TITLE OF REPORT: Assessment Report on the Trilby Mineral Property, Prospecting, tenure #'s 856064, 856071 Rossland, British Columbia

TOTAL COST: $3,100.00

AUTHOR(S): Daniel M. Wehrle

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):
STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5525786 / 2014/oct/08

YEAR OF WORK: 2014

PROPERTY NAME: Trilby Mineral Claim Group
CLAIM NAME(S) (on which work was done): Alfe (856064), Hidden Treasure (856071)

COMMODITIES SOUGHT: Gold, silver, lead, zinc.

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: TRAIL CREEK
NTS / BCGS: 082F04W
LATITUDE: 49° 03' 1"
LONGITUDE: 117° 46' 13" (at centre of work)
UTM Zone: 11N EASTING: 443702 NORTHING: 5433313

OWNER(S): Dan Wehrle 100 %

MAILING ADDRESS: Box 562 Rossland, BC V0G 1Y0

OPERATOR(S) [who paid for the work]: Dan Wehrle

MAILING ADDRESS: Box 562 Rossland, BC V0G 1Y0

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. Do not use abbreviations or codes)

Early Jurassic age Rossland Group volcanics, northeast trending Elise argillaceous siltstone, mafic flows and basaltic flows intruded by augite porphyry (Rossland Sill), Rossland Monzonite, hornblende porphyry, late stage Tertiary lamprophyre and feldspar porphyry dikes. Gold, silver and base metal sulphide healed shear vein systems trend roughly east – west and steeply dip north.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 00034, 31703, 32515
<table>
<thead>
<tr>
<th>TYPE OF WORK IN THIS REPORT</th>
<th>EXTENT OF WORK (in metric units)</th>
<th>ON WHICH CLAIMS</th>
<th>PROJECT COSTS APPORTIONED (incl. support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGICAL (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground, mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo interpretation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOPHYSICAL (line-kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induced Polarization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOCHEMICAL (number of samples analysed for …)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRILLING (total metres, number of holes, size, storage location)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELATED TECHNICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling / Assaying</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallurgical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROSPECTING (scale/area)</td>
<td>2.5 km traverses</td>
<td>Alfe</td>
<td># 856064</td>
</tr>
<tr>
<td>PREPATORY / PHYSICAL</td>
<td></td>
<td>HiddenTreasure</td>
<td># 856071</td>
</tr>
<tr>
<td>Line/grid (km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topo/Photogrammetric (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal Surveys (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road, local access (km)/trail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trench (number/metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground development (metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COST</td>
<td></td>
<td></td>
<td>$3,100.00</td>
</tr>
</tbody>
</table>
ASSESSMENT REPORT ON THE
TRILBY MINERAL CLAIM GROUP
tenure #'s 856064, 856071
TRAIL CREEK MINING DIVISION
ROSSLAND, BRITISH COLUMBIA

PROSPECTING

Prepared for

Owner: Dan Wehrle
Box 562
Rossland, B.C. V0G 1Y0

December 17th, 2014

NTS / BCGS: 082F04W
LATITUDE: 49° 03' 1"
LONGITUDE: 117° 46' 13" (at centre of work)
UTM Zone: 11N EASTING: 443702 NORTHING: 5433313

Dan Wehrle P.Geo.
Rossland, B.C.
TABLE OF CONTENTS

1.0 Summary ... 7

1.1 Introduction .. 8

2.0 Location, Access and Physiography ... 9

3.0 Trilby Mineral Claim Group ... 12

3.1 Trilby Group Tenure Overlap Report Summary ... 14

4.0 Rossland Exploration and Development History .. 15

4.1 Rossland Southbelt Exploration and Development History ... 17

4.2 Trilby Group Exploration and Development History .. 19

5.0 Geology and Mineralization ... 21

6.0 Objective of Present Work ... 26

7.0 Procedure .. 26

8.0 Discussion of Results ... 27

9.0 Conclusions and Recommendations ... 28
LIST OF FIGURES

Figure 1: Property Location Map..9

Figure 2: Trilby Claim Group and Prospecting Area Map...10

Figure 3: Trilby Property Prospecting Traverses Map..11

Figure 4: Trilby Mineral Claim Group Acquired Ground...13

Figure 5: Rossland Southbelt Main Au/Ag/Pb/Zn Veins...17

Figure 6: Self Potential Geophysical Anomaly on Former May Queen No. 6 and 8 claims........20

Figure 7: Rossland Area Geology Map..22

Figure 8: Inset of Rossland Area Geology Map..22

Figure 9: Southbelt Geology and Mineral Zoning Map...23

Figures 10: Geological Plan of Principal Mines Rossland B.C. 1915..25

Figures 11: Trilby Prospecting Compilation Map...27

LIST OF APPENDICES

Appendix 1: Itemized Cost Statement

Appendix 2: Author’s Qualifications
1.0 SUMMARY

The Trilby mineral claim group, owned 100% by D. Wehrle, is located 7 kilometres southwest of Trail B.C. and is made up of 4 contiguous claims comprising 10 cell units with an area of 211.7 hectares (523.1 acres). The Trilby group includes the Trilby (tenure # 893709), Alfe (# 856064), Hidden Treasure (# 856071) and Wolverine (# 856068) mineral claims. Prospecting assessment work was performed on and applied to the Alfe (# 856064) and Hidden Treasure (# 856071) claims. This assessment work was also applied to the adjacent Golden 8 (# 1030838) mineral claim.

Rossland type silver – gold – lead - zinc bearing vein structures trending east – west are the main exploration targets. Documented mineral exploration work on the Trilby property is limited to brief mention by Drysdale (GSC Memoir 77) and in ARIS assessment reports # 00034 and # 32515. Assessment report # 32515, dated Nov. 17th, 2011, describes a preliminary, reconnaissance, ground VLF-EM survey covering approximately 1.5 line km. on the west - central portion of the Trilby claim group. It successfully generated VLF-EM anomalies coincident with the location of the 1948 SP anomaly described in ARIS report # 00034 (dated March, 1948). The current report describes follow up reconnaissance prospecting work over the 1948 SP anomaly area.
1.1 INTRODUCTION

The prospecting work described in this report is being presented as assessment work for the Trilby mineral claim group for 100% owner D. Wehrle and is based on field work carried out and supervised by the author, D. Wehrle P.Geo. The centre of the Trilby mineral claim group is located approximately 2.5 kilometres southeast of the City of Rossland in the Trail Creek Mining Division, southeastern British Columbia.

The Trilby mineral claim group is made up of 4 contiguous claims comprising 10 cell units with an area of 211.7 hectares (523.1 acres) and includes the Trilby (tenure # 893709), Alfe (856064), Hidden Treasure (856071) and Wolverine (856068) claims. The prospecting work, covering approximately 2.5 line kilometres, was conducted between September 27th and September 30th 2014, on the west-central portion of the Trilby claim block. This prospecting work is part of an on-going exploration program on the Trilby property whose goal is to locate and define economic concentrations of gold, silver and base metals near Rossland B.C.
2.0 LOCATION, ACCESS AND PHYSIOGRAPHY

The centre of the Trilby group mineral claims is located approximately 2.5 km. southeast of the City of Rossland (Figs. 1 and 2). Rossland is located 6 km. southwest of Trail, southeastern B.C. and is 7 km. north of the United States border. Trail hosts the world’s largest lead-zinc smelter (Teck Corp.) Central Trilby work area coordinates are longitude 117° 46' 13” W, latitude 49° 03’ 01” N on N.T.S. map sheet 82F002, with UTM coordinates 443702 E and 5433313 N (zone 11 N, NAD 83).
Rossland and vicinity is served by provincial highways 3B and 22, by Trail airport and by Castlegar airport located 26 km. north of Trail. Access to the property is from the south end of Rossland along the old railway grade to Beaumont Timber’s locked gate on road B3000. Within the Trilby group claim boundary is a good system of logging and skidder roads. No houses or dwellings are situated on the claim. The prospecting area lies in the central portion of the property (Fig. 2 above and Fig. 3) and it takes approximately 30 minutes to reach it by 4 X 4 vehicle from Rossland.
Point A: 443509E, 5433073N Point B: 443485E, 5433400N Point C: 443650E, 5433386N Point D: 443655E, 5433542N Point E: 443651E, 5433728N Point F: 443809E, 5433715N Point G: 443788E, 5433101N

Relief on the Trilby property is between 900 metres above sea level (m.a.s.l.) in the north central portion of the Trilby claim and 1280 m.a.s.l. in the southwest on the Alfe claim. The property has been selectively logged and is moderately treed with some dense bushy areas, predominately alder, huckleberry and hazelnut. Interior Douglas fir and Lodgepole pine with localized stands of cedar are the predominant forest cover. Numerous stands of poplar and birch occur in the lower elevations and along drainages.

The region has been affected by continental glaciation. Two ice directions have been recorded
with the final advance being south to southwest. Consequently, glacial till, on the order of 1-5 m. thick blankets most of the property. Outcrop exposure is fair, approximately 5-10% with best exposures found on steeper mountain slopes, road cuts and at the base of local uprooted and wind fallen trees.

Summers in Rossland are hot and dry and often extend from May through to early October. A short and wet spring from mid March to mid May and a cold dry fall from October until early December is common. Heavy snow winters from mid December to mid March are very common. Mineral exploration and drilling programs can and have taken place all year round in the Rossland area, however winter drill programs require some snowploughing. Water for drilling programs is available during most of the year from intermittent streams. During exceptionally hot and dry summers, water may have to be hauled to the drill site via fire hydrant at the south end of Rossland. For these reasons drill programs are best suited to late spring or early summer.

3.0 TRILBY MINERAL CLAIM GROUP

The Trilby claim group is made up of 4 contiguous mineral claims comprising 10 cell units with an area of 211.7 hectares (523.1 acres) and includes the Trilby (tenure # 893709), Alfe (#856064), Hidden Treasure (#856071) and Wolverine (#856068) claims (fig. 2). All are owned 100% by D. Wehrle of Rossland BC. The Trilby group is named after and contains the ground held by the former Trilby Crown Granted mineral claim. The present Trilby mineral cell claim, tenure #893709, was formed on August 25\(^{th}\), 2011 from the amalgamation of the Lil 8 (#559014) and Trilby (#604080) mineral claims, registered on May 22, 2007 and May 7, 2009 respectively. The Alfe, Hidden Treasure and Wolverine cell claims were registered on June 1, 2011. A cell claim, with dimensions 500 X 500 metres, is presently the standard unit mineral claim in BC.

In late 2007, the Trilby group area (and Golden 8 tenure # 569502, presently tenure
1030838) formed part of an option agreement by Rossland Resources Inc. No work programs were initiated and the properties were returned in 2009 when Rossland Resources curtailed operations due to the global financial meltdown. The present Alfe, Hidden Treasure and Wolverine cell claims acquires 100% of the mineral ground within their claim boundaries. The Trilby cell claim acquires the southern-most 20% of the contained mineral ground due to the previous Golf legacy claim (tenure # 315644), (fig. 2 and 4). The Golf legacy claim, should it cease to be valid, would automatically be absorbed into that portion of the overlying Trilby cell claim. The extent of the Trilby group cell claim block is approximately 2 km. E-W X 1.5 km N-S. All of the mineral claims in the Trilby group property are in valid and good standing and assessed (with acceptance of this report) until at least Feb. 28th, 2016 and Feb. 28th 2017 for the Alfe and Hidden Treasure claims.
3.1 TRILBY GROUP TENURE OVERLAP REPORT SUMMARY

Tenure overlap reports were requested and then issued from the Mineral Titles Branch of the British Columbia Ministry of Energy Mines and Petroleum Resources for the Trilby group mineral claims in 2011. The tenure overlap reports issued by the Ministry help the mineral claim owner identify, if any, other jurisdictional interests. Tenure overlap reports for the Trilby (tenure #893709), Alfe (#856064), Hidden Treasure (#856071) and Wolverine (#856068) mineral claims of the Trilby group are summarized below and show the same identical results:

- With First Nations interests, Indian Reserve = NONE
- With First Nations interests, Treaty Lands = NONE
- With Legal and Administrative interests, Reserves =NONE
- With Legal and Administrative interests, Agricultural Land Reserve = NONE
- With Legal and Administrative interests, Parks / Protected Areas = NONE
- With Legal and Administrative interests, Municipality = NONE
- With Sub-surface mineral tenures (does not include Crown Grants) = NONE
- With Sub-surface placer tenures = NONE
- With Sub-surface coal tenures = NONE
- With surface tenures (does not include Private Land), Crown Land Leases = NONE
- With other resource interests, Ungulate Winter Range = NONE
- With other resource interests, Wildlife Habitat Area = 8-373 - Grizzly Bear
- With other resource interests, Wildlife Management Area = NONE
4.0 ROSSLAND EXPLORATION AND DEVELOPMENT HISTORY

Shear controlled gold-silver-copper ores were discovered in the Rossland area in 1890. Production from this district totalled approximately 6,200,00 tons of ore grading an average recovered grade of 0.47 oz. gold/ton, 0.49 oz. silver/ton and 1% copper, making Rossland Western Canada’s second largest historical gold producer (1890 – 1995) and Canada’s largest gold producer prior to 1900. Most of this production (over 3 million ounces of gold, 3.7 million ounces of silver and 124 million pounds of copper) came from an interconnected series of mines on the Le Roi vein system, an area of approximately 100 acres, immediately north of Rossland.

The annual BC Minister of Mines annual reports show only 116 claims were staked in the Rossland camp in 1890, with 40 of them on the South belt of veins (1 km. south of Rossland) and the remainder on the Main belt veins (Red – Monte Christo – Columbia/Kootenay Mountains), North belt veins (Red and Monte Christo Mountains) and the ‘free gold belt’ (OK Mountain 2 km. west of Rossland the OK, IXL and Midnight claims where 10,000 tons of ore returning 33,000 oz. gold, 13,000 oz. silver and 10 tons of copper was mined from 1898 to 1962). By the end of 1895 the first large ore body in the camp had been discovered on the War Eagle, over 2,200 mineral claims had been staked, a smelter was being built in Trail and two different railways were being built to reach Rossland.

Dividend paying gold mines were active in Rossland from 1890 to 1928 and in 1906 the Consolidated Mining and Smelting Company of Canada Ltd. was organised with the Rossland gold mines forming Cominco’s founding asset (Consolidated stood for the consolidation of the Rossland mines). With gold at $20/ounce and water pumping costs approaching the cost of extraction, production was shut down in 1928. Further incentive occurred when at that time metallurgical problems associated with the massive Sullivan lead – zinc – silver deposit in Kimberly were solved. The Rossland gold mines were also shut down for nearly 2 years during the
1920 – 1922 when the Company made a preliminary focus on the challenges of the Sullivan ore body.

At the time of the Rossland gold mine shutdown in 1928, records show that seven, 1 ounce/ton gold stopes were still being mined in the War Eagle mine alone (Rossland Historical Museum records). In the early 1930’s lesers reactivated the 4 upper dry levels of the Le Roi mine complex on Red Mountain, where it is estimated that approximately 250,000 ounces of gold were further extracted. Leaser production was so large that by the mid 1930’s Cominco severely limited such operations and gold production from the Rossland area virtually ceased. It is said that during the 1930’s leasing operations, shipping ore had to be greater than 0.5 oz/ton gold or it was left behind (personal communication 1989, Mike Delich, Jack MacDonald, depression era gold lease workers).

From 1966 to 1972 1.1 million tons of molybdenum ore, grading 0.22 % Mo. (4.8 million pounds of elemental molybdenum) was open pit mined from the western slopes of Red Mountain northwest of Rossland. This ore came from a mineralized system of breccias located about 1000 meters northwest of the Le Roi vein system. Gold was not assayed for during Red Mountain Mines Ltd. molybdenum milling operations (personal communication 1997, former mill manager Red Mountain Mines Ltd.).

From 1994 to 1995 the Evening Star and Iron Colt properties on Monte Christo mountain together produced 20,000 tons of ore at a recovered grade of 0.44 ounces gold / ton (1994 – 1995). During this operation (the author was chief geologist), shrink stoppage mining produced gold from near surface ore bodies only above previously existing adit levels. Development of intermediate and lateral gold resources was constrained by deteriorating $350/ounce gold economics.

Further detailed exploration and development history of Rossland can be found in GSC Memoir 77, Geology and Ore Deposits of Rossland B.C. by C. W. Drysdale (1915).
4.1 ROSSLAND SOUTHBELT EXPLORATION AND DEVELOPMENT HISTORY

The Trilby mineral claim group lies approximately 3 km. southeast of the LeRoi mine area, is adjacent and southeast of the Southbelt group of veins and adjacent and south of the Crown Point area. These gold / silver +/- lead/zinc bearing pyrrhotite / pyrite / sphalerite veins can be traced for several kilometres, trend roughly east – west and dip steeply north (fig. 5).
Total Southbelt production is minimal, records from all sources (MEMPR, MINFILE) show:

<table>
<thead>
<tr>
<th>Known Production</th>
<th>tons</th>
<th>Grade</th>
<th>Unknown Production</th>
<th>Worked not shipped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maid of Erin</td>
<td>12</td>
<td>?</td>
<td>Nest Egg</td>
<td>Abe Lincoln</td>
</tr>
<tr>
<td>Sunset</td>
<td>19</td>
<td>?</td>
<td>Monday</td>
<td>Celtic Queen</td>
</tr>
<tr>
<td>Lily May</td>
<td>50</td>
<td>?</td>
<td>Gopher</td>
<td></td>
</tr>
<tr>
<td>Phoenix</td>
<td>117</td>
<td>?</td>
<td>Deer Park</td>
<td></td>
</tr>
<tr>
<td>Homestake</td>
<td>377</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crown Point</td>
<td>787</td>
<td>0.4 oz/t Au, 0.26 oz/t Ag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayflower</td>
<td>966</td>
<td>0.13 oz/t Au, 12.2 oz/t Ag, 2.8% Pb, 5.4% Zn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Bird</td>
<td>8062</td>
<td>0.07 oz/t Au, 13 oz/t Ag, 2.5% Pb, 4% Zn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The central portion of the Southbelt, from the Bluebird workings eastward to the New North vein system has been the main focus of exploration activity in the past. Various geochemical, geophysical, diamond drilling and limited production programs have selectively covered the 4 major vein systems in the area. These programs tested surficial to medium depth (200 metre) intersections on the Bluebird lead - zinc - silver and New North gold vein systems; and tested surficial to shallow depth (100 metre) intersections on the Gopher - Homestake gold and Mayflower gold - zinc vein systems.

The eastern portion of the Southbelt, other than the Crown Point mine area has seen only small, sporadic exploration programs, usually for assessment purposes. Although the Crown Point area contains over 1000 feet of early 1900’s underground development, work since then has been minimal.

Approximately 0.5 km west of the Crown Point mine is the Tigre trench area where potential vein structures appear much less broken up by faulting (late 1940’s SP geophysical surveys). Here
an initial trenching and soil survey program uncovered a significant gold bearing structure assaying up to 0.626 oz Au/ton in grab sample and 0.514 oz Au/ton over 2 meters in channel sampling (BC assessment report 18310, Minnova 1988). Significant gold assays were obtained over the entire 75 meter length of the E-W trending trench and the trenched vein is contained within a larger soil geochemical anomaly at least 400 m in strike length.

The Zinc vein lies approximately 0.5 km. north of the Trilby group claims. It is a strong, continuous gold and zinc rich vein shown in a series of old trenches and shallow shafts, displaying massive pyrrhotite and sphalerite up to 0.5 metres wide (ARIS BC 09827, 10784, 14345). The zinc vein was likely the focus of work on the old lapsed Trilby claim as described by Drysdale (GSC Memoir 77, pg. 172).

4.2 TRILBY GROUP EXPLORATION AND DEVELOPMENT HISTORY

Assessment report #32515, dated Nov. 17th, 2011, describes a preliminary, reconnaissance, ground VLF-EM survey covering approximately 1.5 line km. on the west-central portion of the Trilby claim group. It successfully generated VLF-EM anomalies coincident with a 1948 SP anomaly described in ARIS report # 00034 (dated March, 1948). In this report, “Geological and Geophysical Report on the May Queen Group,” the author, Wallace R. Baker (Geologist) mentions some of the geology (page 5), found on the May Queen #3 – 5 claims (presently the southwest portion of the Trilby #893709 claim):

“Numerous augite porphyrite outcrops appear along the southern border of May Queen Nos. 3, 5, and 7, indicating that the Mr. Roberts cover has been largely removed. Pulaskite dikes are numerous and prominent throughout this group, with the usual strike and dip, but with greater variations than in the areas farther north. Other
dike rocks similar to the monzonite dikes appear on the May Queen No. 5. Many pits have been dug in the area some of them showing considerable sulphides.”

Geophysical field work from that report also shows a strong self potential anomaly on the May Queen #6 and #8 claims (presently the northern part of the Alfe # 856064 claim). This SP anomaly combined with favourable augite porphyry Elise volcanics cut by large, late stage, pulaskite (rhyolite) dikes near the Rossland monzonite contact makes for a compelling exploration target. This SP anomaly is large, approximately 1 km. E-W X 0.5 km. N-S and is the main focus of exploration on the Trilby group mineral claims (fig. 6).

Fig. 6: Self Potential Geophysical Anomaly on former May Queen No. 6 and No. 8 claims (BC Assessment report # 00034, 1948 Bruce)
5.0 GEOLOGY AND MINERALIZATION

Rossland area rocks are dominated by Early Jurassic age Rossland Group volcanics (Figs. 7 and 8). Northeast trending Elise argillaceous siltstone, mafic flows and Lower Elise Formation basaltic flows are intruded by Late Jurassic augite porphyry (the Rossland Sill), the Rossland Monzonite and the Rainy Day Pluton with associated Molybdenum Breccia complex. Locally these rocks are intruded by various late stage Tertiary lamprophyre and feldspar porphyry dikes.

Gold, silver and base metal sulphide associated healed shear vein systems trending roughly east – west and steeply dipping north are extensive throughout the Rossland area and have been found to exist in an east – west extent from east of the Columbia River near Trail to west of the Patterson Highway (approximately 20 km.) and in a north – south extent from north of Red mountain to south of the International boundary (approximately 10 km.). Gold, silver and base metal production from these vein systems has been limited to within 1 km. of the northern and southern margins of the Rossland monzonite intrusion.

Exploration drilling has shown the Rossland monzonite to be a phased intrusion, locally containing dioritic to gabbroic stocks (sometimes called monzodiorite) where resulting remnant wedges or ‘cracks’ of volcanics sometimes provide a high grade channel for gold sulphide vein mineralization (eg, Iron Colt area). The Rossland monzonite also gives off a roughly east – west and steeply dipping dike facies of hornblende porphyry that sometimes forms a hanging or footwall contact to gold bearing sulphide mineralization (Drysdale 1915). Some of the best geological ingredients for gold bearing sulphide mineralization are where these monzonite related hornblende porphyry dikes traverse through ground containing Elise augite porphyry volcanics, especially near monzonite margins and near large feldspar porphyry dikes (eg: LeRoi area).
Fig. 7 & 8 (below, inset): Rossland Area Geology Map (Hoy and Dunne)
Although heavy sulphide – gold associations are common, very high grade gold drill intersections have also shown only 1 – 2% sulphides. Pyrrhotite is the most common and dependable gold associated sulphide followed by arsenopyrite; chalcopyrite is favourable but often randomly associated (no guarantee of gold association); sphalerite often has a good association with gold (particularly in the Southbelt but rarely present in the main and Northbelt); galena and associated silver mineralization, although more common in the Southbelt is occasionally found in trace amounts on the margins of gold bearing veins; the presence of pyrite although somewhat associated with gold mineralization in large amounts often signals a local bottoming or a lateral approach to crosscutting dikes. Fine grained or sugary pyrite with associated lower concentrations of gold may also represent higher structural levels of sulphide vein mineralization, eg: upper Mayflower veins in Rossland Southbelt. (Fig. 9)

Fig. 9: Southbelt Geology and Mineral zoning Map (after Hoy and Dunne, 2001)
Free gold that is very fine grained and interstitial to crystal margins, on average makes up approximately 25% of Rossland ores (Drysdale 1915). Visible gold is locally associated with gold-sulphide bearing veins in Rossland and has been noted in drill core grading from 0.18 to 24 oz/ton (no guarantee of high grade). Preliminary metallic sieve analyses has shown no appreciable nugget effect to analyzed gold bearing rock, that is, almost all the gold is found in the fine fraction. ‘Bonanza’ gold grades have been found in veins midway between dikes with related gold depletion found near or adjacent to dike margins.

Swarms of dark, fine-grained lamprophyre dikes, steeply dipping east and trending north – south, although a nuisance to drilling programs seem to be essential to local control of gold mineralization. Having similar orientations, large feldspar porphyry dikes often define the east – west extent of mineralized blocks within a vein system. Both types of dikes seem to play a large role in remobilizing and concentrating gold bearing sulphide veins or channelling late pulses of gold bearing fluids. Southwest or west – southwest trending drill orientations help to minimize dike interference. Blind (no surface expression) vein offsets to the hanging wall (eg: War Eagle vein, Evening Star main vein) sometimes display a resumption to gold mineralization when a particular vein has apparently bottomed or flattened to a crack (see fig 10).

The Trilby area is underlain by Early Jurassic Rossland Group mafic volcanic flows, sediments, augite porphyry, hornblende porphyry intrusions and rhyolite dikes (Fig. 8). Further, detailed information on the geology, structure and mineralization of the Rossland area can be found in Memoir 77, Geology and Ore Deposits of Rossland, B.C., G.S.C. Drysdale, 1915 and Bulletin 109, Metallogeny and Mineral Deposits of the Nelson - Rossland map area, B.C. Ministry and Mines Energy and Minerals Division (Hoy and Dunne, 2001).
Fig. 10: Geological Plan of Principal Mines Rossland B.C. 1915 (Drysdale GSC Memoir77)
6.0 OBJECTIVE OF PRESENT WORK

Prospecting traverses, covering approximately 2.5 line kilometres, were conducted between September 27th and 30th 2014, on the north central portion of the Alfe and northwest corner of the Hidden Treasure mineral claims (fig. 2 and 3). One traverse covered an area approximately 200 metres east of the main logging road, a second traverse covered the area approximately 150 metres west of the road and a third traverse prospected the intervening ground near the road (fig. 3). Prospecting traverses were designed to look for possible gossan outcrops and mineral showings related to the 1948 SP anomaly (Fig. 6). This work is part of an on-going exploration program to test the mineral ground on the Trilby property for indications of gold, silver and base metals.

7.0 PROCEDURE

Rutted skidder roads required walking 1 km. from the first gate at the northeast edge of the Trilby property in order to start collecting field work. The prospecting field reconnaissance lines utilized traditional Brunton compass and topo. fill string measurements, enhanced with GPS readings (see Fig. 3). Red flagging tape was used sparingly and topo. string was recovered wherever possible. The area around the lines was observed and prospected for any indications of gossaned or mineralized outcrop or float material.

Prospecting on the Alfe claim started from the main logging road at point A (443509E, 5433073N, see Fig. 3) and followed a line due south to point B (443485E, 5433400N) and then due east to point C (443650E, 5433386N) back on the main logging road. A second line was started from the same logging road at point D (443655E, 5433542N) north to point E (443651E, 5433728N), then east to point F (443809E, 5433715N) and then south back to the road at point G (443788E, 5433101N). The road from points C to A and later from G to C was also prospected.
8.0 DISCUSSION OF RESULTS

Figure 11 displays the Trilby, 2014 prospecting results as well as the approximate location of the 1948 SP geophysical anomaly area. While most of the area prospected, approximately 90 %, was covered by glacial till and dense brush, outcappings of Elise volcanics dominated most of the observed exposures. Almost all of these outcrops were moderately gossaned, as is the case of most volcanic outcappings in the Rossland area.
A few outcroppings of Elise volcanogenic sediments were observed and prominent rhyolite dikes were seen mainly near the road. These late stage, north trending dikes are very likely the reason for truncation of the east west trending, 1948 SP geophysical anomaly. Unfortunately, no evidence such as sulphide mineralization or old workings was observed to correlate with the position of the 1948 SP geophysical anomaly.

11.0 CONCLUSIONS AND RECOMMENDATIONS

The 2014 Trilby property reconnaissance scale prospecting observations in the field did not find evidence of the location of the 1948 SP geophysical anomaly. This is likely the result of heavy glacial till covering in the area prospected. Therefore reconnaissance scale VLF-EM geophysical prospecting is recommended in the 2014 prospecting area, on a 50 metre grid line spacing, in order to help see through the glacial till covering and verify the 1948 SP geophysical anomaly.
REFERENCES

MTO: Mineral Titles Online B.C.

Appendix 1

Itemized Cost Statement
ITEMIZED COST STATEMENT

Labour:
Professional Geoscientist:
- 2.5 days prospecting...$1,750.00
- 1.5 days report writing..$1,050.00

Expenses:
- Supplies..$100.00
- Vehicle rental..$200.00

Total $3,100.00
Appendix 2

Author’s Qualifications
AUTHOR’S QUALIFICATIONS

I, Dan Wehrle, a resident of the City of Rossland, in the Province of British Columbia do hereby certify that:

1) I am a Professional Geoscientist registered and in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.

2) I am a 1985 graduate of the University of Saskatchewan with a B.Sc. Honours degree in Geology and have practised my profession as Exploration Geologist continuously since 1985.

3) This report is based on work supervised by myself on the Trilby mineral property in southeastern British Columbia.

5) I have not received nor expect to receive any interest direct or indirect, in the properties mentioned in this report.

Disclaimer
The use of this report shall be at the sole risk of the user and I hereby disclaim any and all liabilities arising out of the use and distribution of this report, or reliance by any party on the data herein.

Dated this 17th day of Dec., 2014 in the City of Rossland, British Columbia.

[Signature]

D. Wehrle P.Geo.