GEOLOGICAL ASSESSMENT REPORT

(Event 5458239)

on a

STRUCTURAL ANALYSIS

Work done on

Tenure 909409

of the seven Claim

Toni 909409 Claim Group

BCGS Map 092H.089/.099

as part of the 89 claim 40,526 hectare

TONI PROPERTY

Nicola & Similkameen Mining Divisions

Centre of Work

5,535,184N, 694,770E (NAD 83).

AUTHOR & CONSULTANT

Laurence Sookochoff, PEng
Sookochoff Consultants Inc.
TABLE OF CONTENTS

Summary ... 4.
Introduction ... 6.
Toni 909409 Claim Group Description and Location 6.
Accessibility, Climate, Local Resources, Infrastructure and Physiography 8.
History: Toni 909409 Claim Group Area 8.
 092HNE002 – MAL ... 8.
 092HNE047 – BRENDA ... 8.
 092HNE058 – HN-WEN ... 9.
 092HNE084 – PAYCINCI .. 9.
 092HNE096 – ELK .. 9.
 092HNE144 – AU-WEN ... 9.
 092HNE312 – WAVE 2 .. 11.
Geology: Regional .. 11.
Geology: Toni 909409 Claim Group Area 11.
 092HNE002 – MAL ... 11.
 092HNE047 – BRENDA ... 13.
 092HNE058 – HN-WEN ... 14.
 092HNE084 – PAYCINCI .. 14.
 092HNE096 – ELK .. 15.
 092HNE144 – AU-WEN ... 15.
 092HNE275 – BREW ... 15.
 092HNE312 – WAVE 2 .. 16.
Geology: Toni 909409 Claim Group 16.
Mineralization: Toni 909409 Claim Group Area 17.
 092HNE002 – MAL ... 17.
 092HNE047 – BRENDA ... 17.
 092HNE058 – HN-WEN ... 19.
 092HNE084 – PAYCINCI .. 20.
 092HNE096 – ELK .. 20.
 092HNE144 – AU-WEN ... 23.
 092HNE275 – BREW ... 23.
 092HNE312 – WAVE 2 .. 24.
Structural Analysis .. 24.
Interpretation and Conclusions ... 27.
Selected References .. 29.
Statement of Costs .. 30.
Certificate ... 31.
Table of Contents (cont’d)

ILLUSTRATIONS

Figure 1. Location Map ... 6.
Figure 2. Claim Location ... 9.
Figure 3. Claim Map ... 9.
Figure 4. Geology, Claim, Index & Minfile .. 12.
Figure 5. Indicated Lineaments on Tenure 833943 24.
Figure 6. Rose Diagram from Lineaments of Tenure 833943 25.
Figure 7. Cross-Structural locations on Google Earth 24.
Figure 8. Rose Diagram from Lineaments of Tenure 833943 27.

TABLES

Table I Tenures of the Toni-909409 Claim Group 6.
Table II Approximate Location of Figure 6 Cross Structures 24.
SUMMARY

The seven claim Toni 909409 Claim Group covers an area of 2,496 hectares located 218 kilometres northeast of Vancouver and 41 kilometres southeast of Merritt. Tenure 909409 of the Toni 909409 Claim Group, the subject of this report, is located nine kilometres north of the formerly productive Elk gold-silver deposit (Minfile 092HNE096) and 20 kilometres west-northwest of the formerly productive Brenda copper-molybdenum deposit (Minfile 092HNE047).

At the Elk property, the western area is underlain by steeply west-dipping andesitic to basaltic flows, agglomerates, tuffs and minor siltstone and limestone units of the Nicola Group. The eastern half of the property is underlain by granitic rocks of the Middle Jurassic Osprey Lake batholith. The contact between these units trends northeasterly across the property.

Gold-silver mineralization on the Elk property is hosted primarily by pyritic quartz veins and stringers in altered pyritic granitic and, less frequently, volcanic rocks.

From 1992 and 1995 (inclusive) 16,570 tonnes of ore were mined and milled resulting in the production of 1,518,777 grams (48,830 ounces) of gold and 1,903,000 grams (61,183 ounces) of silver.

The Brenda copper-molybdenum deposit is hosted by the “Brenda Stock”, a composite quartz diorite/granodiorite body which forms part of the Early Jurassic Pennask batholith.

It is suggested that intermittent east-west compressional forces intensely fractured the rocks of the Brenda stock during several stages of time and tapped a hydrothermal source, either a later phase of the Brenda stock or a separate intrusive system. As each stage of fractures developed, hydrothermal fluids introduced vein material which healed the fractures. Renewed build-up of compressional forces again fractured the rocks, which were again healed. Repetition of this sequence can explain all stages of mineralization within the Brenda deposit. East-west compression continued after ore deposition ceased and produced prominent east-northeast and northwest striking shear zones.

Faults in the Brenda pit are expressed as fracture zones in which the rock is intensely altered to clay minerals, sericite, epidote and chlorite. These fracture zones range in width from a few centimetres to 9 metres.

Surface weathering, which is expressed predominantly by the development of limonite, extends as a highly irregular blanket over the mineralized zone for depths ranging from a few metres to greater than 30 metres. For the most part, hydrothermal alteration at the Brenda deposit is exceptionally weak for a porphyry copper system.

Primary (chalcopyrite and molybdenite) mineralization is confined almost entirely to veins (sulphides, especially molybdenite, have been smeared along fault planes); the grade of the orebody is a function of fracture (vein) density and of the thickness and mineralogy of the filling material. The vein density within the orebody is not uniform; ranges are recorded from less than 9 per metre near the periphery of the orebody to 63 per metre and occasionally 90 per metre near the centre of the orebody.

The Brenda mine began production in early 1970 with measured geological (proven) reserves of 160,556,700 tonnes grading 0.183 per cent copper and 0.049 per cent molybdenum at a cutoff of 0.3 per cent copper equivalent. The mine officially closed June 8, 1990.

(The above information on the Brenda copper-molybdenum deposit and on the Elk gold-silver deposit is summarized from the Minfile records which are contained in full herein).
Summary (cont’d)

As indicated by the BC government supported MapPlace geological maps, the Toni 909409 Claim Group is predominantly underlain by a central northeast trending belt of the Nicola Volcanic Eastern Volcanic Facie of (UTrNE) which contact with the Early Jurassic Pennask batholith (LTrJgd) skirts the northwestern border and is covered by the southeastern portion of the Property.

The northeasterly trending intrusive contacts are influenced by the regional structures which also include northwesterly and northerly contacts which trends are also obvious in the water course pattern within the Nicola rocks and the Pennask intrusive. These structures are indicative of the prevailing tectonic forces prior to, contemporaneous, and subsequent to, the emplacement of the Pennask Batholith.

One of the resultant major structures is the area is the northerly trending Elk fault system which is evidenced topographically for a minimum of 20 kilometres from, and not necessarily restricted to the limits of, the formerly productive Elk property in the south, to and beyond the Snow mineral showing (Minfile 092HNE292) in the north. The Elk fault is offset twice for up to two kilometres in the Elk/Snow section; at the Brew mineral showing (Minfile 092HNE275) by the 280 degree striking Magwump fault and by an indicated northwesterly trending fault (Snow fault) at the Snow mineral showing (Minfile 092H295).

This structural pattern is indicated at the Elk mineral zone(s) where the mineral zones are distributed expansively along and from the Elk fault (Figure 8), and at the Brenda mineral deposit where east-west forces caused the intense fracturing of the rock thus providing the accommodation for subsequent copper-molybdenum mineral resource.

The results of the Tenure 909409 structural analysis indicates two primary (S1) north-south and two primary (S1) west-northwesterly (northwesterly) indicated structures. The location of the these four structural intersections, as shown on Figures 5 & 7, would be prime areas to explore for surficial indicators of potentially economical sub-surface mineralization for Elk or Brenda type mineral deposits.

These surficial and/or mineral indicators could be expressed surficially as minor mineralization and/or as variable alteration mineral indicators. An example of such an indicator is at the SNOW mineral showing (Minfile 092HNE292) located within Tenure 833943 (adjacent and north of the subject tenor) where a drill hole intersected minor copper mineralization in weakly to moderately chloritized granite of the Pennask batholith. The SNOW mineral showing is indicated near the intersection of the northerly trending Elk fault and the northwesterly trending Snow fault.

For other mineral deposit types that may occur within the Toni 909449 Claim Group reference is made in the report to the eight Minfile properties in the area of Tenure 909449; the locations shown on Figure 4. The Minfile descriptions of these properties, copied from the BC Government Minfile records, are included herein as potential types of mineralization that should be sought subsequent to the exploration of the four prime exploration areas within Tenure 909449.
INTRODUCTION

During June 2013 a Structural Analysis was completed on Tenure 909409 of the seven claim Toni 909409 claim group (Property) of Victory’s 89 claim 40,526 hectare TONI property. The purpose of the program was to delineate potential structures which may be integral in geological controls to potentially economic mineral zones that may occur on Tenure 909409 or other claims of the Toni property.

Information for this report was obtained from sources as cited under Selected References.

Figure 1. Location Map
(Base map from MapPlace)

TONI 909409 CLAIM GROUP DESCRIPTION AND LOCATION

Description

The Property is comprised of seven claims covering an area of 2496.1317 hectares. Particulars are as follows:

<table>
<thead>
<tr>
<th>Tenure Number</th>
<th>Type</th>
<th>Claim Name</th>
<th>Good Until</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1016052</td>
<td>Mineral</td>
<td>TONI11613A</td>
<td>20140615</td>
<td>478.5305</td>
</tr>
<tr>
<td>1016051</td>
<td>Mineral</td>
<td>TONI11613</td>
<td>20140615</td>
<td>395.2778</td>
</tr>
<tr>
<td>909429</td>
<td>Mineral</td>
<td>TONI102</td>
<td>20140615</td>
<td>415.9075</td>
</tr>
<tr>
<td>909409</td>
<td>Mineral</td>
<td>TONI 101</td>
<td>20140615</td>
<td>291.1295</td>
</tr>
<tr>
<td>564568</td>
<td>Mineral</td>
<td>BREW 6</td>
<td>20140615</td>
<td>208.1299</td>
</tr>
<tr>
<td>551400</td>
<td>Mineral</td>
<td>MINY</td>
<td>20140615</td>
<td>312.041</td>
</tr>
</tbody>
</table>

*Upon the approval of the assessment work filing, Event Number 5458239.
Toni 909409 Claim Group Description and Location (cont’d)

Location
The Toni 909409 Claim Group is located within BCGS Map 092H.089/.099 of the Nicola Mining Division, 218 air kilometres northeast of Vancouver, 41 air kilometres southeast of Merritt, and 84 air kilometres south of Kamloops. The centre of the work area is at 5,535,184N, 694,770E (NAD 83).

Figure 2. Claim Location
(Base Map from Google Earth)

Figure 3. Claim Map (Toni 909409 Claim Group)
(from MapPlace)
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

Access

Access to the Toni 909409 Claim Group is southward from Merritt via Highway 5A/97C for 27 kilometres to the Aspen Grove junction thence eastward on Highway 97C or the Coquihalla Highway connector, for 28 kilometres to the Elkhart junction, thence northward for five kilometres on secondary graveled and dirt roads to the western boundary of Tenure 1016052 of the Toni 909409 Claim Group. Logging roads provide access to many areas of the Toni 909409 Claim Group.

Climate

The region is situated within the dry belt of British Columbia with rainfall between 25 and 30 cm per year. Temperatures during the summer months could reach a high of 35°C and average 25°C with the winter temperatures reaching a low of -10°C and averaging 8°C. On the Toni 909409 Claim Group snow cover on the ground could be from December to April and would not hamper a year-round exploration program.

Local Resources and Infrastructure

Merritt, and/or Kamloops, historic mining centres could be a source of experienced and reliable exploration and mining personnel and a supply for most mining related equipment. Kamloops is serviced daily by commercial airline and is a hub for road and rail transportation. Vancouver, a port city on the southwest corner of, and the largest city in, the Province of British Columbia is four hours distant by road and less than one hour by air from Kamloops.

Physiography

The topography within the Toni 909409 the Claim Group is of gently sloped forested hills with localized logged areas. Relief is in the order of 210 metres ranging from elevations of 1,460 metres within a creek valley in the northwest to 1,680 metres in the min uppermost north.

HISTORY: TONI 909409 CLAIM GROUP AREA

The history on some of the more significant mineral MINFILE reported occurrences, prospects, and past producers in the Toni 909409 Claim Group area are reported as follows. The distance from the Toni 909409 Claim Group is relative to Tenure 909409, which is the subject of the structural analysis.

MAL prospect (Cu skarn; Fe skarn; Au skarn)
MINFILE 092HNE002
Thirteen kilometres west

Initial work consisted of diamond drilling and trenching in the early 1960s on the main showing (Malachite 1 2 and Chalcocite 1-2 claims), on which the occurrence is centred. This is located on access road number 5116, 1 kilometre south of Quilchena Creek, 11.5 kilometres east-northeast of the community of Aspen Grove. A second showing, smaller and less significant but with the same characteristics, is located 1 kilometre to the southwest (Malachite 7, 092HNE269).

BRENDA past producer (Porphyry Cu +/- Mo +/- Au)
MINFILE 092HNE047
Twenty kilometres east-southeast

The Brenda mine began production in early 1970 with measured geological (proven) reserves of 160,556,700 tonnes grading 0.183 per cent copper and 0.049 per cent molybdenum at a cutoff of 0.3 per cent copper equivalent [\(eCu = % Cu + (3.45 x % Mo)\)]. The mine officially closed June 8, 1990.
History: Toni 909409 Claim Group Area (cont’d)

HN-WEN prospect (Volcanic redbed Cu)
MINFILE 092HNE058
Eleven kilometres west

Adits and trenches were initially cut around 1900; later work included diamond drilling and trenching in the 1960s and 1970s.

PAYCINCI developed prospect (Volcanic redbed Cu)
MINFILE 092HNE084
Twenty-one kilometres west

The deposit is located in the southern portion of an area of hilly upland situated in the centre of the Aspen Grove copper camp, known as the Fairweather Hills. The Fairweather Hills region is underlain by the Central volcanic facies of the Upper Triassic Nicola Group, comprising intermediate, feldspar and feldspar augite porphyritic pyroclastics and flows, and associated alkaline intrusions.

The intrusions vary from diorite to monzonite in composition and are thought to be comagmatic with the Nicola Group, ranging in age from Late Triassic to Early Jurassic.

Locally, the area is underlain by red and green laharic breccias, augite andesite porphyry and minor sediments of the Nicola Group (Central belt, Bulletin 69). The units generally strike north-northwest and dip east. This sequence is broken up into a series of tilted fault blocks trending north.

ELK past producer (Intrusion-related Au pyrrhotite veins; Polymetallic veins Ag-Pb-Zn +/-Au; Au-quartz veins)
MINFILE 092HNE096
Nine kilometres south

From 1992 and 1995 (inclusive), 16,570 tonnes of ore were mined and milled and 1,518,777 grams (48,830 ounces) of gold and 1,903,000 grams (61,183 ounces) of silver recovered.

In 1996, Fairfield shipped all remaining stockpiles, estimated to contain 2700 tonnes and grading greater than 12 grams per tonne (Information Circular 1997-1, page 21). A total of 994 metres of ramp access and three development levels exist underground.

Reverse circulation drilling, underground diamond drilling, reclamation, road construction, water sampling and aerial photography were also undertaken during this period.

Surface and underground diamond drill programs were carried out in the Siwash Mine area from 1994 to 1996 to define the resource. Exploration surface drilling was also carried out during the 1995 and 1996 field seasons to test trench targets between the Siwash mine site and the South Showing area 2.5 kilometres to the south. Limited prospecting and environmental monitoring was undertaken from 1997 to 1999.

In 1995, Fairfield Minerals with the support from the Explore B.C. Program carried out an extensive program including geochemistry, 13,972 metres of surface and underground diamond drilling in 315 holes and reserve calculations.

AU-WEN prospect (Intrusion-related Au pyrrhotite veins; Polymetallic veins Ag-Pb-Zn +/-Au)
MINFILE No 092HNE144
Sixteen kilometres west

The AU occurrence consists of gold-silver-copper mineralization just east of the historical Aspen Grove copper camp, between Merritt and Princeton. Work on this showing dates back to the 1930s when visible gold was discovered in soil.
History: Toni 909409 Claim Group Area (cont’d)

Au-Wen prospect (cont’d)

The occurrence is located 1.8 kilometres east-northeast of Pothole Lake, between Quilchena and Pothole creeks, 8 kilometres east-northeast of the community of Aspen Grove. This prospect includes the Au claims and the FLIM and FLAM. The area was prospected in the 1930’s for gold (Balon, 1994). Mcgoran (1979) reported that two prospectors, M. Bresnick and J. Kohler were able to pan colours from test pits although they failed to determine the source of the gold. Harry Nesbitt of Merritt staked the AU claims in 1969 and on his discovery of free gold in trenches prompted an option agreement with New Pyramid Gold Mines who in 1974 conducted further trenching followed by the completion of seven diamond drill holes. No details of the results of the drilling are available.

The claims reverted back to Nesbitt who in 1978 sold them to Invex Resources Ltd. A program of soil sampling and trenching by Invex delineated a copper-gold-silver anomaly extending some 700m northwards of the original Nesbitt showing. The combined soil and rock sampling however indicated, that the copper and gold anomalies were more pronounced in the rock sampling where gold values ranged up to 740ppb and copper values to 2,900ppm. Mcgoran (1979) observed, “the gold mineralization appears to be confined to one or more microdiorite dykes”.

Invex merged with Imperial Metals Corp. who continued exploring the claims and in 1983 drilled 2 holes near the Nesbitt zone. The drilling returned anomalous gold values ranging up to 650ppb. In 1984, David Heyman optioned the claims from Imperial Metals and after adding the FLIM and FLAM claims optioned the claim group to Algo Resources Ltd. In 1986 Algo conducted IP, magnetometer, soil sampling and geological surveys and the following year drilled nine HQ diamond holes totaling 587 metres. One drill hole, DDH 87-8 obtained the best grade intercept over a near surface 1.5m section that yielded 1.4 gpt Au, 92.89 gpt Ag and 3.58% Cu.

Algo relinquished its option and returned the claims to Heyman. Subsequent prospecting by Heyman and J.D. Rowe of Fairfield Minerals Ltd. resulted in the discovery of a 0.75m wide gold-bearing quartz vein north of the Nesbitt zone. Chip sampling of these newly discovered vein yielded gold values of up to 1.402 opt Au.

In 1993 Fairfield optioned the ground from Heyman and undertook soil geochemical, geological and geophysical surveys, as well as trenching. A soil grid covered the entire AU claims as well as the FLIM and FLAM claims resulting in a few scattered gold values greater than 50ppb. Fairfield dropped its option and the claims reverted back to Heyman.

In 1996, George Resources Company Ltd. commenced a program of line cutting and soil sampling covering parts of the AU 1, AU 3, AU 4 and FLAM claims. In addition, trenching and chip sampling of the Hodge Vein and the Nesbitt Zone were carried out.

A grid consisting of 25 line kilometers was laid out from which 274 soil samples were collected. None of the soil samples analyzed by ICP yielded a gold value greater than 5ppb while the highest copper value was 77ppm. Carl Verley (1997) observed, “the area sampled was underlain by a blanket of boulder till or outwash”. Channel sampling from three trenches cut across the Hodge Vein yielded gold values ranging from 30ppb to 6,600 ppb in the wall rock and greater than 20,000 ppb from the vein. At the Nesbitt zone, two trenches yielded gold ranging from 5 ppb to 1,620 ppb.
History: Toni 909409 Claim Group Area (cont’d)

WAVE 2 anomaly (Polymetallic veins Ag-Pb-Zn+/-Au)
MINFILE 092HNE312
Three kilometres north-northeast

Between 1986 and 1995, Fairfield Minerals conducted exploration, including a program of wide-spaced grid soil sampling. The Wave 1 and 2 claims were staked to cover areas of mineralized quartz float and coincidental soil and stream anomalies. Recently, the area has been explored by Sookochoff Consultants as a part of the Toni property.

GEOLOGY: REGIONAL

The Aspen Grove geological district is located within the regional Quesnel Trough, a 30 to 60, km wide belt of Lower Mesozoic volcanic and related strata enclosed between older rocks and much invaded by batholiths and lesser intrusions (Campbell and Tipper, 1970). The southern part is the well-known Nicola belt, continuing nearly 200 km to its termination at the U.S. border and containing the important copper deposits of Highland Valley, Craigmont, Copper Mountain, Afton, Brenda, in addition to the historic Hedley gold camp.

The Nicola Group has been divided into western, central, and eastern belts on the basis of lithology and lithogeochemistry and by major fault systems. Variation from calc-alkaline to shoshonitic compositions from west to east has been interpreted to reflect eastward dipping subduction in the Nicola arc. The Toni 909409 Claim Group is situated within the eastern belt of the Nicola Group which is bounded on the west by the northerly striking Kentucky-Alleyne fault zone.

GEOLOGY: TONI 909409 CLAIM GROUP AREA

The geology on some of the more significant mineral MINFILE reported occurrences, prospects, and past producers in the Toni 909409 Claim Group area are reported as follows. The distance from the Toni 909409 Claim Group is relative to Tenure 909409, which is the subject of the structural analysis.

MAL prospect (Cu skarn; Fe skarn; Au skarn)
MINFILE 092HNE002
Thirteen kilometres west

The Malachite occurrence is hosted in the Upper Triassic Nicola Group, which regionally consists of alkalic and calcalkalic volcanics and intrusions of island arc origin, and which is the principal component of the Quesnel Terrane in southern British Columbia (Geological Survey of Canada Maps 41-1989, 1713A). This belt has been of major economic interest because of its potential for porphyry copper-gold mineralization. The occurrence lies in the northern assemblage of the Eastern belt or facies of the Nicola Group (after Preto, Bulletin 69). This assemblage mainly consists of well-bedded submarine volcaniclastic rocks and volcanic flows.

The main Aspen Grove copper camp lies several kilometres to the west in the Central belt, separated by the north-striking Kentucky-Alleyne fault system (Bulletin 69).

The area of the Malachite occurrence is underlain by dark green, augite porphyritic andesitic to basaltic volcanics and fragmental rocks, with subordinate black argillite with local limy horizons, and feldspar porphyry (Assessment Reports 449, 1586). Some volcanic flow breccia contains pink trachytic fragments (Assessment Report 9590). Stratified rocks strike north-northwest and dip moderately to steeply west (Geological Survey of Canada Map 41-1989).
Geology: Toni 909409 Claim Group Area (cont’d)
MAL prospect (cont’d)

Within 1 or 2 kilometres to the north of these rocks is the east-trending contact of the Early Jurassic Pennask batholith, a large intrusion of medium-grained granodiorite to quartz diorite. The volcanics and sedimentary rocks have been altered, probably the result of hydrothermal activity related to the Pennask batholith. Epidote alteration is common; potassium feldspar alteration is more restricted. Skarn alteration is most characteristic of this occurrence, as it hosts the main mineralization. It is closely associated with limy rocks, and is marked by epidote and garnet. North-trending gossanous shear zones have been exposed in trenches near the skarn zones (Assessment Report 449).

Figure 4. Geology, Claim, Index & Minfile
(Base Map: from MapPlace)

GEOLGY MAP LEGEND

Pleistocene to Holocene
Qvk
Unnamed alkaline volcanic rocks

Upper Triassic
Eastern Volcanic Facie
uTrNE
lower amphibolite/kyanite grade metamorphic rocks
uTtNsf
mudstone, siltstone, shale, fine clastic sedimentary rocks

Central Volcanic Facies
uTrNe
andesitic volcanic rocks

Late Triassic to Early Jurassic
LTrJgd
unnamed granodiorite intrusive rocks
LTrJdr
dioritic to gabbroic intrusive rocks

Middle Jurassic
MJgr
Unnamed granite, alkali feldspar granite intrusive rocks
Geology: Toni 909409 Claim Group Area (cont’d)

BRENDA past producer (Porphyry Cu +/- Mo +/- Au)
MINFILE 092HNE047
Twenty kilometres east-southeast

The Pennask Mountain area is mainly underlain by a roof pendant comprising westerly younging, Upper Triassic sedimentary and volcanioclastic rocks of the Nicola Group. These are intruded and enclosed to the north, east and south by plutonic rocks of the Early Jurassic Pennask batholith and Middle Jurassic Osprey Lake batholith. Both the Nicola rocks and the Pennask batholith are unconformably overlain by Tertiary sediments and volcanics of the Princeton Group.

The Brenda copper-molybdenum deposit is within the "Brenda stock", a composite quartz diorite/granodiorite body which forms part of the Pennask batholith. Several ages and compositions of pre and post-ore dikes cut the stock. The deposit is approximately 390 metres from the contact with Nicola Group rocks to the west.

Nicola Group tuffs, volcanic breccias and flows adjacent to the Brenda stock have been altered to "schistose hornfels".

This hornfels, which is as wide as 450 metres, is characterized by the development of bands and aligned lenses of felted brown to black biotite. Schistosity generally strikes roughly parallel to the intrusive contact and dips west at 30 to 70 degrees. The schistose hornfels grades westerly into recognizable west-dipping volcanic rocks which in turn are overlain by greywacke, argillite and shales.

The Brenda stock is a composite, zoned quartz diorite to granodiorite body which can be divided into two units. Unit 1 is of quartz diorite composition and contains abundant mafic minerals (hornblende > biotite) and angular quartz grains, whereas unit 2 is porphyritic granodiorite and contains fewer mafic minerals (biotite > hornblende), well-defined biotite phenocrysts and subhedral quartz grains. The contact between units 1 and 2 is generally gradational, but locally sharp. At sharp contacts, unit 2 is chilled against unit 1.

Dikes of several ages and compositions cut the Brenda stock. At least four types, aplite-pegmatite, andesite, trachyte porphyry and basalt, have been identified in the Brenda orebody. Similar dikes, as well as felsite, dacite and quartz diorite have been mapped beyond the limits of economic mineralization. The aplite-pegmatite dikes are cut by all other dikes and by all mineralized fractures. The andesite dikes have been altered and mineralized during ore formation. Two types of quartz diorite dikes are found and both are cut by quartz-sulphide veins. Dacite porphyry and felsite dikes are also cut by quartz-sulphide veins.

A trachyte porphyry dike up to 4.5 metres wide and 300 metres in strike length is exposed in the Brenda pit. A weakly mineralized vein was observed in the dike which suggested an intermineral age for the dike. Further evidence has clearly shown that the dikes cut all stages of mineralization, except some of the latest quartz veins (Canadian Institute of Mining and Metallurgy Special Volume 15). Several post-mineral hornblende lamprophyre dikes also occur within the Brenda orebody and are probably genetically related to the trachyte porphyry dikes.

Irregular, branching basalt dikes, probably related to Tertiary volcanism, have been intruded along pre-existing fault zones. They cut all phases of mineralization and alteration.

Initial potassium-argon dating of two samples from the Brenda mine area resulted in different ages for hornblende (176 Ma) and biotite (148 Ma). Interpretation of these results suggests that the Brenda stock crystallized about 176 million years ago.
Geology: Toni 909409 Claim Group Area (cont’d)

Brenda past producer (cont’d)

Biotite samples from the pit area have been dated at about 146 Ma, which probably represents the age of mineralization (Canadian Institute of Mining and Metallurgy Special Volume 15).

Faults in the Brenda pit are expressed as fracture zones in which the rock is intensely altered to clay minerals, sericite, epidote and chlorite. These fracture zones range in width from a few centimetres to 9 metres. Most strike 070 degrees and dip steeply south. Northwest-striking faults exhibit left-lateral movement. The faults transect all mineralization, except some calcite veins. Sulphides, especially molybdenite, have been smeared along fault planes. Shear zones are wider and more numerous in the north half of the pit, where they control bench limits.

HN-WEN prospect (Volcanic redbed Cu)
MINFILE 092HNE058
Eleven kilometres west

The HN-WEN occurrence is hosted in the Upper Triassic Nicola Group, which regionally consists of alkalic and calcalkalic volcanics and intrusions of island arc origin, and which is the principal component of the Quesnel Terrane in southern British Columbia (Geological Survey of Canada Maps 41-1989, 1713A). This belt has been of major economic interest because of its potential for porphyry copper-gold mineralization.

The occurrence lies in the northern assemblage of the Eastern belt of the Nicola Group (after Preto, Bulletin 69). This assemblage mainly consists of well-bedded submarine volcaniclastic rocks and volcanic flows. The main Aspen Grove copper camp lies several kilometres to the west in the Central belt, separated by the north-striking Kentucky-Alleyne fault system (Bulletin 69).

The area of the occurrence is underlain by augite porphyritic volcanic flows of andesitic to basaltic composition, fragmental rocks including tuff and breccia, and argillites (Assessment Reports 1586, 4230). The argillites are dark grey to black, well bedded, and locally limy. They are somewhat carbonaceous and pyritic. Minor rock types present include feldspar porphyry and locally lenses of diorite. About 2.5 kilometres to the northeast is the contact with the Early Jurassic Pennask batholith, a large intrusion of medium-grained granodiorite to quartz diorite.

The contact between the volcanic rocks and the argillites passes through the centre of the mineralized area. The contact is parallel to bedding, striking 130 degrees and dipping 40 degrees southwest, with the volcanic rocks on the northeast side (Assessment Report 4230).

PAYCINCI developed prospect (Volcanic redbed Cu)
MINFILE 092HNE084
Twenty-one kilometres west

The deposit is located in the southern portion of an area of hilly upland situated in the centre of the Aspen Grove copper camp, known as the Fairweather Hills. The Fairweather Hills region is underlain by the Central volcanic facies of the Upper Triassic Nicola Group, comprising intermediate, feldspar and feldspar augite porphyritic pyroclastics and flows, and associated alkaline intrusions.

The intrusions vary from diorite to monzonite in composition and are thought to be comagmatic with the Nicola Group, ranging in age from Late Triassic to Early Jurassic.

Locally, the area is underlain by red and green laharic breccias, augite andesite porphyry and minor sediments of the Nicola Group (Central belt, Bulletin 69). The units generally strike north-northwest and dip east. This sequence is broken up into a series of tilted fault blocks trending north.
Geology: Toni 909409 Claim Group Area (cont’d)

ELK past Producer (Intrusion-related Au pyrrhotite veins; Polymetallic veins Ag-Pb-Zn +/-Au; Au-quartz veins)
MINFILE 092HNE096
Nine kilometres south

The Elk property is underlain by Upper Triassic volcanics and sediments of the Nicola Group and by Middle Jurassic granites and granodiorites of the Osprey Lake batholith. The contact between these units trends northeasterly across the property. Early Tertiary feldspar porphyry stocks and dikes of the Otter intrusions occur throughout the property. The western property area is underlain by steeply west-dipping andesitic to basaltic flows, agglomerates, tuffs and minor siltstone and limestone units of the Nicola Group. The eastern half of the property is underlain by granitic rocks of the Osprey Lake batholith.

AU-WEN prospect (Intrusion-related Au pyrrhotite veins; Polymetallic veins Ag-Pb-Zn+/-Au)
MINFILE No 092HNE144
Sixteen kilometres west

The AU occurrence is hosted in the Upper Triassic Nicola Group, which regionally consists of alkaline and calcalkaline volcanics and intrusions of island arc origin, and which is the principal component of the Quesnel Terrane in southern British Columbia (Geological Survey of Canada Maps 41-1989, 1713A). This belt has been of major economic interest because of its potential for porphyry copper-gold mineralization.

The occurrence lies in the northern assemblage of the Eastern belt of the Nicola Group (after Preto, Bulletin 69). This assemblage mainly consists of well-bedded submarine volcaniclastic rocks, ranging from tuffaceous volcanic siltstones characteristic of the lower part, to coarse volcanic conglomerate and laharc breccias in the upper part. The assemblage is characterized by a paucity of intrusive rocks in comparison to the main Aspen Grove copper camp in the Central belt a few kilometres to the west, separated by the Kentucky-Alleyne fault system (Bulletin 69).

The AU occurrence is centred on the main gold showing, a small stripped, drilled and trenched area just off a gravel road south of Quilchena Creek (Assessment Reports 5766, 16008).

This and most of the surrounding area is underlain by andesitic to dacitic tuff, cherty tuff, black argillite, and volcanic sandstone and siltstone. The rocks are strongly fractured in a variety of orientations. Bedding in the tuff has been measured to strike 060 degrees and dip 54 degrees northwest, but it varies.

About 1 kilometre to the north of the main showing is biotite hornblende granodiorite and quartz monzonite of the Early Jurassic Pennask batholith, and about 500 metres to the west are porphyritic andesitic and basaltic volcanic rocks (Bulletin 69; Assessment Report 16008). Small bodies of diorite and micromonzonite, possibly subvolcanic, are quite common in the area, on the surface and in drill core (Assessment Report 16008). Some of the volcanics have sustained carbonate and epidote alteration, and locally they have pervasive hematite (Assessment Report 16008).

BREW showing (Alkaline porphyry Cu-Au; Subvolcanic Cu-Ag-Au; As-Sb)
MINFILE 092HNE275
Five kilometres southwest

This occurrence is hosted in volcanics and minor sediments of the Upper Triassic Nicola Group, 2.6 kilometres northwest of the Middle Jurassic Osprey Lake batholith. The volcanics consist primarily of andesite and fine-grained diorite.
Geology: Toni 909409 Claim Group Area (cont’d)

BREW showing (cont’d)

The contact between the two units is gradational, suggesting the diorite may be a subvolcanic equivalent of the andesite. Minor tuffs, lapilli tuffs, agglomerates, and feldspar porphyritic andesite are also present. The sediments consist of mudstone, siltstone, shale, and rare carbonate, intercalated with the pyroclastic units. A major fault zone, the Brew fault, striking 140 degrees and dipping steeply southwest, is exposed along the Coquihalla Highway for 600 metres.

The zone is approximately 40 metres wide. It is somewhat gossanous and exhibits carbonate and clay alteration and sporadic silicification.

Some quartz +/- calcite stringers and blebs are present but not common. Pyrite is ubiquitous along the entire fault. Sections of the zone are strongly mineralized with massive veins, narrow stringers and occasional disseminations of marcasite, pyrite and pyrrhotite. Samples of pyritic clay-altered sections have yielded up to 0.280 gram per tonne gold and 0.445 per cent arsenic (Assessment Report, 18041, page 8, samples 128665, 44719)

A sample from a zone of quartz stringers analysed 0.600 gram per tonne gold (sample 239716).

This fault is traversed by several significant fault/shear zones striking 100 to 120 degrees. One major crossfault, the Mugwump fault, is exposed west of the Brew fault, striking 100 degrees and dipping 60 degrees south.

WAVE 2 anomaly (Polymetallic veins Ag-Pb-Zn+/-Au)

MINFILE 092HNE312

Four kilometres southeast

The area is underlain by granitic rocks of the Jurassic Pennask batholith and basaltic volcanics of the Triassic Nicola Group.

GEOLOGY: TONI 909409 CLAIM GROUP

As indicated by the BC government supported MapPlace geological maps, the Toni 909409 Claim Group is predominantly underlain by a central northeast trending belt of the Nicola Volcanic Eastern Volcanic Facie of (UTrNE) which contact with the Early Jurassic Pennask batholith (LTrJgd) skirts the northwestern border and is covered by the southeastern portion of the Property.

The northeasterly trending intrusive contacts are influenced by the regional structures which also include northwesterly and northerly contacts which are also obvious in the water course pattern within the Nicola rocks and the Pennask intrusive. These structures are indicative of the prevailing tectonic forces prior to, contemporaneous, and subsequent to, the emplacement of the Pennask Batholith.
MINERALIZATION: TONI 909409 CLAIM GROUP AREA

The mineralization on some of the more significant mineral MINFILE reported occurrences, prospects, and past producers in the Toni 909409 Claim Group area are reported as follows. The distance from the Toni 909409 Claim Group is relative to Tenure 909409, which is the subject of the structural analysis.

MAL prospect (Cu skarn; Fe skarn; Au skarn)
MINFILE 092HNE002
Thirteen kilometres west

Copper mineralization is concentrated in the skarn zones. Pyrite and subordinate magnetite and chalcopyrite are associated with quartz-calcite veins, or are disseminated in variable amounts (Assessment Report 1586). Chalcocite and malachite are also present at the main showing (Assessment Report 8453). Finely disseminated pyrite is common in most rocks, particularly the argillaceous rocks (Assessment Reports 1718, 9590). A zone of massive, medium-grained pyrite between 1 and 13 metres thick, in altered volcanic rocks, has been found below the surface by diamond drilling; the paragenesis is epidote, magnetite, pyrite (Assessment Report 9590).

Copper values appear to be erratic. In early diamond drilling, the best result reported is 1.62 per cent copper over 6 metres; this section contained at least 50 per cent magnetite (Assessment Report 449, page 6). More recent diamond drilling has resulted in generally low metal values, although one split core sample assayed 0.37 per cent copper and 6.8 grams per tonne silver (Assessment Report 9590). A grab sample from the main trenched and drilled area assayed 0.34 gram per tonne gold, 3.4 grams per tonne silver, and 0.2 per cent copper (Assessment Report 8453).

The high magnetite and pyrite content of the rocks at this occurrence is reflected in significant magnetic and induced polarization anomalies, respectively, over the mineralized zones (Assessment Reports 1586, 8453).

BRENDA past producer (Porphyry Cu +/- Mo +/- Au)
MINFILE 092HNE047
Twenty kilometres east-southeast

The Brenda orebody is part of a belt of copper-molybdenum mineralization that extends north-northeast from the Nicola Group-Brenda stock contact. Mineralization of economic grade (0.3 per cent copper equivalent) is confined to a somewhat irregular zone approximately 720 metres long and 360 metres wide. Ore-grade mineralization extends more than 300 metres below the original surface. Lateral boundaries of ore-grade mineralization are gradational and appear to be nearly vertical.

Primary mineralization is confined almost entirely to veins, except in altered dike rocks and in local areas of intense hydrothermal alteration which may contain minor disseminations. The grade of the orebody is a function of fracture (vein) density and of the thickness and mineralogy of the filling material. The average total sulphide content within the orebody is 1 per cent or less. Chalcopyrite and molybdenite, the principal sulphides, generally are accompanied by minor, but variable, quantities of pyrite and magnetite. Bornite, specular hematite, sphalerite and galena are rare constituents of the ore. Johnson (1973), in a study of 17 samples from the deposit, reported minor pyrrhotite, mackinawite, carrollite, cubanite, ilmenite, rutile and native gold (?), as well as several secondary sulphides (Canadian Institute of Mining and Metallurgy Special Volume 15). Pyrite is most abundant in altered andesite dikes and in quartz-molybdenite veins. The ratio of pyrite to chalcopyrite in the orebody is about 1:10, with the chalcopyrite content diminishing beyond the ore boundaries. Because mineralization is confined almost entirely to veins in relatively fresh homogeneous rock, the veins are divided into separate stages, based on crosscutting relations and their mineralogy and alteration effects on the hostrock. The vein density within the orebody is not uniform.
Mineralization: Toni 909409 Claim Group Area (cont’d)

Brenda past producer (cont’d)

Ranges are recorded from less than 9 per metre near the periphery of the orebody to 63 per metre and occasionally 90 per metre near the centre of the orebody. Some veins have very sharp contacts with wallrocks, but most contacts are irregular in detail where gangue and sulphide minerals replace the wallrock.

A vein may show features characteristic of fracture-filling in one part and of replacement in another. Mineralized solutions were introduced into fractures and, during development of the resultant veins, minor replacement of the wallrock ensued.

The chronological stages of mineralization are as follows: (1) biotite-chalcopyrite (oldest); (2) quartz-potassium feldspar-sulphide; (3) quartz-molybdenite-pyrite; (4) epidote-sulphide-magnetite; and (5) biotite, calcite and quartz. Stages 1 through 4 are all genetically related to a single mineralizing episode, which was responsible for the orebody. Stage 5 represents a later, probably unrelated, event(s) (Canadian Institute of Mining and Metallurgy Special Volume 15). Stage 2 veins form the bulk of the mineralization in the deposit, and are the most important source of ore.

Hydrothermal alteration at the Brenda deposit generally is confined to narrow envelopes bordering veins. These alteration envelopes commonly grade outward into unaltered or weakly propylitic-altered rock. Where veins are closely spaced, alteration envelopes on adjacent veins may coalesce to produce local areas of pervasive alteration. For the most part, hydrothermal alteration at the Brenda deposit is exceptionally weak for a porphyry copper system.

Four types of alteration are recognized in the Brenda deposit, three of which are related to the mineralizing process. Two of these are potassic (potassium feldspar) and biotite, and the other is propylitic. Later argillic alteration has been superimposed on the system along post-mineral faults.

Potassium feldspar and biotite alteration generally are separated in space, but locally occur together. Both types of alteration accompanied sulphide deposition. Potassium feldspar replaces plagioclase adjacent to most stage 2 and, to a lesser extent, stage 3 veins. These irregular envelopes range in width from a centimetre or less up to a metre, with an average of about 2 centimetres. Potassium feldspar also occurs as a minor constituent of stage 1 veins.

Hydrothermal biotite replaces magmatic mafic minerals (hornblende, biotite) and, more rarely, plagioclase in hostrock adjacent to stage 2 and especially stage 3 veins. These envelopes of hydrothermal biotite range in width from less than 1 millimetre to several centimetres.

Weak to intense propylitic alteration, which is characterized by the development of chlorite and epidote, as well as less obvious microscopic sericite and carbonate, is sporadically distributed throughout the Brenda stock. Large areas within the orebody have not been propylitized and in these areas, veins with potassic alteration envelopes clearly cut across propylitized quartz diorite, indicating an early hydrothermal or even a pre-ore origin for the propylitization (Canadian Institute of Mining and Metallurgy Special Volume 15). A second period of propylitization accompanied the development of stage 4 veins and is reflected as envelopes of epidote and chlorite. Locally intense argillic alteration is confined to post-mineral fault zones where the hostrock has been highly shattered. Kaolinite, sericite and epidote have almost completely replaced the host rocks.
Mineralization: Toni 909409 Claim Group Area (cont’d)

Brenda past producer (cont’d)

Surface weathering, which is expressed predominantly by the development of limonite, extends as a highly irregular blanket over the mineralized zone for depths ranging from a few metres to greater than 30 metres. In this weathered area, limonite stains all fractures. Fault zones have been especially susceptible to surface weathering, and the argillic alteration of these zones may be primarily the result of groundwater action. Secondary minerals developed during weathering, all highly subordinate in quantity to limonite, include malachite, azurite, hematite, ferrimolybdate, powellite and cupferous manganese oxides. Cuprite, covellite, chalcopyrite, native copper, tenorite and ilsemannite are rare constituents.

Copper-molybdenum mineralization in the Brenda deposit was developed during several sequential stages, all of which constitute one mineralizing episode.

Each stage occupies unique sets of fractures, which are filled with specific combinations of metallic and gangue minerals. Although the attitudes of veins in each stage are unique in detail, most stages include conjugate steeply dipping sets of northeast and northwest striking veins. If these veins occupy shear fractures, it is probable that they were formed by generally east-west compressive forces. Examination of the structure in the Nicola Group rocks to the west reveals that north-northwest and north trending fold axes also indicate an east-west compression.

It is suggested that intermittent east-west compressional forces intensely fractured the rocks of the Brenda stock during several stages of time and tapped a hydrothermal source, either a later phase of the Brenda stock or a separate intrusive system.

As each stage of fractures developed, hydrothermal fluids introduced vein material which healed the fractures. Renewed build-up of compressional forces again fractured the rocks, which were again healed. Repetition of this sequence can explain all stages of mineralization within the Brenda deposit. East-west compression continued after ore deposition ceased and produced prominent east-northeast and northwest striking shear zones (Canadian Institute of Mining and Metallurgy Special Volume 15).

HN-WEN prospect (Volcanic redbed Cu)
MINFILE 092HNE058
Eleven kilometres west

The mineralization is restricted to the volcanics. It is exposed in 3 adits and at least 8 trenches, and is marked by alteration, mainly epidotization, silicification, carbonatization, moderate chloritization and local pyritization. Chalcopyrite is the only copper mineral: it is disseminated, or concentrated in quartz and calcite veins and veinlets between 0.3 and 30 centimetres thick, usually about 8 centimetres thick. Pyrite, pyrrhotite and rare specular hematite are also present in the veins. Locally oxidation has produced abundant malachite, azurite and limonite.

The mineralized zone measures 760 by 90 metres and has a depth of about 75 metres. Diamond drilling indicates that it strikes 160 degrees and dips vertically or steeply east, so it is not parallel to the volcanic-sedimentary contact, indicating that the contact is not the controlling factor.

Rather, the veins hosting the mineralization are structurally controlled by numerous faults and fractures which consistently strike 160 degrees and dip 85 degrees east (Assessment Report 4230). Incidentally, the Echo occurrence (092HNE059) lies on this trend, 2 kilometres to the north-northwest, and the mineralization may also extend south-southeast of the HN-WEN occurrence (Assessment Report 4230).
Mineralization: Toni 909409 Claim Group Area (cont’d)

HN-WEN prospect (cont’d)

Some significant copper and silver values have been obtained from the workings and diamond drill core. A 1.5-metre chip sample from Adit Number 1 was assayed at 4.39 per cent copper, 92.6 grams per tonne silver, and 0.7 gram per tonne gold (Assessment Report 4230).

A grab sample from here was assayed at 4.84 per cent copper, 46.6 grams per tonne silver and 0.7 gram per tonne gold (Assessment Report 4230). Both samples were from oxidized material and may not be representative of grade throughout the deposit (Assessment Report 4230). A drill core sample (hole HNS 72-1) assayed 1.12 per cent copper and 3.4 grams per tonne silver (Assessment Report 4230).

The average grade of the whole deposit has been estimated at 0.08 per cent copper, with a generally low gold and silver content (Assessment Report 4230).

PAYCINCI developed prospect (Volcanic redbed Cu)
MINFILE 092HNE084
Twenty-one kilometres west

Hypogene and supergene copper mineralization occurs in green laharic breccia, near the contact with red laharic breccia to the east. This mineralization consists primarily of disseminated and fracture controlled chalcocite and native copper, accompanied by lesser malachite and azurite, and minor chalcopyrite, bornite, cuprite and pyrite. Drilling indicates chalcopyrite becomes more abundant at depth at the expense of chalcocite. This mineralization is exposed along the crest and east flank of a small northerly trending ridge, over a north-south distance of 400 metres.

Drill indicated reserves are 54,000 tonnes grading 0.876 per cent copper (Assessment Report 7654, page 1). Precious metal values are generally low. Six rock samples analysed 1.1 to 2.4 per cent copper, 0.005 to 0.010 gram per tonne gold and 1.3 to 5.7 grams per tonne silver (Assessment Report 14108, Figure 5, samples 2051 to 2056). One chip sample taken along a trench yielded 0.89 per cent copper over 49 metres (George Cross News Letter No. 90 (May 8), 1992).

ELK past producer (Intrusion-related Au pyrrhotite veins; Polymetallic veins Ag-Pb-Zn +/ Au; Au-quartz veins)
MINFILE 092HNE096
Nine kilometres south

Gold-silver mineralization on the Elk property is hosted primarily by pyritic quartz veins and stringers in altered pyritic granitic and, less frequently, volcanic rocks. Crosscutting relationships indicate that the veins are Tertiary in age; they may be related to Tertiary Otter intrusive events.

To date, mineralization has been located in four areas on the Elk property: Siwash North, South Showing (092HNE261), North Showing (092HNE281) and Siwash Lake (092HNE041, 295).

The Siwash Lake zone is 800 metres south of the Siwash North deposit; the North Showing and South Showing areas are 2 and 3 kilometres south of Siwash North respectively.

In the Siwash North area, gold occurs in veins measuring 5-70 centimetres wide, hosted by a zone of strongly sericitic altered granite and, in the west, volcanic rocks. In general, the mineralized zone trends east-northeast with southerly dips from 20-80 degrees (from east to west), and appears to be related to minor shearing. Quartz veining occurs in a number of parallel to subparallel zones. Each zone consists of one or more veins within an elevation range of 5 to 10 metres that can be correlated as a group to adjacent drill holes. In the eastern parts of the area, up to six subparallel zones occur. Five of these zones are consistent enough to be labelled the A, B, C, D and E zones.
Mineralization: Toni 909409 Claim Group Area (cont’d)

Elk past producer (cont’d)

Mineralization in the west has been identified in one or locally two zones (the B and C zones). The main mineralized zone (B) is consistent, with only minor exceptions, across the entire drill grid.

The Siwash North structure has been tested to 335 metres down dip and along a strike length of 925 metres. The zone remains open to depth and along strike.

At surface, supergene alteration has leached out most of the sulphides with some pyrite and chalcopyrite remaining. Mineralization occurs primarily as native gold, occasionally as spectacular aggregates of coarse flakes in frothy quartz (strong pyrite boxwork) or in fractures in the vein. Electrum was noted in one area as very coarse-grained flakes associated with strong manganese staining. Gold is rarely seen in boxworks in sericitic (phylllic) alteration. In drill core, mineralization has not been affected by supergene processes. Metallic minerals in drill core include pyrite, chalcopyrite, sphalerite, galena, tetrahedrite, maldonite? pyrrhotite and native gold in order of decreasing abundance. Gold is strongly associated with pyrite and with a blue-grey mineral.

Photomicrographs show the gold commonly in contact with this mineral, which may be a gold-bismuth alloy (maldonite?) or a copper-bismuth-antimony sulphosalt.

Gangue mineralogy consists primarily of quartz and altered wallrock fragments. Ankerite is commonly present, with lesser amounts of calcite. Minor barite is also present. Fluorite was noted in one vein as very small (less than 1 millimetre) zoned purple cubes scattered in the quartz.

Stronger alteration generally accompanies higher grade gold mineralization. Seven main types of alteration were recognized in the granitic rocks throughout the property: propylitic, argillic, sericitic, potassium feldspar stable phylllic, phylllic, advanced argillic and silicic. Locally, potassic alteration, skarnification and silicification are evident, but are relatively minor and do not appear to be related to mineralization.

Propylitic alteration is generally light green with biotite and hornblende altered to chlorite, and plagioclase is saussuritized. In volcanics, the colour is generally olive green, and the rock is soft. Argillic alteration is exemplified by bleached rock, with plagioclase white and clay-altered; potassium feldspar is slightly altered.

Volcanics are bleached to light green or grey. Sericitic alteration is typically pale green with a micaceous sheen, with plagioclase altered to sericite; trace disseminated pyrite may be present. This type of alteration is often associated with quartz veins and appears to be the lowest grade alteration associated with gold mineralization. It is not recognized in volcanics.

Potassium feldspar stable phylllic alteration is light pink, green or yellowish with potassium feldspar fresh and pink and blocky. Plagioclase and mafic minerals are altered to fine-grained quartz-sericite-pyrite. It often occurs with veins and is associated with gold mineralization; it is not recognized in volcanics.

Phylllic alteration is generally grey, fine-grained quartz-sericite-pyrite alteration usually associated with veins and often gradational to quartz and often auriferous. Advanced argillic alteration is exemplified by most or all of feldspar being destroyed, quartz is "free-floating". The alteration is often sheared and white in colour and is often associated with quartz veins. Volcanics are white or blue coloured. Silicic alteration is quartz veining or replacement that is hard with moderate conchoidal fracture. There is a strong symmetrical zoning of alteration around the quartz veins: vein-advanced argillic-phylllic-potassium feldspar stable phylllic-argillic-propylitic.

Measured geological reserves of the Siwash North deposit are 308,414 tonnes grading 22.17 grams per tonne gold and 24.68 grams per tonne silver using a cutoff grade of 10 grams per tonne gold.
Mineralization: Toni 909409 Claim Group Area (cont’d)

Elk past producer (cont’d)

Reserves are based on results from 107 drillholes at 50-metre grid spacings along 804 metres of strike length to 304 metres down dip. All veining intercepts have been adjusted for true width and assays diluted to 2-metre mining widths (George Cross News Letter No. 223 (November), 1991).

The revised drill indicated reserve, based on more realistic open pit and underground mining widths of 0.39 to 0.79 metre with a 20.5 grams per tonne gold cutoff grade, is 122,458 tonnes averaging 54.5 grams per tonne gold (George Cross News Letter No. 65 (April 2), 1993).

Surface drilling was done on fences 10-50 metres apart, underground drilling on fences 10 metres apart. Reserve calculations by the company and consultant Roscoe Postle gave the following results (Explore B.C. Program 95/96 - A38):

Probable (undiluted) 16,991 tonnes at 28,200 tonnes at 50.2 g/t gold 26.6 g/t gold
Possible (undiluted) 50,260 tonnes at 66,400 tonnes at 42.0 g/t gold 31.4 g/t gold

The 1996 exploration program consisted of 6873 metres of drilling in 91 holes. The Siwash zone has been traced along a 914 metre strike length and down dip to 245 metres.

Reserves estimated by the company at January 1, 1996 were 121,350 tonnes grading 25.4 grams per tonne gold and 35.3 grams per tonne silver.

These include a diluted, probable open-pit resource of 11,340 tonnes grading 58.97 grams per tonne gold, an underground probable resource below the open pit of 20,225 tonnes grading 26.74 grams per tonne gold, and a further possible underground resource of 89,790 tonnes grading 23.66 grams per tonne gold (Information Circular 1997-1, page 21).

Surface diamond drilling totaling 1413.96 metres in 12 holes was completed on the Siwash Mining lease during 2000 testing the B, WD and Gold Creek West (GCW) zones.

A trenching program was carried out in 2001 in the Siwash East Area consisting of six trenches totaling 202 meters. Almaden Resources and Fairfield Minerals Ltd. merged into Almaden Minerals Ltd. in February, 2002.

In 2002, Almaden undertook a 26 hole surface diamond drill program for a total of 4995.67 metres testing the B, WD, GCW and Bullion Creek zones. During the 2003 field season a 6570 metre, 30 hole, diamond drill program was carried out by Almaden in the Siwash North area testing the WD zone. The WD vein system is located approximately 100 metres north of the Siwash B zone vein and has been tested over a strike length of 610m and down dip for 380m.

By the end of May 2004, a total of eight mineralized veins had been discovered on the property. Four vein systems had been drilled in the Siwash area: the B system with a strike length of 900 m has been tested down dip to 320 m; the WD zone with a strike length of 650 m has been tested to 370 m down dip; the GCW zone with a strike length of 300 m has been tested to 130 m down dip and the Bullion Creek (BC) zone which has been tested with two holes to a depth of 75 m.

A new 43-101 compliant resource was calculated using drill data for the Siwash B and WD veins, just two of eight known mesothermal vein structures on the property.
Mineralization: Toni 909409 Claim Group Area (cont’d)

Elk past producer (cont’d)

Global (bulk-tonnage and underground mineable) measured and indicated resources were reported to total 668,300 tonnes grading 9.66 grams per tonne gold (207,600 ounces) plus an additional 1,317,200 tonnes grading 4.91 grams per tonne gold (207,800 ounces) in the inferred category (News Release, Almaden Minerals Limited, May 28, 2004).

Included in the global figures is a higher grade, underground-mineable resource totaling 164,000 tonnes grading 33.69 g/t gold in the measured and indicated category, plus another 195 200 tonnes grading 16.38 g/t gold in the inferred category.

In 2004 a diamond drill program consisting of 10,265 meters of NQ drilling in 44 holes was completed.

As reported by Almaden in 2001, a possible extension to the B and WD vein systems was found roughly two kilometres along strike to the east, on the other side of an area of overburden cover and no outcrop, as part of a trenching program. Grab samples of the vein material taken at surface returned averaged analyses of 31.6 grams per tonne gold and 104.4 grams per tonne silver (News Release, Almaden Minerals Limited, March 4, 2005. This discovery added about two kilometres of prospective, unexplored strike length to the high-grade vein system.

AU-WEN prospect (Intrusion-related Au pyrrhotite veins; Polymetallic veins Ag-Pb-Zn+/-Au)
MINFILE No 092HNE144
Sixteen kilometres west

Pyrite, pyrrhotite, chalcopyrite and arsenopyrite are disseminated sporadically in the tuffaceous rocks and argillite, up to about 1 per cent, and also occur in fractures (Assessment Reports 11241, 16008). Native gold is associated with the sulphides in narrow quartz-filled fractures in these rocks (Assessment Report 16008). Minor malachite occurs in volcanics.

The overall extent of the mineralization has not been determined, although diamond drilling has demonstrated that minor pyrite, pyrrhotite and chalcopyrite, disseminated or associated with quartz or calcite fracture veinlets, does persist below the surface (Assessment Reports 11241, 16008).

Gold values in the area are generally low, but high values have been obtained from trench sampling and drill core at the main showing. Significant gold assays in chip samples range from 6.8 grams per tonne over 5.1 metres to 10.8 grams per tonne over 4.9 metres (Assessment Report 16008). Grab and select samples assayed between 14.4 and 91 grams per tonne gold (Assessment Reports 5766, 16008). The best drill core intersection assayed 4.97 grams per tonne gold over 1.5 metres (Assessment Report 16008).

Copper is associated with the gold mineralization; one rock sample from the main trench yielded 0.29 per cent copper (Assessment Report 7293). Another sample yielded 26 grams per tonne silver and 0.14 per cent lead (Assessment Report 7293). Silver in diamond drill core is generally under 1 gram per tonne (Assessment Report 11241).

BREW showing (Alkaline porphyry Cu-Au; Subvolcanic Cu-Ag-Au; As-Sb)
MINFILE 092HNE275
Five kilometres southwest

The zone has been traced on surface for 400 metres and is 30 to 40 centimetres wide. It is comprised of strongly gossanous clay and fault gouge containing 1 to 2 per cent pyrite. Quartz and quartz-calcite stringers and quartz blebs occur sporadically throughout the zone. A sample of quartz vein material yielded 0.14 gram per tonne gold and 14.4 grams per tonne silver (Assessment Report, 18041, page 8, sample 239774).
Mineralization: Toni 909409 Claim Group Area (cont’d)

WAVE 2 anomaly (Polymetallic veins Ag-Pb-Zn+/-Au)
MINFILE 092HNE312
Three kilometres north-northeast

Locally, mineralized quartz vein float was found and contain disseminated pyrite and limonite with occasional specks of chalcopyrite, galena or sphalerite. In 1991, samples of mineralized vein float, up to 0.20 metres in diameter, returned up to 25.7 parts per million silver, 1732 parts per million lead and 2107 parts per million zinc (Assessment Report 22864).

STRUCTURAL ANALYSIS

A DEM Hillside image map downloaded from MapPlace was utilized as the base map for the Structural analysis on Tenure 909409. A total of 56 lineaments were marked (Figure 5), compiled into a 10 degree class interval, and plotted as a Rose Diagram as indicated on Figure 6.

Figure 5. Indicated Lineaments on Tenure 909409

See Figure 4 for descriptions of geological symbols
Structural Analysis (cont’d)

Figure 6. Rose Diagram from lineaments (Figure 5) of Tenure 909409.

STATISTICS

Axial (non-polar) data
No. of Data = 56
Sector angle = 8°
Scale: tick interval = 2% [1.1 data]
Maximum = 26.8% [15 data]
Mean Resultant dir'n = 155-335
[Approx. 95% Confidence interval = ±17.4°]
(valid only for unimodal data)

Mean Resultant dir'n = 154.8 - 334.8
Circ.Median = 005.0 - 185.0
Circ.Mean Dev.about median = 36.0°
Circ. Variance = 0.17
Circular Std.Dev. = 34.53°
Circ. Dispersion = 1.30
Circ.Std Error = 0.1524
Circ.Skewness = 5.68
Circ.Kurtosis = -14.79

kappa = 1.10
(von Mises concentration param. estimate)

Resultant length = 27.08
Mean Resultant length = 0.4836

'Mean' Moments: Char = 0.3078; Sbar = -0.373
'Full' trig. sums: SumCos = 17.2381; Sbar = -20.888
Mean resultant of doubled angles = 0.3916
Mean direction of doubled angles = 169

(Usage references: Mardia & Jupp,
'Directional Statistics', 1999, Wiley;
Fisher, 'Statistical Analysis of Circular Data',
Note: The 95% confidence calculation uses
Fisher's (1993) 'large-sample method'
Structural Analysis (cont’d)

Figure 7. Cross-Structural locations (Figure 5) on Google Earth
(Base map from MapPlace and Google Earth)

Table II. Approximate location of Figure 6 cross-structures
(UTM-NAD 83)

<table>
<thead>
<tr>
<th>Area</th>
<th>UTM East</th>
<th>UTM North</th>
<th>Elevation (metres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>675,090</td>
<td>5,535,717</td>
<td>1,595</td>
</tr>
<tr>
<td>B</td>
<td>675,120</td>
<td>5,534,530</td>
<td>1,541</td>
</tr>
<tr>
<td>C</td>
<td>694,287</td>
<td>5,534,855</td>
<td>1,525</td>
</tr>
<tr>
<td>D</td>
<td>694,223</td>
<td>5,536,050</td>
<td>1,532</td>
</tr>
</tbody>
</table>
INTERPRETATION and CONCLUSIONS

The Structural analysis on Tenure 909409 of the Toni 909409 claim group indicates two primary (S_1) north-south and two primary (S_1) west-northwesterly (northwesterly) indicated structures. The northerly structures are prominent in the area and in some cases are mineral controlling structures. This orientation is most obvious in the Kentucky-Alleyne fault system to the west which appears as a structural contact between the Eastern and the Central Facie of the Nicola Volcanics located 14 kilometres west of the Toni 909409 claim group.

The Elk mineral zone(s) (Minfile 091HNE096), appear proximally associated with the northerly trending Elk structure which is indicated topographically over a distance of at least 20 kilometres from south of the Elk mineral zones to north of the SNOW (Minfile 092HNE292) mineral showing. The mineralized area appears to broaden at the intersection of the of the Elk structure and conjugate northeasterly trending structures. This mineral controlling structural intersection is apparently restricted to the Middle Jurassic intrusive whereas north of the intrusive northwesterly structures appear displacing the Elk structure right laterally for up to two kilometres.
Interpretation and Conclusions (cont’d)

This displacement occurs in the Nicola volcanics as the Magwump fault at the Brew (Minfile 092HNE275) mineral showing and at the Snow fault in the granodiorite at the SNOW (Minfile 092HNE292) mineral showing. Mineralization at these cross-structural locations occurs at the Brew location exposed along the Coquihalla Highway for 600 metres with sections of the fault zone strongly mineralized with massive veins, narrow stringers and occasional disseminations of marcasite, pyrite and pyrrhotite. This fault is traversed by several significant fault/shear zones striking 100 to 120 degrees. One major crossfault, the Mugwump fault, is exposed west of the Brew fault, striking 100 degrees and dipping 60 degrees south.

At the SNOW mineral showing a drill hole intersected minor copper mineralization in weakly to moderately chloritized granite of the Pennask batholith and is indicated near the intersection of the northerly trending Elk fault and the northwesterly trending Snow fault.

At the Brenda past producer (Minfile 092HNE047) the mineralization within the localized Brenda stock, which forms part of the Pennask batholith, decreases outwardly from the most intensely fractured/mineralized rock which is the centre of the main mineral zone. This main mineralized zone may occur at a structural intersection.

The indicated four structural intersections within Tenure 909409 all are located within the Nicola volcanics with intersection designated as D occurring proximally to the contact with the Pennask granodiorite. This intersection is significant in that it has the potential for mineral development in a skarn as at the Mal mineral showing (Minfile 092HNE002).

For other mineral deposit types that may occur within the Toni 909449 Claim Group reference is made in the report to the eight Minfile properties in the area of Tenure 909449. These Minfile descriptions, copied from the BC Government Minfile records, are shown on Figure 4 and are included herein as potential types of mineralization that should be sought subsequent to the exploration of the four prime exploration areas within Tenure 909449.

Respectfully submitted
Sookochoff Consultants Inc.

Laurence Sookochoff, PEng
SELECTED REFERENCES

AR 23,446.

MapPlace – Map Data downloads

MtOnline - MINFILE downloads.

092HNE002 – MAL
092HNE047 – BRENDA
092HNE058 – HN-WEN
092HNE084 – PAYCINCI
092HNE096 – ELK
092HNE144 – AU-WEN
092HNE275 – BREW
092HNE312 – WAVE 2

STATEMENT OF COSTS

Work on Tenure 909409 was done from June 10, 2013 to June 13, 2013 to the value as follows:

Structural Analysis

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laurence Sookochoff, P Eng.</td>
<td>3 days @ $1,000.00/day</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>Maps</td>
<td></td>
<td>1,200.00</td>
</tr>
<tr>
<td>Report</td>
<td></td>
<td>3,000.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$7,250.00</td>
</tr>
</tbody>
</table>

======
CERTIFICATE

I, Laurence Sookochoff, of the City of Vancouver, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geologist and principal of Sookochoff Consultants Inc. with an address at 120 125A-1030 Denman Street, Vancouver, BC V6G 2M6.

I, Laurence Sookochoff, further certify that:

1) I am a graduate of the University of British Columbia (1966) and hold a B.Sc. degree in Geology.
2) I have been practicing my profession for the past forty-seven years.
3) I am registered and in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.
4) The information for this report is based on information as itemized in the Selected Reference section of this report and from work the author has performed on the Toni Property since 2006.
5) I have no interest in the Toni 909409 Claim Group as described herein.
6) I am a director of Victory Resources Corporation.

Laurence Sookochoff, P. Eng.