Ministry of Forests, Mines and Lands
BC Geological Survey

ASSessment Report
Title Page and Summary

TYPE OF REPORT [type of survey(s)]: Geophysical Report - Rohan Property

TOTAL COST: $100011.96

AUTHOR(S): Jarrod Brown

SIGNATURE(S): Jarrod A. Brown

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):

YEAR OF WORK: 2011

STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 4929455 - July 29, 2011

PROPERTY NAME: Rohan (TH - claims)

CLAIM NAME(S) (on which the work was done): 715462, 715543, 715482 715583, 715542, 715442, 715502 715522

COMMODITIES SOUGHT: Au, Ag, Cu, Mo

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 104M032

MINING DIVISION: Atlin

NTS/BCGS: 104M15, 104M14

LATITUDE: 59° 58' 38" " LONGITUDE: 134° 57' 52" " (at centre of work)

OWNER(S):
1) Eagle Plains Resources Ltd

MAILING ADDRESS:
Suite 200, 44-12 Ave. S.

Cranbrook BC, V1C 2R7

OPERATOR(S) [who paid for the work]:
1) Rosedale Resources Ltd

MAILING ADDRESS:
11400 - 400 Burrard St, Vancouver, BC; V6C 3A6

PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):
Granodiorite, siltstone, limestone, Cretaceous, Boundary Ranges Suite, Whitehorse Trough sediments, Tally-Ho/Llewellyn shear systems, silicification, pyritization, molybdenite

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: none
<table>
<thead>
<tr>
<th>TYPE OF WORK IN THIS REPORT</th>
<th>EXTENT OF WORK (IN METRIC UNITS)</th>
<th>ON WHICH CLAIMS</th>
<th>PROJECT COSTS APPORTIONED (incl. support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGICAL (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground, mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo interpretation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOPHYSICAL (line-kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induced Polarization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne Mag+EM; 204 line-km</td>
<td>all</td>
<td></td>
<td>$98003.21</td>
</tr>
<tr>
<td>GEOCHEMICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRILLING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELATED TECHNICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling/assaying</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallurgic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROSPECTING (scale, area)</td>
<td>spot site visit</td>
<td>715502</td>
<td>$2008.75</td>
</tr>
<tr>
<td>PREPARATORY / PHYSICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line/grid (kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topographic/Photogrammetric (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal surveys (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road, local access (kilometres)/trail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trench (metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground dev. (metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COST:</td>
<td></td>
<td></td>
<td>$100011.96</td>
</tr>
</tbody>
</table>
2011 GEOPHYSICAL REPORT

ROHAN PROPERTY
(TH Claims)

Atlin Mining Division
Mapsheet 104M/15

Center of Work
Latitude 59° 58’ 38”N, Longitude 134°57’ 52”W

Prepared for:

EAGLE PLAINS RESOURCES LTD
Suite 200, 44-12th Ave. S.
Cranbrook, B.C. V1C 2R7

And

ROSEDALE RESOURCES LTD.
1400 - 400 Burrard Street
Vancouver, BC V6C 3A6

By
Jarrod A. Brown, M.Sc., P.Geo.
TERRALOGIC EXPLORATION SERVICES
Suite 200, 44-12th Ave. S.
Cranbrook, B.C. V1C 2R7

October 12, 2011
SUMMARY

The Rohan Property is located in northwestern British Columbia near the Yukon border, ~80 kilometres south of Whitehorse, YK, and 80 kilometres northwest of Atlin BC. Access to the property can be gained by boat from Carcross YK, or helicopter from Atlin, BC or Whitehorse, YK.

The property consists of 9 MTO mineral claims totalling 2949.2 Ha, located within 1:50K NTS mapsheets 104M15 and 104M14. The claims are owned 100% by Eagle Plains Resources Ltd. with no underlying encumbrances. The property is currently under option to Rosedale Resources Ltd. (a private BC company), who paid for the 2011 exploration program as per the agreement with Eagle Plains Resources Ltd., announced by news release on February 23, 2011. Exploration activities were managed and carried out by TerraLogic Exploration Services Ltd., a wholly owned subsidiary of Eagle Plains Resources Ltd. The airborne geophysical survey, which is the subject of this report, covered portions of all of the above claims.

The Rohan Property covers several regional stream-silt (RGS) anomalies that includes better than 95th percentile values for Au, Cu, Sb, As and Pb. The RGS anomalies, located along a major crustal scale fault system (Llewellyn/Tally-Ho), combined with known on-strike gold-bearing showings to the north and south, were the main rationale for staking of the open ground by Eagle Plains Resources in 2010.

Very little historic work has been recorded within the current Rohan tenure area. Reconnaissance stream sediment sampling was reportedly completed in the region in 1981, and the one minfile location on the property (MF 104M 032), lists the potential for limestone as an industrial mineral source, but no systematic evaluation of the commodity was given.

Most 2011 exploration expenditures were utilized for an airborne EM & Magnetic geophysical survey completed by SkyTEM Airborne Surveys, between July 21st to July 27th, 2011. The 204 line-kilometre survey was completed along idealized 100 m spaced flight-lines, at a nominal terrain clearance of 30-40 m. A one day site visit by the author and an independent qualified person was carried out on MTO claim number 715502, in the fall of 2011, as follow up to the airborne survey.

The 2011 airborne geophysical survey highlights numerous strong EM anomalies including at least two kilometer-scale ovoid anomalies, plus several linear anomalies associated with regional lithologic contacts. Ground-truthing of the anomalies by way of mapping, prospecting and silt sampling is required in order to properly assess the mineralization potential of these geophysical anomalies. It is significant to note that the September 2011 field visit successfully located molybdenite mineralization and pyritiferous porphyritic intrusive outcrop near the west limit of one of the ovoid EM anomalies.

Future work on the property should include property wide stream-silt sampling, prospecting and regional mapping, followed by detailed mapping and rock sampling in areas of significant mineralization and/or alteration.

Total assessment valid expenses for the 2011 field season were $100,011.96.
Table of Contents

Introduction ... 1
 Location, Access, Physiography and Climate .. 1
 Tenure .. 3
 History and Previous Work ... 5
Geology .. 6
 Regional Geology .. 6
 Local Geology (BC/Yukon border area) .. 6
 Adjacent Mineralization .. 9
2011 Exploration Program .. 13
 Airborne Geophysics Program ... 13
 Field Program ... 13
 Airborne Results ... 13
Conclusions & Recommendations ... 15
References .. 16

List of Figures

Figure 1 – Property Location Map .. 2
Figure 2 – Tenure Map ... 4
Figure 3 – Regional Geology Map ... 7
Figure 3b – Regional Geology Legend .. 8
Figure 4 – Property Geology and Compilation Map ... 12
Figure 5 – SkyTEM geophysical survey flight lines .. 14

List of Tables

Table 1 – Rohan Tenure Summary ... 3

List of Appendices

Appendix I – Statement of Qualifications
Appendix II – Statement of Expenditures
Appendix III – Software
Appendix IV – SkyTEM Airborne Geophysical Survey Report and data output
INTRODUCTION

Location, Access, Physiography and Climate

The Rohan Property is located in the Atlin Mining Division of northern British Columbia, within NTS mapsheet 104M15, and the very eastern limits of 104M14 (Figure 1). The 2949.2 hectare property abuts the Yukon border, ~ 80 kilometres south of Whitehorse, YT, and 80 kilometres northwest of Atlin BC. Logistically, the property is well situated near the historic White Pass rail line, 60 kilometres north of Skagway, Alaska, with boat access to the eastern property limit, 22 kilometres from Carcross, YT. Helicopter access to the property is gained from Atlin, BC, Whitehorse, YK, or preferably on call from Carcross, YT.

The property area is characterized by high relief ranging from Bennett Peak (2025 m AMSL) to the shoreline of Bennett Lake (~670 m AMSL). Treeline in the region lies between approximately 1000 to 1200 m AMSL. Above this, subalpine areas comprise moderate to very steep slopes of talus and barren exposed rock. The Bennett Ranges have been subjected to glaciation as is evident by horne and arrete geomorphology and ubiquitous moraine and till features; however no significant glaciers remain in the tenured area, but small permanent snow patches are present in a number of alpine basins.

Climate data from the nearest townsite of Carcross, YT on Bennett Lake indicates an average temperature range from -19.8 °C (Jan) to 12.4 °C (Jul), with an annual precipitation average of 276 mm. March thru May are the driest months of the year averaging 10 mm precipitation per month during that period, in contrast to an average of 27 mm precipitation per month for the rest of the year.
Tenure

The property consists of 9 MTO mineral claims totalling 2949.2 Ha, located within 1:50K NTS mapsheets 104M15 and 104M14, and 1:20K mapsheets 104M.096 and 104M.097 (Table I). The claims are owned 100% by Eagle Plains Resources Ltd. with no underlying encumbrances.

Table 1 – Rohan Tenure Summary

<table>
<thead>
<tr>
<th>Tenure Number</th>
<th>Claim Name</th>
<th>Ownership</th>
<th>Recording Date</th>
<th>Expiry Date*</th>
<th>Mining Division</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>715462 TH</td>
<td>100% EPL</td>
<td>5-Mar-10</td>
<td>2-Oct-13</td>
<td>Atlin</td>
<td>405.3</td>
<td></td>
</tr>
<tr>
<td>715543 TH</td>
<td>100% EPL</td>
<td>5-Mar-10</td>
<td>2-Oct-13</td>
<td>Atlin</td>
<td>48.6</td>
<td></td>
</tr>
<tr>
<td>715482 TH</td>
<td>100% EPL</td>
<td>5-Mar-10</td>
<td>2-Oct-13</td>
<td>Atlin</td>
<td>404.9</td>
<td></td>
</tr>
<tr>
<td>715583 TH</td>
<td>100% EPL</td>
<td>5-Mar-10</td>
<td>2-Oct-13</td>
<td>Atlin</td>
<td>81.0</td>
<td></td>
</tr>
<tr>
<td>715542 TH</td>
<td>100% EPL</td>
<td>5-Mar-10</td>
<td>2-Oct-13</td>
<td>Atlin</td>
<td>405.2</td>
<td></td>
</tr>
<tr>
<td>715562 TH</td>
<td>100% EPL</td>
<td>5-Mar-10</td>
<td>2-Oct-13</td>
<td>Atlin</td>
<td>388.9</td>
<td></td>
</tr>
<tr>
<td>715442 TH</td>
<td>100% EPL</td>
<td>5-Mar-10</td>
<td>2-Oct-13</td>
<td>Atlin</td>
<td>404.9</td>
<td></td>
</tr>
<tr>
<td>715502 TH</td>
<td>100% EPL</td>
<td>5-Mar-10</td>
<td>2-Oct-13</td>
<td>Atlin</td>
<td>405.1</td>
<td></td>
</tr>
<tr>
<td>715522 TH</td>
<td>100% EPL</td>
<td>5-Mar-10</td>
<td>2-Oct-13</td>
<td>Atlin</td>
<td>405.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total: 2949.2</td>
<td></td>
</tr>
</tbody>
</table>

*as of October 5, 2011, following 2011 SOW submission

The property is currently under option by Rosedale Resources Ltd. (a private BC company), who financed the 2011 exploration program, as per the agreement with Eagle Plains Resource Ltd. announced February 23, 2011. Under terms of the option agreement, Rosedale holds the exclusive right to earn a 60% interest in the property by completing $5 million in exploration expenditures, making $500,000 in cash payments and issuing 1 million common shares to Eagle Plains over 5 years. Eagle Plains will maintain a 4% Gross Metal Royalty on the claims, which may be reduced to 2% upon payment of $2 million.

All 2010-2011 exploration activities were managed and carried out by TerraLogic Exploration Services Ltd., a wholly owned subsidiary of Eagle Plains Resources Ltd. The airborne geophysical survey, which is the subject of this report, covered portions of all of the above claims.
Figure 2 - Tenure Map

Legend
- Mineral Occurrence
- BC / YK Border
- Railway
- Light Road
- Road
- Stream
- Contour
- Rohan Tenure Boundary

Projection - NAD 1983 UTM Zone 08N
Nominal Scale - 1 : 30,000
Date - 12/10/2011
History and Previous Work

Very little historic work has been recorded within the current Rohan tenure area. Reconnaissance stream sediment sampling was reportedly completed in the region in 1981 as part of the Kulta Project (AR 10427), but work efforts concentrated primarily on the east side of Bennett Lake.

The one minfile location on the property (MF 104M 032), lists the potential for limestone as an industrial mineral source, but no systematic evaluation of the commodity is given.

Adjacent showings to the north and south have seen modest grassroots exploration:

1) To the north, just across the Yukon border, Eagle Plains Resources completed a 3 day evaluation of the Tally-Ho (Bennett) property area in 2009, reporting on prospective shear zones containing Pb-Cu-Zn-Au mineralization in the Bennett Ranges.

2) Two kilometres south of the new tenure, the past-producing Grid Iron silver, gold, lead, zinc occurrence (MF 104M 001) is also hosted in identical sheared strata. Here, a 0.2 metres wide quartz vein, near an adit portal was reported (1901) to carry high gold and silver values. In 1901, 68 tonnes of ore were mined producing 2,582 grams of silver and 156 grams of gold. A sample of the quartz vein taken in 1982 assayed 3.2 grams per tonne gold, 315 grams per tonne silver, 2.05 per cent lead and 1.34 per cent arsenic (AR 10425).
GEOLOGY

Regional Geology

The property area occurs along the western edge of a major crustal shear system known as the Tally-Ho shear zone (THSZ) and the younger overprinting Llewellyn fault zone (LFZ). The Tally Ho shear zone is a 40 km long zone of highly strained rocks along the western margin of the Whitehorse Trough in southern Yukon, first recognized by Hart and Radloff (1990). The deformed belt of rocks is approximately 3 km wide and separates the Stikine Terrane to the east from Nisling Assemblage rocks of the Yukon-Tanana Terrane to the west. In the Yukon, western Stikinia includes the Upper Palaeozoic Takhini assemblage and the Upper Triassic to Lower Jurassic Lewes River and Laberge Groups of the Whitehorse Trough.

Rocks of the Tally Ho shear zone are mainly part of the Upper Triassic Lewes River Group (Wheeler, 1961; Hart and Radloff, 1990). Regionally, the Lewes River Group consists of dominantly volcanic Povoas formation overlain by sedimentary Aksala formation (Hart, 1997). The Pavoas formation is correlative to the British Columbia equivalent Stuhini formation, and together they form the Lewes River Arc (Hart, 1997). The area is crosscut by numerous Jurassic, Cretaceous and Eocene intrusive bodies. Post kinematic granitoid rocks dated at 173 Ma provide a lower age limit of deformation along the THSZ (Tizzard and Johnson, 2004).

The THSZ is structurally overprinted by the younger Llewellyn fault zone (LFZ) which extends southwards into BC (Tizzard and Johnson, 2004). In the Taku arm area west of Atlin, the LFZ marks but is not constrained to a major tectonic boundary between units of the Whitehorse Trough to the east, and the Boundary Ranges metamorphic suite to the west (Mihalynuk, 1999). Splay faults of the LFZ cutting through Jurassic sediments of the Laberge Group and Triassic volcanics of the Stuhini group are host to a number of important mineral deposits including the Engineer Mine, and Rupert Showings. Tertiary intrusive rocks are also associated with Au in quartz-calcite veins at the Ben-my-Chree and Titan showing, with the latter also associated with Mo-Cu “porphyry” style mineralization. The Boundary Ranges metamorphic suite is host to precious and base metal quartz vein mineralization at the Gridiron and Bighorn mines.

Local Geology (BC/Yukon border area)

Regionally mapped rock units in the target area near the BC/Yukon border include upper Permian to Triassic foliated and hornfelsed volcanic schists of the Takhini Formation (uPT), and augite and feldspar phryic intermediate to mafic volcanic flow units of the Povoas Formation (uTrP). Lower to Middle Jurassic overlap assemblage rocks of the Laberge Group (JL) outcrop near the BC border on the east flank of Bennett Mountain. At least 3 younger volcanic units also outcrop in the target area: Middle Cretaceous Mount Nansen (mKN) dark green to grey andesite; Upper Cretaceous Carmacks (uKC1) augite olivine basalt breccia, andesite and dacite flows and related epiclastics; and Lower Eocene Skukum (IES1) flow banded rhyolite-andesite flows and breccia, tuff and related epiclastic rocks.

Intrusive rocks in the target area include Middle Jurassic monzodiorite to quartz monzodiorite of the Bennett Pluton (MJgB), and leucocratic granite, granodiorite and monzonite of the early Tertiary Pennington Pluton (EtqN).
Volcanic and Sedimentary Rocks

Jurassic

Siltstone, sandstone; rare chert and local peperite.

Andesite, dacite, trachyte, rhyolite, related tuffs and breccias.

Sandstone, quartzite, siltstone, shale, conglomerate, minor coal.

Chert and quartz-pebble conglomerate, felsic ash-tuff, minor coal.

Basalt, olivine basalt, and rhyolite tuff and flows.

Ordovician to Triassic

Basalt, gabbro, siltstone, wacke, dacite.

Phyllite, pelitic schist, amphibolite, siliceous and gneissic tectonite.

Quartzite, limestone, quartz-plagioclase grit, quartz-feldspar schist,

Triassic

Siltstone, sandstone; graphic quartzite with minor interbedded carbonate,

Limestone, dolomite, quartzite, siltite and slate; some pillow basalt, schistose calcareous

Cretaceous

Dolomite, limestone, silty limestone and dolostone, sandstone, quartzite,

Devonian to Permian

Sandstone, chert-rich, Massive conglomerate, fine to coarse-grained

Cambrian to Devonian

Calcarenite; calcareous limestone, crinoidal limestone, interbedded limestone

Mesozoic

Diorite and pillowed to massive metabasalt; lesser amounts of sandstone,

Siltstone and shale, calcareous argillite, grey and black limestone, shaly

Quarzite, siltite and slate; some pillow basalt, schistose calcareous

Paleozoic

 undifferentiated intrusive rocks (g).

Ordovician

Granodiorite (gd), granite (gr), quartz diorite (qd), quartz monzonite (qm),

Granite (gr), quartz diorite (qd), quartz monzonite (qm),

Idaho Granite (ig), Iron Mountain Granite (im), Basalt (ba),

Cretaceous

Diorite (dr), gabbro (gb), granite (gr),

Mesozoic

Carbonates (co), quartz monzonite (qm), syenite (sy), orthogneiss (og) and

Ordovician

Porphyroclastic felsic (pf), porphyroclastic intermediate (pi), non-porphyroclastic felsic (pfi),

Proterozoic

B.C. Geological Survey

Geology of British Columbia: Geological Legend

Greenstone, chloritite, cherty tuff, graphitic argillite, thinly

Phyllite, siliceous phyllite, metachert, ribbon chert, chlorite schist,

Ribbon chert, cherty tuff, graphitic argillite, thinly

Andesitic breccia and tuff.

Shale, of chert, volcanic rock and sandstone; lesser amounts of sandstone,

Sandstone, feldspathic wacke, minor coal; minor basalt and

sandstone; rare chert and local peperite.

Basalt, andesite flows, lesser basalt flows.

Basalt, olivine basalt, andesite flows and pyroclastic cones, rhyolite, dacite and andesite flows

andesite, dacite, trachyte, rhyolite, related tuffs and breccias.

Sandstone, quartzite, siltstone, shale, conglomerate, minor coal.

thickly-stratified volcanic debris flows.

andesite flows and sills.

tuff, andesite flows, lesser basalt flows.

conglomerate; molluscan faunas common.
Adjacent Mineralization

The Rohan Property covers several regional stream-silt (RGS) anomalies that includes better than 95th percentile values for Au, Cu, Sb, As and Pb. The RGS anomalies, located along a major crustal scale fault system (Llewellyn/Tally-Ho), combined with known on-strike gold-bearing showings to the north and south, were the main rationale for staking of the open ground by Eagle Plains Resources in 2010.

In the Tagish Lake area (60 km south of the Rohan), the Llewellyn fault zone (LFZ) and overlapping Tally-Ho shear zone (THSZ) marks, but is not constrained to, a major tectonic boundary between units of the Whitehorse Trough to the east, and the Boundary Ranges metamorphic suite to the west (Mihalynuk, 1999). Splay faults off the LFZ, cutting through Jurassic sediments of the Laberge Group and Triassic volcanic rocks of the Stuhini group, are host to a number of important mineral deposits including the Engineer Mine (MF 104M 014), and Rupert Showings (MF 104M 049). Tertiary intrusive rocks are also associated with Au in quartz-calcite veins at the Ben-my-Chree past producer (MF 104M 011) and Titan showing (MF 104M 089), with the latter also associated with Mo-Cu “porphyry” style mineralization. The Boundary Ranges metamorphic suite is host to precious and base metal quartz vein mineralization at the Gridiron and Bighorn (MF 104M 006,007) mines.

The Rohan Property covers a 6 kilometre span of the prospective Llewellyn/Tally-Ho shear zone, part of a larger (>150 kilometre long) crustal-scale fault system, host to numerous gold, silver and base metal properties. The Engineer Mine, west of Atlin BC, is one of the most famous:

“The historic Engineer Mine was a high-grade gold producer that reached its zenith in the mid-1920s… More than 560 kilograms of gold were officially produced at a realized grade exceeding 39 g/t gold from high-grade epithermal quartz-carbonate veins” BC-Gold Corp (TSX-V: BCG) NR, Oct 5, 2009.

In April 2011, BC-Gold released the first NI 43-101 compliant mineral resource estimate for the Engineer mine with a combined inferred resource for the Engineer and Double Decker veins of 71000 t grading 11.5 g/t Au. The Engineer Property mineralization occurs as vein systems in Laberge group mudstones on the east side of Tagish Lake. An outlier of the Eocene Sloko volcanic sequence occurs nearby on Engineer Mountain (Dominy et al., 2011).

The Engineer and Double Decker veins belong to a NNE-SSW set of narrow (commonly <2 m) brittle dilational veins with a minor sinistral strike component. The NNE-SSW veins are traceable along strike for up to 400 m and have been shown to extend vertically for up to 180 m. Short-term variations in strike are common and variations in thickness (2 m veins thinning to 0.1 m) produce pod like forms. Small offsets result from primary en-echelon patterns and small displacement by late faults.

The NNE-SSW veins systems have quartz dominated, quartz-carbonate and carbonate dominated infills. Sequences of veins and vein fill imply a change from quartz dominated to carbonate dominated with time. Micas are a significant component and include roscoelite and possibly mariposite as a locally distinctive feature. Sulphides are not abundant. Vein fills are commonly coarse grained and layered parallel to the walls. Examples of psuedomorphs after bladed calcite are recorded. Breccias of wall rock fragments in a quartz matrix occur in some veins, notably the Engineer vein. The depositional environment is provisionally inferred to be in the deeper part of a fault hosted epithermal system (Dominy et al., 2011).
Two kilometres south of the Rohan Property, the past-producing Grid Iron silver, gold, lead, zinc occurrence (MF 104M001) is also hosted in sheared strata. The shear zone occurs in the Devonian to Permian and older Boundary Ranges Metamorphic Suite near the contact margins of the Coast Plutonic Complex and the Intermontane Belt. These rocks comprise chlorite feldspar gneiss, schist, marble and hornfels feldspar porphyry. The east-west adit follows a crushed zone of quartz and talcose matter carrying several per cent galena, tetrahedrite, arsenopyrite, pyrite and minor sphalerite.

A clearly defined quartz vein, about 0.2 metres wide, near the adit portal was reported (1901) to carry high gold and silver values. In 1901, 68 tonnes of ore were mined producing 2,582 grams of silver and 156 grams of gold. A sample of the quartz vein taken in 1982 assayed 3.2 grams per tonne gold, 315 grams per tonne silver, 2.05 per cent lead and 1.34 per cent arsenic (Assessment Report 10425).

Mineralization History (Yukon side of border area)

Previous work by Rushant (YK AR 093243, 092893, 092848) at the Finger claims of the southern Yukon, noted mineralization along a 300 meter shear zone that included galena, sphalerite, pyrite and chalcopyrite hosted in sheared felsic to andesitic volcanics. The mineralization occurs as stringers and disseminations in a khaki coloured propylite made up of actinolite, chlorite and epidote; and as disseminations and blebs in sheared, carbonatized, felsic to andesitic rock of fine to brecciated texture. Magnetite is observed in a variety of rock types, but is reported diminished in the sheared zone.

Historical descriptions of the shear structure are vague, but the main structure of interest is reported as trending Az040 for approximately 600 meters (Rushant, 1994; AR 093243). At least 16 hand pits were excavated over approximately 300 meters of the identified shear zone noted above.

A north-trending shear zone uncovered on Scout # 1 claim cuts across the property and is probably associated with the Tally-Ho Shear Zone. The shear contains numerous zones of quartz-calcite veining with propylitic and argillic alteration. These zones range up to 2.0 m wide but are generally less than 0.5 m. Four samples of this material contained over 100 ppb Au, the highest assay being 400 ppb Au. Silver values ran as high as 22 ppm, and Pb values as high as 1562 ppm (AR092848).

A second north-trending structure cutting metavolcanic rocks on the Scout # 9 claim was found to host a quartz-sulphide breccia zone up to 0.6 m wide. A chip sample across the structure returned 1.47% Zn, 0.38% Pb and 47.9 ppm Ag over 0.6 m. A chip sample across 2 m of silicified granite assayed 208 ppb Au (AR 092893).

The 1994 work was centred around a previously discovered north-trending structure (AR 092893) located on Scout cl 9, however the 1994 sample map places the structure on the opposite (southwest) side of the claim. Regardless of the exact location of the structure, the assay results were similar to those recorded in 1989, with the best assay returning 279.3 g/T Ag, 0.42 % Cu, 1.47 % Pb and 1.37 % Zn (AR 093243). The NE and SW exposed limits of the main 040-trending shear are further obscured by talus and scree. Rushant (1994) recommended additional geochemical and geophysical surveys along strike, surveys which were never carried out.

The Tally-Ho Yukon target area, just north of the BC boarder on the west side of Bennett Lake, was explored by EPL staff in 2009 for its gold, silver and base metal potential hosted in rock assemblages along the promising Tally Ho/Llewellyn fault system. Mineralization noted in 2009 was abundant in float and outcrop in creeks of the two southernmost drainages, with mineralization found in all 4 rock
units in the area. Galena and pyrite are found in shear zones in the granite pluton. The rhyolite plug is highly hornfelsed and gossanous with disseminated pyrite, pyrrhotite and trace chalcopyrite. The argillites of the Laberge Group are also hornfelsed with disseminated pyrite and pyrrhotite. There is extensive propylitic alteration within the volcaniclastic rhyolite unit (IES1), and locally within the granite (ETqN). Shear zones were located within the rhyolite unit with brecciated sphalerite and associated magnetite.

A total of 28 rock samples of various lithologies were collected from the Tally-Ho Yukon target area in 2009. The best sample returned 1160 ppb Au from a brownish recrystallized fine grained granite with disseminated pyrite, within an alteration/shear system. The highest metal values returned from other individual rock samples were 1395 ppm Cu, 6373 ppm Zn, 6.7 ppm Ag, and 204 ppm Pb. The historic pits that contained the anomalous silver values were not located during this program.

Two notable soil geochemical anomalies are highlighted in the 2009 results:

1) A Cu-Pb-Zn with spotty Au anomaly is apparent between the two tributaries high in the south map area with increasing base metal contents towards the southernmost creek.

2) A slightly elevated silver and base metal soil anomaly is associated with the granite/rhyolite contact at the north end of the property.
Figure 4 - Property Geology
Compilation Map

Projection - NAD 1983 UTM Zone 08N
Nominal Scale - 1 : 50 000
Date - 12/10/2011

See Figure 3B for Geology Legend
2011 Exploration Program

Airborne Geophysics Program
Most of the 2011 exploration expenditures were utilized for an airborne EM & Magnetic geophysical survey completed by SkyTEM Airborne Surveys, between July 21st to July 27th, 2011. The 204 line-kilometre survey was completed along idealized 100 m spaced flight-lines, at a nominal terrain clearance of 30-40 m (Figure 5). The SkyTEM survey report and accompanying TEM, magnetic and inverted resistivity maps are included in Appendix IV.

Field Program
On September 22, 2011, the author and independent qualified person, Carl Schulze, PGeo., examined outcrop in MTO tenure 715502 in the vicinity of station # JBRNG001 (Figure 4). The helicopter assisted stop was made to examine rocks near the west end of one of the larger ovoid EM geophysical anomalies. The site is underlain by a moderately pyritic quartz-diorite stock, hosting minor quartz-pyrite +/- molybdenite veining as well as silica-rehealed fractures. Small pods of semi-massive brassy pyrite also occur. At least two other intrusive pulses were noted: one consists of weakly feldspar porphyritic diorite with 1-2% fine grained pyrite; the other consists of feldspar megacrystic diorite to monzonite. No foliation was noted in any of the phases.

Total assessment valid expenses for the 2011 field season were $100,011.96.

Airborne Results
A comparison of the regional geology to the airborne magnetic data (TMI; Appendix 4.2) reveals a general low magnetic response for the intrusions in the property area. This is particularly noticeable with respect to the northern most lobe of alkali feldspar granite (unit LKg; figure 4), which has a slightly lower overall average magnetic response than the adjacent mKq granite unit. The Boundary Range Metamorphic suite to the east has a significantly elevated magnetic response, likely a signature of the basaltic volcanic units mapped regionally. Metasedimentary units of the Boundary Range suite, and overlapping assemblage units of the Whitehorse Trough (e.g. Laberge Group) have relative low magnetic signatures.

A comparison of the regional geology to the airborne EM data reveals a variable but general moderate to low conductivity response for the intrusions in the property area. The Boundary Range Metamorphic suite to the east has a similar variable low to moderate conductivity response, but the metasedimentary units of the Boundary Range suite to the south, have a high background EM conductivity response. Rocks of the Whitehorse Trough have a significantly elevated EM response.

The inverted resistivity layers (Appendix 4.3) highlights more discreet low resistivity (high conductivity) response EM targets. There is a good spatial correlation between several anomalies to the west and south to regional geological contacts. A number of inter-lithological resistivity anomalies are evident crosscutting mafic volcanics of the Boundary Ranges suite and Laberge Group sedimentary rocks.

The strongest and largest EM anomalies tend to be associated with low magnetic areas; however, several more discreet EM anomalies are associated with similarly discreet strong magnetic highs.
CONCLUSIONS & RECOMMENDATIONS

The Rohan Property covers several regional stream-silt (RGS) anomalies that includes better than 95th percentile values for Au, Cu, Sb, As and Pb. The RGS anomalies, located along a major crustal scale fault system (Llewellyn/Tally-Ho), combined with known on-strike gold-bearing showings to the north and south, were the main rationale for staking of the open ground by Eagle Plains Resources in 2010.

The 2011 airborne geophysical survey highlights numerous strong EM anomalies including at least two kilometer-scale ovoid anomalies, plus several linear anomalies associated with regional lithology contacts. Ground-truthing of the anomalies by way of mapping, prospecting and silt sampling is required in order to properly assess the mineralization potential of these geophysical anomalies. It is significant to note that the September 2011 field visit successfully located molybdenite mineralization and pyritiferous porphyritic intrusive outcrop near the west limit of one of the ovoid EM anomalies.

No mineralization has been previously noted in the area visited. The relative ease of discovery of weak molybdenite mineralization as well as locally strongly pyritic rock suggests good potential for larger mineralized zones. The very limited scope of the visit does not allow for accurate determination of potential deposit settings. However, the weakly porphyritic and multi-pulsed nature of the intrusion, combined with the elevated pyrite content, suggests the possibility the area visited represents the pyrite halo of a porphyry system. This is supported by the presence of rehealed fractures and at least one rubblecrop boulder hosting quartz veining with minor molybdenite (Carl Schulze, personal comment 2011).

Due to the extreme early phase of exploration, the Rohan Property has good potential for discovery of mineralized occurrences, and should undergo exploration focusing on identification of a porphyry-style system. Proximity to the Tally-Ho Fault and nearby mineralized prospects may also have resulted in structural preparation for vein, stringer and stockwork-style deposits (Carl Schulze, personal comment 2011).

Future work on the property should include property wide stream-silt sampling, prospecting and regional mapping, followed by detailed mapping and rock sampling in areas of significant mineralization and/or alteration.
REFERENCES

http://aris.empr.gov.bc.ca/

Dominy, S.C., Platten, I.M., Kneebone, E.G., 2011. BCGold Corporation: Engineer Gold Project,

and part of Robinson map areas (105D/11, 6, 3, 2 and 7). Exploration and Geological Services
Division, Yukon Region, Indian and Northern Affairs Canada, Open File 1990-4, 113 p.

Area, Southern Yukon Territory (105D/13-16). Exploration and Geological Services Division,
Yukon Region, Indian and Northern Affairs Canada, Bulletin 8, 112 p.

MF (BC Energy and Mines) Minfile showings: 104M032, 104M001, 104M014, 104M049, 104M011,
104M089, 104M006, 104M007; http://minfile.gov.bc.ca

Massey, N.W.D., MacIntyre, D.G., Desjardins, P.J. And Cooney, R.T., 2005. Digital Map of British

Tizzard, A. and Johnston, S., 2005. Structural evolution of the Tally Ho shear zone (NTS 105D),

Memoir 312, 156 p.