Ministry of Energy and Mines
BC Geological Survey

Assessment Report
Title Page and Summary

TYPE OF REPORT [type of survey(s)]: Analyses of Geophysical Data: Big Kahuna Property

TOTAL COST: $6,400

AUTHOR(S): Frederick A. Cook

SIGNATURE(S): Frederick Cook

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):

STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): Event 5423781;
Date March 14, 2013

YEAR OF WORK: 2013

PROPERTY NAME: Big Kahuna

CLAIM NAME(S) (on which the work was done): Big Kahuna, Big Kahuna2, BK, Big Kahuna3, BK5, Second Time Around, STA2, STA3, STA6, STA7, STA08-09, STA09-09, STA10-09, STA11-09, STA12-09, STA13-09, BK 06-09, BK07-09, BK-06-09, STA-15-09, BK STA 2010-1, BK STA 2010-2

COMMODITIES SOUGHT: Precious metals

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: Nelson

NTS/BCGS: 82F

LATITUDE: 49° 16' 00"

LONGITUDE: 116° 19' 00"

(at centre of work)

OWNER(S): 1) Craig Kennedy 2) Sean Kennedy

MAILING ADDRESS:
2290 DeWolfe Ave.
Kimberley, BC V1A1P5

2290 DeWolfe Ave.
Kimberley, BC V1A1P5

OPERATOR(S) [who paid for the work]: 1) Kootenay Silver, Inc. 2)

MAILING ADDRESS:
Suite 1820, 1155 W. Hastings St.
Vancouver, BC V6E2E8

PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):

Western flank of Purcell anticlinorium hosts SedEx and shear deposits of precious metals.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: Reports 26121, 29943, 30867, 31586
<table>
<thead>
<tr>
<th>TYPE OF WORK IN THIS REPORT</th>
<th>EXTENT OF WORK (IN METRIC UNITS)</th>
<th>ON WHICH CLAIMS</th>
<th>PROJECT COSTS APPORTIONED (incl. support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGICAL (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground, mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo interpretation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOPHYSICAL (line-kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td>~750 sq. km of reprocessing</td>
<td>all</td>
<td>$2,400</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induced Polarization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic</td>
<td>~50 km of enhanced interpretation</td>
<td>STA-13-09</td>
<td>400</td>
</tr>
<tr>
<td>Other</td>
<td>Gravity data ~ 750 sq. km of reprocessing</td>
<td>all</td>
<td>$1,200</td>
</tr>
<tr>
<td>Airborne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOCHEMICAL (number of samples analysed for...)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRILLING (total metres; number of holes, size)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELATED TECHNICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling/assaying</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallurgic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROSPECTING (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREPARATORY / PHYSICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line/grid (kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topographic/Photogrammetric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal surveys (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road, local access (kilometres)/trail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trench (metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground dev. (metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>graphics and report</td>
<td></td>
<td>$2,400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL COST: $6,400</td>
</tr>
</tbody>
</table>
Assessment Report:

Analyses of Geophysical Data:
Big Kahuna Property,
Southern British Columbia
MTO event 5423781

North 49° 16’ 00”; West 116° 19’ 00”
UTM Zone 11 549713E, 5457325N
NTS map sheet 82F

Nelson Mining Division

by

F. A. Cook, Ph.D., P.Geo.
Salt Spring Imaging, Ltd.
128 Trincomali Heights
Salt Spring Island, B.C.

For

Property Operator: Kootenay Silver Inc.
Suite 1820-1055 W. Hastings St.
Vancouver, B.C. V6E 2E8

Property Owners: Craig Kennedy and Sean Kennedy,
2290 DeWolfe Ave., Kimberley, BC V1A1P5
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Summary</td>
<td>3</td>
</tr>
<tr>
<td>2.0 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>3.0 Property Description and Location</td>
<td>5</td>
</tr>
<tr>
<td>4.0 Geological Setting</td>
<td>6</td>
</tr>
<tr>
<td>5.0 Geophysical Data</td>
<td>7</td>
</tr>
<tr>
<td>5.1 Seismic Reflection Data</td>
<td>9</td>
</tr>
<tr>
<td>5.2 Magnetic Data</td>
<td>12</td>
</tr>
<tr>
<td>5.3 Bouguer Gravity Data</td>
<td>18</td>
</tr>
<tr>
<td>6.0 Conclusions</td>
<td>22</td>
</tr>
<tr>
<td>7.0 Recommendations</td>
<td>22</td>
</tr>
<tr>
<td>8.0 References</td>
<td>22</td>
</tr>
<tr>
<td>9.0 Statement of Costs</td>
<td>24</td>
</tr>
<tr>
<td>10.0 Statement of Qualifications</td>
<td>25</td>
</tr>
</tbody>
</table>

Figures

Figure 1. Digital satellite map with the Big Kahuna property indicated 4
Figure 2. Regional geological map in the vicinity of the Big Kahuna property............ 5
Figure 3. Local geological map in the vicinity of the property 8
Figure 4. Regional cross section... 10
Figure 5. Detailed cross section near southern end of the property 11
Figure 6a. Regional magnetic data in the vicinity of the property 13
Figure 6b. Regional magnetic data overlain on the geology map 14
Figure 7a. Second–order tilt gradient of magnetic data in Figure 6a 15
Figure 7b. Second-order tilt gradient magnetic data overlain on geology map............. 16
Figure 7c. Second-order tilt gradient magnetic data overlain on geology map 17
Figure 8a. Bouguer gravity anomaly map in the vicinity of the property 19
Figure 8b. Second-order tilt gradient of Bouguer anomaly................................. 20
Figure 8c. Same as Figure 8b overlain on geology map 21

Table

Table 1. Description of Big Kahuna property mineral titles. 6
1.0 Summary

Application of a variety of data processing techniques to potential field geophysical data in the area of the Big Kahuna precious metal property in southeastern British Columbia has led to the following result: 1) much of the anomalous mineralization occurs along, or adjacent to, large faults such as the Iron Ranges and Carroll Creek faults, 2) faults can be delineated by coincident magnetic anomalies, and 3) some of the faults (e.g., Carroll Creek fault) were, at least in part, active during basin formation and may have acted as fluid pathways that tapped into highly mineralized strata and sills of the Lower Aldridge strata of the Belt-Purcell Supergroup.

2.0 Introduction

Salt Spring Imaging Ltd. was retained by Kootenay Silver Inc., a British Columbia company, to analyse geophysical data on, and in the vicinity of, the Big Kahuna Property (Figure 1) with an objective of evaluating information bearing on the subsurface extent and future potential of the area.

This report provides a brief description of the geological setting, a description and analysis of the available geophysical data sets and the processing applied to them, and a presentation of interpretations based upon the results. Regional potential field geophysical data (gravity and magnetics) were obtained from: 1) the Geoscience Data Repository of the Geological Survey of Canada, 2) Bouguer gravity data recently released by Geoscience BC, and 3) published seismic reflection data recorded by Duncan Energy of Denver, Colorado in the 1980's.

The author is familiar with the geology and geophysics of the region, having been responsible for acquiring geophysical data in the area since 1983 and as the transect leader for the Lithoprobe Southern Canadian Cordillera transect from 1985-1995.

Metric units are used throughout the report.
Figure 1. Digital satellite map with the Big Kahuna property indicated in yellow.
3.0 Property Description and Location

The Big Kahuna Property is a collection of claims that are located in southeastern British Columbia (Figure 1) on the west flank of the Purcell anticlinorium in southeastern British Columbia (Figure 2). The approximate geographical limits of the property are the following: (degrees; UTM): North (49° 21’ 22”; 5467400); East (116° 9’ 46”; 560800); South (49° 9’ 22”; 5445000); West (116° 21’ 5”; 547300).

The Big Kahuna property comprises twenty four (24) mineral tenures containing approximately 8761 hectares (Table I). The mineral cell titles were acquired online and as such there are no posts or lines marking the location of the Property on the ground.

Figure 2. Geological map of the Purcell anticlinorium in southeastern British Columbia.
Table 1. Description of Big Kahuna property mineral titles.

4.0 Geological Setting

The Big Kahuna property is situated on the western portion of the Purcell anticlinorium in southeastern British Columbia (Figure 2) and includes structures that flank the northeast-striking Moyie anticline. The western flank of the Moyie anticline includes a number of north-northeast striking faults and structures that may be important for controlling the formation of, and subsequent exposure of a variety of mineral deposits. Targets include lead-zinc-silver (SEDEX-type), as well as copper and gold (possibly IOCG, or shear-hosted). Regional studies indicate that the area is underlain by as much as 20-25 km of structurally telescoped Mesoproterozoic strata of the Belt-Purcell Supergroup. In the subsurface, these rocks are dominated by the Aldridge Formation.
with an uncertain stratigraphic thickness; the base of these strata is delineated seismic
reflection data as the top of autochthonous North American basement near 25 km depth
(Cook and van der Velden, 1995).

In the vicinity of the Big Kahuna property, the Aldridge and younger strata
(including prominent gabbroic sills that were intruded at about 1468 Ma) are disrupted by
a series of north-striking faults, including the Iron Ranges (Iron Mountain) and the
Carroll Creek faults (red lines on Figure 3). Eagle Plains Resources has recently
described a number of showings of anomalous gold, silver and copper
(http://www.eagleplains.com/projects/bc/ironrange/).

The Big Kahuna property is located to the east of the Iron Ranges fault along the
subparallel Carroll Creek fault and associated structures (Figure 3). Previous work on the
property has included rock sampling (e.g., Kennedy, 2006; 2007; 2009) and soil
geochemistry (Kennedy, 2008; Peters, 2011). Coupled with recent map compilations
(Brown et al. 2011; Glombick et al. 2011), these data provide a substantial geological
data base for the property. To date, however, little has been done with the available
geophysical data.

5.0 Geophysical Data

There is a large database available for the Big Kahuna property, including:

1) Seismic reflection profiles recorded during petroleum exploration in the 1980's by
 Duncan Energy Corp. of Denver (Cook and van der Velden, 1995).
2) Regional magnetic database (grid spacing 200 m) available from Natural
 Resources Canada, and,
3) Bouguer gravity data that have recently been reformatted and made available
 (Sanders, 2012).

Each of these is addressed in this report.
Figure 3. Geology in the vicinity of the Big Kahuna property. The rectangular outline is the same area outlined in Figure 2, and the Big Kahuna property outline is the irregular outline interior to the rectangle. Also shown are the locations of seismic profiles 5.15 and 1.1 and the Iron Range and Carroll Creek faults (IRF and CCF, respectively).
Seismic Reflection Data

There are two seismic profiles in the vicinity of the Big Kahuna property that provide images of subsurface stratigraphic and structural variations. To the south, Line 1.1 crosses the southern tip of the property along Highway 3; to the north, Line 5.15 is located due north of the property. The data were recorded with typical petroleum exploration parameters (e.g., 33 m station spacing, Vibroseis source, see Cook and van der Velden, 1995) and were reprocessed at the University of Calgary. Because line 5.15 does not appear to cross structures that appear on the property, it is not utilized here.

Figure 4 illustrates a cross section of the first 3.0 sec of travel time (approximately 7.5 km depth for a velocity of 5.0 km/s) of two seismic profiles (Lines 4 and 1) from the Rocky Mountain trench in the east to Kootenay Pass west of Creston. The section crosses the Moyie anticline, the axis of which was drilled in the DEI Moyie drill hole near Moyie, BC (Figure 4), the Moyie fault, a relatively steeply west-dipping reverse fault, and a dismembered anticline whose axis is about 10 km east of Creston, British Columbia. Two of the major faults that displace rocks between the Moyie fault and Creston are the Iron Range and Carroll Creek faults (IRF and CCF, respectively).

Prominent reflections are visible along the cross section. These are almost entirely from the Moyie sills in the Middle and Lower Aldridge formations. On the east flank of the Moyie anticline, they are easily separated into Middle Aldridge marker sills ('MAma' on Figure 4, probably the Sundown sill) and Lower Aldridge marker sills ('LAma' on Figure 4). As noted in a recent presentation (Cook, 2012) and in reports of geochemical analyses from drilling results (Schulze, 1988; Gal and Weidmer, 1999), the Lower Aldridge sills are highly anomalous in copper on a regional scale and may be the source for the copper in the Revett Formation of western Montana (Cook, 2012).

Disruptions in the continuous reflections from the Lower Aldridge sills are visible along the seismic profile near the Carroll Creek fault (Figure 5). Specifically, the Lower Aldridge reflectors dip eastward beneath and east of the fault producing a geometric constraint that the CCF must dip steeply westward at this position and intersect the Lower Aldridge sills at depth. The seismic data indicate that a similar geometry is apparent along the Iron Range fault (Figure 5).
Figure 4. (upper) Regional seismic reflection cross section from the Rocky Mountain trench on the east to Kootenay pass on the west. (lower) Interpretation of data above. Data are plotted to 3.0 s travel time (about 7.5 km depth with no exaggeration. Then area outlined in red is enlarged in Figure 5.
Figure 5. (middle) Detail of seismic line 1.1 in the vicinity of the Big Kahuna property. The limits of the property along the profile are denoted by the arrow labeled BK. Also shown (upper) are the location of the CCF and a profile of the magnetic anomalies along the line. (lower) Interpretation of the data. Note the prominent Lower Aldridge sill reflections and the geometric constraint that the CCF must dip west.
Magnetic Data

Magnetic data (200 m grid spacing) were acquired from the Natural Resource Canada data base (http://www.nrcan.gc.ca/earth-sciences/products-services/geoscience-data-repository/11824) and were processed with a variety of methods to enhance the locations and geometry of sources. The reduced-to-pole magnetic data are shown in Figure 6a, and the results are overlain on the geology map on Figure 6b. Two key observations are evident on the overlay map (Figure 6b). First, the Iron Range fault is characterized by a very prominent magnetic high north of Highway 3. Second, the Carroll Creek fault is marked by a very distinctive change in the magnetic response from higher values on the east to lower values on the west.

One of the most effective procedures for mapping the locations of magnetic sources is the second-order tilt gradient (Cooper and Cowan, 2006). Results of applying this procedure to these data is shown in Figure 7a. A transparent version of this map is overlain on the geology map in Figures 7b and 7c. In addition to the correlations with the faults, this map illustrates that the magnetic highs are not well-correlated with the concentrations of sills. Three locations of sill concentrations are labelled and only one of them coincides with high magnetic values.

Also shown on these maps are rock sample locations with anomalous gold values (>100 ppb, Figure 7b) and copper values (>200 ppm, Figure 7c) marked by the white triangles. The trajectories of the Iron Range and Carroll Creek faults are clear and the anomalous metal values appear to be associated with the deep-penetrating faults. Note also that in the western part of the property (“Big Splay” area; Peters, 2011) samples with elevated copper and gold are located in the upper part of the Aldridge Formation (Upper Middle Aldridge, Upper Aldridge) near the contact with the Creston Formation.
Figure 6a. Magnetic data (reduced to pole) for the area in Figure 2.
Figure 6b. Magnetic data (reduced to pole) overlain with 50% transparency on the geology map of Figure 3. Note the excellent correlation of the magnetic highs with the IRF and the CCF.
Figure 7a. Second order tilt gradient of the reduced-to-pole magnetic data. The data were first upward continued 200m (one grid spacing) to minimize grid noise (although some is still visible in the southeast).
Figure 7b. Same as Figure 7a (50% transparency) overlain on the geology map of Figure 3. Note the correlations of magnetic anomalies along the faults. Also shown are the rock sample locations (black dots) and samples with anomalous gold values (>100 ppb, white triangles).
Figure 7c. Same as Figure 7b with the samples showing anomalous values of copper (>200 ppm) in the white triangles.

Bouguer Gravity Data
Regional gravity data are available from Natural Resources Canada, but are generally of insufficient resolution to be useful for property-scale exploration. Sanders (2012) published the results of an effort to acquire historical gravity data and to analyse the data in such a way that they could be combined with the data from the national database for higher resolution in selected areas. One of these areas is in the vicinity of the Big Kahuna property. After acquiring the data and by testing a variety of gridding methods to provide optimum results, I was able to plot the data with similar resolution to the magnetic data described above. The results for the Bouguer anomaly (2.67 g/cc Bouguer density) are shown in Figure 8a.

The map is dominated by a large regional high in the southeast part of the map that is associated with the uplift of the Moyie sills in the Moyie anticline. In order to be utilized for property-scale exploration, it is necessary to enhance shorter wavelength anomalies due to shallow features relative to the long wavelength regional structures. There are a number of ways to accomplish this, including bandpass filtering and various residual calculations. As was done for the magnetic data described previously, I have produced a map of the 2nd -order tilt gradient (Figure 8b). Two characteristics are readily apparent on this map when it is overlain onto the geology (Figure 8c). First, in contrast to the magnetic data, there are no obvious spatial correlations to the major faults (Iron Range and Carroll Creel faults). Second, also in contrast to the results from the magnetic data, gravity highs exhibit strong correlations with areas of sill concentration. Three of these are labelled and all of them have high gravity values.
Figure 8a. Map of the Bouguer anomalies in the vicinity of the Big Kahuna property. The map is constructed using data from Sanders (2012) as well as from Natural Resources Canada. The large high in the southeast is due to regional uplift of the Moyie sills in the Moyie anticline.
Figure 8b. Second order tilt gradient of the map in Figure 8a.
Figure 8c. Second order tilt gradient map overlain with 50% transparency onto the geology map of Figure 3. Note that there is not a good spatial correlation between the fault and the gravity anomalies. Rather, the high gravity values appear to correlate well with concentrations of sills. The origins of the gravity anomalies are uncertain as no sills are exposed there. They may indicate sills at depth.
6.0 Conclusions

The Big Kahuna property straddles one of the major faults of the western Purcell anticlinorium – the Carroll Creek fault. It is not entirely clear what the origins of the magnetic anomalies along the Carroll Creek fault are. They may be due to iron enrichment along the fault zone or to contrasts in magnetic properties across the fault, or to some combination. In any case, the Carroll Creek fault projects into the Lower Aldridge formation and appears to show normal offset, suggesting it may have been active during basin formation. If so, it may be analogous to structures such as the Snowshoe fault in Montana, one of the apparently key structures in the western Montana copper belt. This interpretation is also attractive because a number of the copper values in rock samples along the Carroll Creek fault exceed 10000 ppm and the observation that the fault projects into the copper-enriched Lower Aldridge provides an explanation for the elevated copper (and other metal) values.

7.0 Recommendations

Two types of surveys could be carried out to pinpoint high priority locations for drilling. These are: 1) areal magnetics and EM, and 2) subsurface magnetotellurics (or similar) and IP. Areal magnetics and EM would provide much enhance resolution on the magnetic anomalies and possible associate EM anomalies, whereas a subsurface MT plus IP would be able to pinpoint some drilling targets, their depths and their lateral extents. Ideally, an MT-IP program would have a main line that would follow the Carroll Creek fault and a series of of E-W cross lines that could provide a nearly 3D EM structure of the subsurface.

8.0 References

Schulze, H. C., 1988. Rock geochemistry of well cuttings from well hole Moyie d-8-c on the ML-62, ALD 2, 3, 4 and Sandy 1, 3, 5, 7 claims, Assessment report 18128
9.0 Statement of Costs

Personnel:

F. Cook (5 person-days @ $800.00/day) $ 4,000.00
- data processing and interpretation

Miscellaneous:

Report preparation ... $ 2,400.00

TOTAL ... $ 6,400.00
10.0 Statement of Qualifications

I, Frederick A. Cook do hereby certify that:

1) I attained the degree of Doctor of Philosophy (Ph.D.) in geophysics from Cornell University in Ithaca, New York in 1981.
2) I have a B.Sc. in geology (1973) and an MSc. in Geophysics (1975) from the University of Wyoming in Laramie, Wyoming.
3) I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia (P. Geo. 2009). Previously, from 1984-2009, I was registered with the Association of Professional Engineers, Geologists and Geophysicists of Alberta as both a P. Geol. and a P. Goph.
4) I am a member of the American Geophysical Union and the Geological Society of America.
5) I have worked as a geophysicist/geologist for a total of 36 years since my graduation from university.
6) I have worked for the Continental Oil Company (1975-1977) and the University of Calgary (1982-2010).
7) I was the Director of the Lithoprobe Seismic Processing Facility at the University of Calgary from 1987-2003.
8) I have recently (2011) been appointed an International Consultant for the Chinese SinoProbe project.
9) I have a thorough knowledge of the geology of southern British Columbia based on extensive geological and geophysical field work.
10) I have authored more than 125 scholarly publications in peer-reviewed journals and books.
11) I was retained by Kootenay Silver Inc. to undertake analyses of the geophysical data in the vicinity of the Big Kahuna property.
12) I am the sole author of this report.
13) I am not aware of any material fact or material change with respect to the subject matter of this report, which is not reflected in this report.
14) I have no interest, direct or indirect, in the Big Kahuna property.

“signed and sealed” at Salt Spring Island, B.C.
Frederick A. Cook, P. Geo.
Salt Spring Imaging, Ltd.
128 Trincomali Heights
Salt Spring Island, B.C.

Dated at Salt Spring Island, B.C. this 14th day of March, 2013
Registration License No. 34585
Association of Professional Engineers and Geoscientists of British Columbia