tr>
<tr>
<td>1-438 9th Avenue, Williams Lake, BC, V2G 2K4 (778) 412-2002</td>
<td></td>
</tr>
<tr>
<td>John Ostler, M.Sc., P.Geo.</td>
<td>editorial assistance</td>
</tr>
<tr>
<td>1015 Clyde Avenue, West Vancouver, BC, V7T 1E3 (604) 926-8454</td>
<td></td>
</tr>
</tbody>
</table>

Table 7
Cost of the 2010 Work

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages:</td>
<td></td>
</tr>
<tr>
<td>Joseph Lawrence, 5 days @ $150/day</td>
<td>$750</td>
</tr>
<tr>
<td>Bruce Squinas, 5 days @ $150/day</td>
<td>$750</td>
</tr>
<tr>
<td>Bradley Lawrence, 5 days @ $100/day</td>
<td>$500</td>
</tr>
<tr>
<td>Carmen McKay, 5 days @ $150/day</td>
<td>$750</td>
</tr>
<tr>
<td></td>
<td>$2,750</td>
</tr>
<tr>
<td>Transport:</td>
<td></td>
</tr>
<tr>
<td>Gasoline and camp fuel</td>
<td>$275</td>
</tr>
<tr>
<td>NOTE: Vehicles were not charged out to the project</td>
<td>$275</td>
</tr>
<tr>
<td>Camp and Crew Costs:</td>
<td></td>
</tr>
<tr>
<td>Scotch Creek Camp ground, 4 nights @ $27.50/night</td>
<td>$110</td>
</tr>
<tr>
<td>Camp food, 20 man-days @ $20/man-day</td>
<td>$400</td>
</tr>
<tr>
<td>NOTE: Camp equipment and supplies were not charged out to the project</td>
<td>$510</td>
</tr>
<tr>
<td>Reporting Costs and Office Expenses:</td>
<td></td>
</tr>
<tr>
<td>Not charged out to the project</td>
<td>$0</td>
</tr>
<tr>
<td>G.S.T. on $3,535</td>
<td>$177</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$3,712</td>
</tr>
</tbody>
</table>

NOTE: Only $3,200 of this was applied for assessment credit.
5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

One occurrence of pegmatitic scarn mineralization comprising coarse-grained Pyrite, pyrrhotite, sphalerite, chalcopyrite, and galena was found in the northeastern part of the property area. Four occurrences of disseminated Pyrite, Pyrrhotite, chalcopyrite, sphalerite and galena mineralization were found in the property’s southern and eastern parts. All of the disseminated sulphide mineralization was hosted by chloritic schist.

Chloritic schist was observed in a 2.5-km (1.53mi) wide band that seems to trend west-northwestward across the property area. Chloritic schist is flanked to the northeast by quartz-feldspar schist and to the southwest by impure black marble hosting white calcite bands.

Chloritic schist is the most prospective rock unit on the Scotch Creek property.

5.2 Recommendations

It is recommended that further prospecting and geological mapping be conducted on the Scotch Creek property.

Bruce Squinas

Bruce Squinas, Prospector,
Williams Lake, British Columbia,
Effective Date: May 6, 2010
November 26, 2010

John Ostler

Editorial assistance from
John Ostler: M.Sc., P.Geo.,
Consulting Geologist,
West Vancouver, British Columbia,
November 26, 2010
8.0 REFERENCES

Høy, Trygve, Noranda/Kuroko Massive Sulphide Cu-Pb-Zn
in:
Vol. 1 - Metallics and Coal; B.C. Min. Employment and Investment,

Kyba, B.W.; 1988: Diamond Drill Assessment Report on the Scotch Property Scotch 1 and 2 Claims ...;
drill logs.

Okulitch, A.V.; 1979: Geology and Mineral Occurrences of the Thompson-Shuswap-Okanagan region,
south-central B.C.; G.S.C. Open File 637, 5 maps and sections, descriptions.

appendices, 10 maps.
CERTIFICATE OF QUALIFICATION

I, Bruce Squinas of 1-438 9th Avenue in the City of Williams Lake, Province of British Columbia do hereby certify:

That I am a prospector with business address at, 1-438 9th Avenue, Williams Lake British Columbia;

That I apprenticed under my father, Joseph T. Lawrence who has been a prospector for more than 45 years;

That I have been a professional prospector for more than 15 years;

That this report is based on data in the literature and exploration conducted by me on the Scotch Creek property from April 18 to 21, 2010;

Bruce Squinas
Prospector
Williams Lake, British Columbia
November 26, 2010
CERTIFICATE OF QUALIFICATION

I, John Ostler, of 1015 Clyde Avenue in the City of West Vancouver, Province of British Columbia
do hereby certify:

That I am a consulting geologist with business address at 1015 Jefferson Avenue, West Vancouver, British
Columbia;

That I am a graduate of the University of Guelph in Ontario where I obtained my Bachelor of Arts degree in
Geography (Geomorphology) and Geology in 1973, and that I am a graduate of Carleton University of Ottawa,
Ontario where I obtained my Master of Science degree in Geology in 1977;

That I am registered as a Professional Geoscientist with the Association of Professional Engineers and
Geoscientists of British Columbia;

That I have been engaged in the study and practice of the geological profession for over 35 years;

That I have assisted Bruce Squinas in the production this:

That subsequent to the prospecting work reported upon in this report, Bruce Squinas worked for me on the
Scotch Creek property, that I have personally visited all of the sites he has reported upon, and that I can verify
his observations.

As editor of this report I can attest that all sources of information not based on my personal knowledge of the
Scotch Creek property area of Bruce Squinas are referenced in a standard format.

John Ostler; M.Sc., P.Geo.
Consulting Geologist

West Vancouver, British Columbia
November 26, 2010