ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Assessment Report on Windy and Tungsten Claims, Cassiar Area, BC

TOTAL COST: $19,057

AUTHOR(S): Bruce W Downing

SIGNATURE(S): “Bruce W Downing”

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):
STATEMENT OF WORK EVENT NUMBER(S)/DATE(S):
5706994

YEAR OF WORK: 2018

PROPERTY NAME: Windy

CLAIM NAME(S) (on which work was done):
Windy (1049865)
Tungsten (1050252)

COMMODITIES SOUGHT: beryllium

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: Liard
NTS / BCGS: 104 P 5W
LATITUDE: 58° 21’”
LONGITUDE: 128° 52’” (at centre of work)
UTM Zone: 9
EASTING: 509204 NORTHING: 6460791

OWNER(S):
Shi Qi Wang

MAILING ADDRESS:
922 Nahanni Drive, Box 371,
Watson Lake, YT Y0A 1C0

OPERATOR(S) [who paid for the work]:
Shi Qi Wang

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. Do not use abbreviations or codes)
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

Fraser, Stuart; Geology and Drill Results of the Windy Project, North of Cassiar, B.C. BCMEMPR September 1979 Assessment Report # 07965.

Kikauka, A., 2013, Geological and Geochemical report on Kuhn and Dead Goat Mineral Zones. For Fundamental Resources Corp, Assessment Report 34025

<table>
<thead>
<tr>
<th>TYPE OF WORK IN THIS REPORT</th>
<th>EXTENT OF WORK (in metric units)</th>
<th>ON WHICH CLAIMS</th>
<th>PROJECT COSTS APPORTIONED (incl. support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGICAL (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground, prospecting</td>
<td>Windy tungsten</td>
<td></td>
<td>16,303.02</td>
</tr>
<tr>
<td>Photo interpretation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOPHYSICAL (line-kilometres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromagnetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induced Polarization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airborne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOCHEMICAL (number of samples analysed for …)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRILLING (total metres, number of holes, size, storage location)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core (30 cms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELATED TECHNICAL</td>
<td>12</td>
<td>869.23</td>
<td></td>
</tr>
<tr>
<td>Sampling / Assaying</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrographic</td>
<td>6</td>
<td>1,884.75</td>
<td></td>
</tr>
<tr>
<td>Mineralographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallurgic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROSPECTING (scale/area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREPATORY / PHYSICAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line/grid (km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topo/Photogrammetric (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal Surveys (scale, area)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road, local access (km)/trail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trench (number/metres)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground development (metres)</td>
<td>Other</td>
<td>TOTAL COST</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19,057</td>
<td></td>
</tr>
</tbody>
</table>
ASSESSMENT REPORT

on

Windy and Tungsten Claims

CASSIAR AREA, NORTHERN BRITISH COLUMBIA

Liard M.D.

NTS 104 P 5W

Longitude 128°52'N Lat 59° 21'W
UTM Zone 9 509204 (easting) 6460791 (northing)

BY

Bruce W. Downing, MSc, P.Geo
20200 Grade Crescent
Langley, BC.

November 7, 2018
EXECUTIVE SUMMARY

A two day program of prospecting and mapping was conducted over the Windy and Tungsten mineral claims owned by Ms. Shi Qi Wang, Watson Lake, Yukon. These claims are located approximately eight km north of the old town site of Cassiar, British Columbia. This exploration program was conducted on August 3 to 5, 2018.

The purpose of this program was to locate and map prospective ground for beryllium and other elements that might be of interest. No in depth exploration work has been carried out on these claims since 1979 when companies were exploring for molybdenum and tungsten. Also, analytical techniques were not as robust as they are today, especially for rare metal / rare earth elements. Detection levels are also much improved. Rock samples were submitted for petrographic studies and for geochemical analysis.

The short prospecting program was successful in identifying the beryllium bearing mineral danalite in skarn. Other elements of interest included gallium, niobium, scandium and tin together with tungsten, molybdenum and copper.

A favourable geological setting together with results of the work done to date show that the Windy Property has the potential for rare metal mineral targets. In order to continue to evaluate the economic potential of the Windy Property, a program of property mapping, sampling and ground geophysics (magnetometer, VLF) is warranted.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td></td>
</tr>
<tr>
<td>1.0 Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2.0 Ownership, Location and Logistics</td>
<td>8</td>
</tr>
<tr>
<td>3.0 Environment</td>
<td>9</td>
</tr>
<tr>
<td>4.0 Prospecting</td>
<td>9</td>
</tr>
<tr>
<td>5.0 Historical Work</td>
<td>10</td>
</tr>
<tr>
<td>6.0 Regional Geology</td>
<td>10</td>
</tr>
<tr>
<td>7.0 Property Geology</td>
<td>11</td>
</tr>
<tr>
<td>8.0 Results</td>
<td>11</td>
</tr>
<tr>
<td>9.0 Conclusions and Recommendations</td>
<td>14</td>
</tr>
<tr>
<td>10.0 References</td>
<td>15</td>
</tr>
<tr>
<td>11.0 Statement of Qualifications</td>
<td>17</td>
</tr>
</tbody>
</table>

Appendices

- Appendix A Statement of Costs
- Appendix B Sample Descriptions
- Appendix C Petrographic Report
- Appendix D Photographs (Field and Sample)
- Appendix E Geochemical Plots and Analyses
TABLES

Table 1. List of Claims 8
Table 2. Sample Type Analyses Appendix B
Table 3: Sample Location Data Appendix B

ILLUSTRATIONS

Figure 1. Location of Property 18
Figure 2. Claim Map 19
Figure 3. Location of Sample Sites 20
Figure 3A Beryllium Concentrations (ppm) 21

Figure 4. Al vs Si Plot (Appendix E) 18
Figure 5. Fe vs Al Plot (Appendix E) 19
Figure 6. Na vs Al Plot (Appendix E) 20
Figure 7. Zr vs Al Plot (Appendix E) 21
Figure 8. Fe vs Si Plot (Appendix E) 18
Figure 9. Zr vs Ti Plot (Appendix E) 19
Figure 10. Ga vs Be Plot (Appendix E) 20

APPENDIX D
Photograph 1. Windy 1 biotite granite Lamb Mtn stock
Photograph 2. Windy 2 quartz diorite Union Carbide drill site W2 1979
Photograph 3. Windy 3 diorite
Photograph 4. Windy 3 diorite .. note layering
Photograph 5. Windy 4 amphibolite
Photograph 6. Windy 6 limestone / marble
Photograph 7. Windy 6 union carbide base station marker 1979
Photograph 8. Windy 6 marble looking east
Photograph 9. Windy 7 skarn
Photograph 10. Windy 8 hornfels
Photograph 11. Windy 10 skarn (gossan) contact with marble
Photograph 12. Windy 14 AQ core (Fort Reliance DDH circa 1960-61)
Photograph 13. Windy 17 BQ core Union Carbide DDH circa 1979
Photograph 15. Windy 14 granite sample with molybdenum rosettes AQ core
Photograph 16. Windy 15 skarn sample
Photograph 17. Windy 16 skarn sample
Photograph 18. Windy 17 skarn sample
Photograph 19. Windy 18 skarn sample
Photograph 20. Windy 19 skarn sample note brown banding
Photograph 21. Windy 19 skarn sample
Photograph 22. Windy 19 skarn sample
1.0 INTRODUCTION

The author was approached in July, 2018 by Ms. Shi Qi (Shirley) Wang to conduct some field work for assessment purposes on the Windy and Tungsten claims. The author suggested that rock samples be collected / mapped and submitted for petrographic studies to determine the nature of the mineralization as well as for geochemical analyses. The author worked briefly in the surrounding areas in the 1970's on a reconnaissance/prospecting basis for Falconbrige Nickel Mines (now part of Glencore Canada). The author visited the property and conducted prospecting / mapping on both claims from August 3 to 5, 2018.

Upon review of past work from assessment files the author surmised that there was the possibility of beryllium mineralization associated with the skarns. Also, most analytical work in past did not use the current ICPMS 60 element treatment that laboratories today advertise.

2.0 OWNERSHIP, LOCATION AND LOGISTICS

The claims which are located in the Liard Mining Division on NTS 104P05 centered approximately Latitude 59° 23' Longitude 129° 53', are approximately eight km north of the old town site of Cassiar, British Columbia. Minfile number is 104P 003 (Lamb Mountain, Windy). The claims lie northwest of the historical Cassiar Asbestos Mine, Figure 1. The claims are registered to Ms. Shi Qi (Shirley) Wang, 922 Nahanni Drive, Box 371, Yukon, Y0A 1C0 (Figure 2). The claim information is outlined in Table 1 and Figure 2.

Table 1: List of Mineral Claims

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Tenure</th>
<th>Anniversary Date</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windy</td>
<td>1049864</td>
<td>August 07, 2018</td>
<td>Shi Qi Wang</td>
</tr>
<tr>
<td>Tungsten</td>
<td>1050252</td>
<td>August 23, 2018</td>
<td>Shi Qi Wang</td>
</tr>
</tbody>
</table>

Access to the claims was via Tundra Helicopters from their base in Dease Lake. The claims are also accessible via ATV by using old (historical - circa 1970’s) and existing roads and trails from the former Cassiar townsite, BC. No new roads or trails were constructed.

Road access to the claims is via the locked gate through the Cassiar town site, located about 9 km west of Highway 37. From the Cassiar town site, proceed along the decommissioned mine access road which follows the valley to the former open pit. At the junction of this mine road which heads east up to the north ridge of Mt. McDame there is a 4-WD cat road (albeit somewhat overgrown) that proceeds north and follows a north draining creek valley for approximately 7 kms and then 3 kms west to access the Windy claim. These were roads put in the 1970’s using D8 equipment for access to the claims for the purpose of drilling. These roads can be seen using Google Earth.
3.0 Environment

There is no known apparent land use conflict with the property by way of parks, wilderness study area or other perceived land use designation by local, provincial or federal governments.

There are no known environmental liabilities arising from previous exploration. There are some occurrences of natural acid rock generation and drainage (see Photograph 11).

The property is located within the Kaska First Nation traditional area. This area is currently under an agreement-in-principle with the British Columbia government. There has been no recorded history of conflict with this group or any other First Nation.

4.0 Prospecting

One day (August 3) was spent navigating (using ATV) the old access roads to locate the Windy claim area. The roads were passible and somewhat overgrown with brush (tag alders) and ended at the lower reaches of the Windy claim. The road does branch off to the Tungsten claim. It was deemed to be a safer way of using a helicopter to access the claims (August 4 and 5) given that there were forest fires several kilometres away. The program was also shortened due to smoke from these fires and that the helicopter was needed for the forest fire logistics. Logistical costs for the assessment work is shown in Appendix A.

A drone survey was conducted over both claims by Ms. Shirley Wang to locate prospecting targets, check for wildlife and potential safety hazards. Drone photography was also done. Outcrops were sampled where rock type was deemed interesting and significant. These sample sites are marked in the field with yellow flagging tape and shown in Figure 3. Field sample descriptions and locations (Table 3) are presented in Appendix B. Field and sample photographs are presented in Appendix D.

Mapping of the various rock types along the ridge on Lamb Mountain was conducted by the author. Samples of the various units were taken of which six rock samples were submitted for mineral identification via thin and polish section preparation to Vancouver Petrographics, Fort Langley. The petrographic study was conducted by Dr. Craig Leitch, Phd, PEng (Saltspring, BC). The petrographic report is presented in Appendix C. The rock samples are stored at the Cassiar Jade Contracting site in Langley, BC.

Twelve rock samples were sent to Bureau Veritas, Vancouver, for whole rock and trace element analyses. These samples consisted of outcrop and drill core material (see Table 2, Appendix B). Sample preparation and analyses were performed at Bureau Veritas Analytical Labs, Vancouver. Replicate samples and internal standards reporting were carried out by the analytical laboratory. It is of the author’s opinion that the sample preparation and analysis at Bureau Veritas would meet NI 43-101 requirements and that
the lab has a registered ISO 9001:2000 accreditation. All samples subsequently underwent testing by various analytical techniques for major oxides and ICP-MS for multi-elements (BV analysis package LF202). Results for the blanks and standards were comparable and acceptable. Results are shown in Appendix E. Beryllium concentrations are shown in Figure 3A.

5.0 HISTORICAL WORK

Historical work on the Windy and Tungsten claims from various assessment reports is as follows:

1960- 1961: Fort Reliance Minerals (Vancouver) prospected the cirque north of Lamb Mountain via trenching, mapping and drilling. Their target was molybdenum mineralization. No assessment reports are recorded in the British Columbia Mineral Assessment Report System. The AQ core from the drilling was located (see Photograph 12) and randomly sampled by the author.

1978 – 1979: Union Carbide Canada Limited conducted mapping, sampling and drilling program. Their target was tungsten mineralization. The BQ core from the drilling was located (see Photograph 13) and randomly sampled by the author. The original grid base station was found during this assessment work program (see Photographs 7 and 8).

2011: UTM Exploration Services conducted reconnaissance soil sampling over a large area that encompassed the present claims (assessment report 32461).

In reviewing an assessment report by Kikauka (2013) there were anomalous concentrations of beryllium (Be) in soils which ranged from 0.7 to 39.7 ppm. An anomalous concentration would be considered > 5ppm (personal communication. Dr. David Trueman). The area of interest in this report is approximately four kms southeast of the Windy claim.

Danalite, a beryllium mineral, was initially discovered in 1957 by R. M. Thompson in samples of skarn at Needlepoint Mountain which is approximately 13 kms southeast from the Windy claim in skarn. This skarn appears to be similar to that mapped on the Windy - Tungsten claims.

6.0 REGIONAL GEOLOGY

The reader is referred to the reports by Nelson et al (1993) regarding the regional geology.

The Cassiar Mining District, in which the Windy – Tungsten claims occur, encompasses several deposit types which include: Cassiar Chrysotile (Asbestos) Mine which has been closed but which present day mining of the waste rock is ongoing for jade (nephrite); W-Mo skarn and cupriferous pyrrhotite replacement (e.g. Kuhn); Mo deposits (e.g. Cassiar
Mo and Storie) and auriferous quartz-sulphide vein/replacement deposits (e.g. Cusac, Erickson, Taurus, Table Mountain).

7.0 PROPERTY GEOLOGY

Geologically, the prospected area occurs in the Lower Cambrian Rosella Formation (Atan Group) marbles adjacent to the Late Cretaceous Lamb Mountain biotite granite porphyry stock. Rosella Formation marbles are replaced by magnetite-garnet- diopside and retrograde actinolite skarn adjacent to the Lamb Mountain stock (Nelson et al.). The relationship of quartz diorite - diorite within the contact metamorphic scenario is not understood at this time.

The western part of the property is composed of a leucocratic, massive, medium grained to porphyritic granite with no base or precious metal mineralization. There appears to be relatively little alteration of this unit. This unit is referred to as the Lamb Mtn Stock. To the east (along the ridge of Lamb Mountain) are intercalated beds of quartz diorite, diorite / amphibolite, hornfels, limestone / marble and skarn. A few cobbles of the diorite show / indicate primary layering (photograph 4).

Skarn mineralogy varies from banded garnet / danalite to sulphide (pyrrhotite - minor chalcopyrite) - magnetite – tungsten (scheelite) with varying thickness and irregular shape (pod, pipe-like and tabular mass).

Limited structural mapping was conducted aside from taking a few bedding / foliation measurements.

8.0 RESULTS and DISCUSSION

In reviewing the literature, an analogy to the Windy property would be the Iron Mountain beryllium deposit in New Mexico (Jahns). These deposits have associated fluorite and tungsten. No work has been conducted on these deposits regarding concentrations of rare earths. Other similar deposits are described by Warner et al.

To the author’s knowledge, no other work in the Windy claim area has been conducted regarding petrographic and / or major oxide and multi element trace element analyses. As well, no exploration has ever been carried out for beryllium in these skarns.

Results of the petrographic studies and summary are presented in Appendix C. This study was instrumental in identification of rock types and related mineralogy. The presence of a beryllium bearing mineral (danalite – Windy 20) in thin section was confirmed from the geochemical analysis indicating 133 ppm Be. The actual confirmation of danalite (or helvite) should be done via microchemical tests on polished thin sections, SEM (scanning electron microscopy) or XRay diffration analysis.
Fluorite was identified in sample Windy 10A (approximately 10%). It may also occur in smaller amounts in other samples but was not detected. Fluorine was not analyzed for in the current program. Fluorite analyses should be conducted to help determine alteration patterns.

The presence of a beryllium bearing mineral (danalite) and fluorite (Windy 10A) in the skarn may distinguish it as similar to that at Needlepoint Mountain (Thompson, 1957). Though fluorite analyses were not conducted as part of the analytical work, fluorine in water could be used as a pathfinder to distinguish the presence of similar (but hidden) skarns in the area. It should also be noted that beryllium may occur as substitution for silica (Si) in some of the other minerals (garnet ??).

Geochemical results of the major oxides and trace element concentrations for 12 rock samples are presented in Appendix D. Though there was a small number of rock samples analyzed (12), only limited interpretations can be made. More samples need to be collected and analyzed in order to create a statistically significant database.

Review of the major oxide data warrants several interpretations as follows:

- Si vs Al plot (Figure 4): two populations
- Fe vs Al plot (Figure 5): two populations
- Na vs Al plot (Figure 6): two populations
- Zr vs Al plot (Figure 7): two populations
- Fe vs Si (Figure 8): linear trend
- Ga vs Be (Figure 9): curve linear trend
- Zr vs Ti (Figure 10): two populations

Al and Zr can be used to distinguish rock populations as both can be considered as conserved elements, especially zircon. One population has high Al, Zr, Na, K, Ba and low Fe concentrations compared to the other population. The geochemical data and field relationships suggest that both iron–magnesium–silicate metasomatism (reaction skarn) and metasomatic alteration of silicate rocks (diorite–granite and possibly endoskarn) occur.

Review of the trace element geochemical data warrants several interpretations as follows:

- Barium (Ba) one sample that is considered anomalous (Windy 16)
- Barite
<table>
<thead>
<tr>
<th>Element</th>
<th>Number of Anomalous Samples</th>
<th>Concentration Threshold</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium (Be)</td>
<td>six</td>
<td>> 10 ppm Be</td>
<td>Beryllium is typically present at concentrations of 0.5 to 2 ppm in soils and rocks throughout the world (Trueman et al).</td>
</tr>
<tr>
<td>Cobalt (Co)</td>
<td>two</td>
<td>> 25 ppm Co</td>
<td></td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>five</td>
<td>> 100 ppm Cu</td>
<td>Copper – chalcopyrite</td>
</tr>
<tr>
<td>Gallium (Ga)</td>
<td>four</td>
<td>> 30 ppm Ga</td>
<td></td>
</tr>
<tr>
<td>Niobium (Nb)</td>
<td>three</td>
<td>> 20 ppm Nb</td>
<td></td>
</tr>
<tr>
<td>Molybendum (Mo)</td>
<td>two</td>
<td>> 100 ppm Mo</td>
<td>Visible molybendum rosettes - sample Windy 14</td>
</tr>
<tr>
<td>Scandium (Sc)</td>
<td>two</td>
<td>> 10 ppm Sc</td>
<td></td>
</tr>
<tr>
<td>Tin (Sn)</td>
<td>three</td>
<td>> 50 ppm Sn</td>
<td></td>
</tr>
<tr>
<td>Tungsten (W)</td>
<td>four</td>
<td>> 250 ppm W</td>
<td>[sample Windy 10A – 7681 ppm W]</td>
</tr>
<tr>
<td>Gold Silver</td>
<td></td>
<td>No anomalous concentrations</td>
<td></td>
</tr>
<tr>
<td>Titanium (Ti)</td>
<td></td>
<td>associated with sphene or rutile as identified in thin section</td>
<td></td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td></td>
<td>No anomalous concentrations</td>
<td></td>
</tr>
<tr>
<td>Zirconium (Zr)</td>
<td></td>
<td>associated with zircon as identified in thin section</td>
<td></td>
</tr>
</tbody>
</table>
9.0 CONCLUSIONS / RECOMMENDATIONS

The regional aerial extent of the skarn appears to be quite large and as such there are numerous areas to explore. A regional aeromagnetic geophysical survey would aid in delineation of the magnetite – sulphide skarn.

Further petrographic studies should examine the possibility of idocrase in the skarns. SEM work could be carried out to determine the existence of beryllium in garnet.

Results of the 2018 exploration program are promising. Though there are no concentrations of ore grade material, there are some very good geochemical indicators which require follow up.

This area has the potential for rare metal mineral targets that include gallium, scandium, beryllium, niobium and tin. Other commodities such as tungsten, molybdenum and copper have some potential that require further exploration and which have been the basis of past exploration.

The presence of beryllium in the skarn adds a new and exciting dimension for a renewed interest in exploration in this area. To the author’s knowledge, no beryllium bearing skarn(s) has been identified and mapped in British Columbia (Ray et al).
10.0 REFERENCES

Fraser, Stuart; Geology and Drill Results of the Windy Project, North of Cassiar, B.C. BCMEMPR September 1979 Assessment Report # 07965.

Jahns, Richrd, H., 1944, Beryllium and Tungsten Deposits of the Iton Mountain District, New Mexico, Strategic Minerals Investigation 1944, pp 45-79

Kikauka, A., 2013, Geological and Geochemical report on Kuhn and Dead Goat Mineral Zones. For Fundamental Resources Corp, Assessment Report 34025

11. STATEMENT OF QUALIFICATIONS

I, Bruce W. Downing, do hereby certify that:

1. I am a graduate of Queen’s University with an honours B.Sc. in geology and pedology received in 1970, and a graduate from the University of Toronto with a M.Sc. in geology received in 1974.

2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia.

3. I am a past Fellow of the Geological Association of Canada, a current member of the Association of Exploration Geochemists, a life member of the Association for Mineral Exploration (AMEBC) and a life member of the Canadian Institute of Mining.

4. I have no vested interest in the properties.

Bruce W. Downing, M.Sc., P.Geo.
20200 Grade Crescent
Langley, B.C., V4R 3A 4J6
November, 2018

Qualifications of Field personnel

Shirley Wang
Administrator, Cassiar Jade Contracting Inc
Watson Lake, Yukon
Drone specialist, photographer, cartographer, accounting
Figure 1: Location of Windy Property
Figure 2: Location of Windy (1049865) and Tungsten (1050252) claims
Figure 3: Location of sample sites.
Figure 3A: Beryllium concentrations (ppm) in yellow.
APPENDIX A

STATEMENT OF COSTS

<table>
<thead>
<tr>
<th>Type of Cost</th>
<th>person / company</th>
<th>units</th>
<th>Rate</th>
<th>Windy Tungsten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost $ already reported</td>
<td></td>
<td></td>
<td></td>
<td>$13,500.00</td>
</tr>
<tr>
<td>Tundra Helicopter incl. fuels</td>
<td></td>
<td>4</td>
<td>1150 / hr</td>
<td>$4,600.00</td>
</tr>
<tr>
<td>Jet A</td>
<td></td>
<td>4</td>
<td>175/ hr</td>
<td>$700.00</td>
</tr>
<tr>
<td>Travel Downing</td>
<td></td>
<td></td>
<td></td>
<td>$1,823.00</td>
</tr>
<tr>
<td>Field assistant</td>
<td>Andy Scott</td>
<td>2</td>
<td>300/day</td>
<td>$600.00</td>
</tr>
<tr>
<td>GIS and Maps</td>
<td>Shirley Wang</td>
<td>1</td>
<td>400/day</td>
<td>$200.00</td>
</tr>
<tr>
<td>Aerial Photography</td>
<td>Shirley Wang</td>
<td>2</td>
<td>400/day</td>
<td>$800.00</td>
</tr>
<tr>
<td>ATV</td>
<td>Shirley Wang</td>
<td>4</td>
<td>120/day</td>
<td>$480.00</td>
</tr>
<tr>
<td>Camp + Meals</td>
<td>Shirley Wang</td>
<td>6</td>
<td>250/day</td>
<td>$1,500.00</td>
</tr>
<tr>
<td>Consultant</td>
<td>Bruce Downing</td>
<td>7</td>
<td>800/day</td>
<td>$5,600.00</td>
</tr>
<tr>
<td>Research</td>
<td>Van Petrographics</td>
<td></td>
<td></td>
<td>$1,884.75</td>
</tr>
<tr>
<td>Geochem analyses</td>
<td>Bureau Veritas</td>
<td></td>
<td></td>
<td>$869.23</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$19,056.98</td>
</tr>
</tbody>
</table>
APPENDIX B

Sample Descriptions
(see Figure 3 for locations)

Sample

Windy 1 Lamb Mtn area former DDH site Photograph 1
 medium grained, cream coloured, massive,
 quartz – feldspar - Biotite Granite (QFB) - Lamb Mtn Stock

Windy 2 Lamb Mtn area former DDH site union carbide 9W2 Photograph 2
 Irregular lense approximate 1.5 m wide in QFB, rusty coloured, greenish
 fine to medium grained, greenish coloured, disseminated pyrrhotite grains,
 altered (chlorite ?) mafic Quartz Diorite

Windy 3 Lamb Mtn area Photograph 3
 Broken up sub outcrop
 Irregular dyke / lense in contact with limestone (Windy 5), medium –
 coarse grained, greenish coloured, scattered pyrrhotite grains, altered
 (chlorite ?) mafic , some evidence of primary layering (see photograph 4)
 Diorite

Windy 4 Lamb Mtn area Photograph 5
 Broken up sub outcrop
 Very fine grained greenish coloured, Amphibolite (?), part of Windy 3

Windy 5 Lamb Mtn area Photograph 6
 Massive white – cream coloured, Limestone / marble
 Bedding 014 / 80-85 E

Windy 6 Lamb Mtn area Photograph 8
 Massive dirty grey coloured, Limestone / marble
 Wooden Peg Marker UC EX 1979 with red painted rocks Photograph 7
 (Union Carbide Exploration 1979 baseline marker 00 N 00E)
Windy 7 Lamb Mtn area Photograph 9
Very fine grained, hard, greenish coloured silicate, 5 - 8 m wide, with
brown – red garnet (?) bands up to 2 cm wide **Skarn**
Bedding 030 / 60 E

Windy 8 Lamb Mtn area Photograph 10
fine grained, 20 m wide, specks pyrrhotite rusty coloured fracture surfaces
(limonite / goethite)
Hornfels

Windy 9 Lamb Mtn area
Massive, whitish coloured in gully and dirty grey upslope
Limestone / marble

Windy 10 Lamb Mtn area Photograph 11
Gossan, natural acid rock drainage
Semi-massive sulphides, weakly magnetic, medium to coarse grained
Skarn with coarse grained mafic sections

Windy 10A **Skarn - Amphibolite**, magnetic, disseminated sulphides
random chips of outcrop

Windy 11 Lamb Mtn area
fine grained, 5 m wide, specks pyrrhotite
Hornfels

Windy 12 Lamb Mtn area former DDH site
medium grained, cream coloured, massive,
quartz – feldspar - **Biotite Granite** (QFB) Lamb Mtn stock

Windy 13 Lamb Mtn area cat road
feldspar porphyritic - medium grained, cream coloured, massive,
quartz – feldspar - **Biotite Granite** (QFB) Lamb Mtn stock

Windy 14 Cirque - valley area drill core site 1 Photograph 12
AQ core, core boxes broken, no DDH identification on core boxes
Sample of split core, 12 inches, molybdenum rosettes in biotite quartz –
feldspar granite
Windy 15 Cirque - valley area drill core site 1
AQ core, core boxes broken, no DDH identification on core boxes
Grab sample of unsplit AQ core, 5 inches, highly magnetic (magnetite), **Skarn**

Windy 16 Cirque - valley area drill core site 1
AQ core, core boxes broken, no DDH identification on core boxes
Grab sample of unsplit AQ ore, 5 inches, greenish coloured with brown-red garnet, minor thin irregular sulphide streaks **Skarn**

Windy 17 Cirque - valley area drill core site 2
Photograph 13
Drill site with marking in hole 79 - 4
BQ core, core boxes very broken up and jumbled, (some possibly chewed by porcupines) DDH identification on core boxes (9W1, 9W2, 9W3, 9W5, 9W6, 9W7)
DDH 9W1 - Grab sample of split BQ core, 5 inches, weakly magnetic, minor sulphides, brown-red garnet streaks **Amphibolite Skarn**

Windy 18 Cirque - valley area drill core site 2
Drill site with marking in hole 79 - 4
BQ core, core boxes very broken up and jumbled, (some possibly chewed by porcupines) DDH identification on core boxes (9W1, 9W2, 9W3, 9W5, 9W6, 9W7)
Grab sample of unsplit core, 7 inches, weakly magnetic, brown-red garnet bands, minor sulphides **Skarn**

Windy 19 Cirque - valley area drill core site 2
Grab sample of unsplit BQ core 3 inches, semi – massive sulphides (po, py, magnetite), magnetic, medium grained, garnet ??, calc- silicate-amphibolite **Skarn**

Windy 20 Cirque - valley area old cat trench
Photograph 14
Gossan, broken outcrop, medium to coarse grained greisen similar to Windy 2, semi-massive sulphides (pyrrhotite, pyrite) **Quartz Diorite**
Windy 21 Cirque - valley area drill core site 2
Grab sample of unsplit BQ core 6 inches, scattered blebs chalcopyrite,
minor magnetite, magnetic, medium grained, garnet ??, calc- silicate-
amphibolite Skarn

Windy 22 Cirque - valley area
No sample

Site of 3 initial posts – LCP (2 post staking)
Initial post 342013
Initial post 342014
Initial post 342015

Table 2: Sample type analyses

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Type</th>
<th>Analysis</th>
<th>Analysis</th>
<th>Description</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windy 1</td>
<td>rock</td>
<td>thin section</td>
<td></td>
<td>biotite granite</td>
<td>granite</td>
</tr>
<tr>
<td>Windy 2</td>
<td>rock</td>
<td>polished thin section</td>
<td>ICP</td>
<td>quartz diorite</td>
<td>greisen</td>
</tr>
<tr>
<td>Windy 3</td>
<td>rock</td>
<td></td>
<td></td>
<td></td>
<td>diorite</td>
</tr>
<tr>
<td>Windy 4</td>
<td>rock</td>
<td></td>
<td></td>
<td></td>
<td>amphibolite</td>
</tr>
<tr>
<td>Windy 5</td>
<td>rock</td>
<td></td>
<td></td>
<td></td>
<td>marble</td>
</tr>
<tr>
<td>Windy 6</td>
<td>rock</td>
<td></td>
<td></td>
<td></td>
<td>marble</td>
</tr>
<tr>
<td>Windy 7</td>
<td>rock</td>
<td>thin section</td>
<td>ICP</td>
<td>skarn</td>
<td>skarn</td>
</tr>
<tr>
<td>Windy 8</td>
<td>rock</td>
<td></td>
<td></td>
<td></td>
<td>hornfels</td>
</tr>
<tr>
<td>Windy 9</td>
<td>rock</td>
<td></td>
<td></td>
<td></td>
<td>marble</td>
</tr>
<tr>
<td>Windy 10</td>
<td>rock</td>
<td></td>
<td>ICP</td>
<td>skarn</td>
<td>skarn amphibolite</td>
</tr>
<tr>
<td>Windy 10A</td>
<td>rock</td>
<td>polished thin section</td>
<td>ICP</td>
<td>skarn</td>
<td>skarn po</td>
</tr>
<tr>
<td>Windy 11</td>
<td>rock</td>
<td></td>
<td></td>
<td></td>
<td>hornfels</td>
</tr>
<tr>
<td>Windy 12</td>
<td>rock</td>
<td></td>
<td></td>
<td></td>
<td>granite</td>
</tr>
<tr>
<td>Windy 13</td>
<td>rock</td>
<td></td>
<td></td>
<td></td>
<td>granite</td>
</tr>
<tr>
<td>Windy 14</td>
<td>AQ core</td>
<td>ICP</td>
<td></td>
<td></td>
<td>granite mo</td>
</tr>
<tr>
<td>Windy 15</td>
<td>AQ core</td>
<td>ICP</td>
<td></td>
<td></td>
<td>skarn</td>
</tr>
<tr>
<td>Windy 16</td>
<td>BQ core</td>
<td>ICP</td>
<td></td>
<td></td>
<td>skarn</td>
</tr>
<tr>
<td>Windy 17</td>
<td>BQ core</td>
<td>ICP</td>
<td></td>
<td></td>
<td>skarn</td>
</tr>
<tr>
<td>Windy 18</td>
<td>BQ core</td>
<td>ICP</td>
<td></td>
<td></td>
<td>skarn</td>
</tr>
<tr>
<td>Windy 19</td>
<td>BQ core</td>
<td>polished thin section</td>
<td>ICP</td>
<td>endoskarn</td>
<td>skarn</td>
</tr>
<tr>
<td>Windy 20</td>
<td>rock</td>
<td>polished thin section</td>
<td>ICP</td>
<td>quartz diorite</td>
<td>greisen</td>
</tr>
<tr>
<td>Windy 21</td>
<td>BQ core</td>
<td>ICP</td>
<td></td>
<td></td>
<td>skarn</td>
</tr>
<tr>
<td>Title</td>
<td>Date Created</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Northing</td>
<td>Easting</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Windy 1</td>
<td>2018-08-04T10:16:12-07:00</td>
<td>59.38878518</td>
<td>-129.8938801</td>
<td>6583685.659</td>
<td>449225.635</td>
</tr>
<tr>
<td>Windy 2</td>
<td>2018-08-04T10:34:56-07:00</td>
<td>59.38839556</td>
<td>-129.895638</td>
<td>6583643.616</td>
<td>449125.2021</td>
</tr>
<tr>
<td>Windy 3</td>
<td>2018-08-04T10:58:30-07:00</td>
<td>59.38831839</td>
<td>-129.8962333</td>
<td>6583635.478</td>
<td>449091.2723</td>
</tr>
<tr>
<td>Windy 4</td>
<td>2018-08-04T11:04:03-07:00</td>
<td>59.38837698</td>
<td>-129.8965694</td>
<td>6583642.259</td>
<td>449072.2722</td>
</tr>
<tr>
<td>Windy 5</td>
<td>2018-08-04T11:10:17-07:00</td>
<td>59.38811682</td>
<td>-129.8972077</td>
<td>6583613.779</td>
<td>449035.6271</td>
</tr>
<tr>
<td>Windy 6</td>
<td>2018-08-04T11:21:47-07:00</td>
<td>59.38790372</td>
<td>-129.8980861</td>
<td>6583590.723</td>
<td>448985.4106</td>
</tr>
<tr>
<td>Windy 7</td>
<td>2018-08-04T11:33:37-07:00</td>
<td>59.38782506</td>
<td>-129.8988964</td>
<td>6583582.585</td>
<td>448939.2662</td>
</tr>
<tr>
<td>Windy 8</td>
<td>2018-08-04T11:45:57-07:00</td>
<td>59.38763878</td>
<td>-129.8994171</td>
<td>6583562.242</td>
<td>448909.4074</td>
</tr>
<tr>
<td>Windy 9</td>
<td>2018-08-04T11:53:56-07:00</td>
<td>59.38764952</td>
<td>-129.9003679</td>
<td>6583541.898</td>
<td>448855.1194</td>
</tr>
<tr>
<td>Windy 10</td>
<td>2018-08-04T12:06:41-07:00</td>
<td>59.38768883</td>
<td>-129.8978463</td>
<td>6583586.654</td>
<td>448998.9821</td>
</tr>
<tr>
<td>Windy 14, 15</td>
<td>2018-08-05T11:14:48-07:00</td>
<td>59.393214</td>
<td>-129.8909853</td>
<td>6584176.607</td>
<td>449396.662</td>
</tr>
<tr>
<td>Windy 20</td>
<td>2018-08-05T12:53:13-07:00</td>
<td>59.39259392</td>
<td>-129.8943863</td>
<td>6584110.151</td>
<td>449202.5828</td>
</tr>
<tr>
<td>Windy 21</td>
<td>2018-08-05T12:56:17-07:00</td>
<td>59.39202376</td>
<td>-129.895829</td>
<td>6584047.765</td>
<td>449119.7922</td>
</tr>
<tr>
<td>Drill Hole 79-4</td>
<td>2018-08-04T15:35:41-07:00</td>
<td>59.39292813</td>
<td>-129.8929169</td>
<td>6584146.245</td>
<td>449286.5361</td>
</tr>
</tbody>
</table>
APPENDIX C

PETROGRAPHIC REPORT
PETROGRAPHIC REPORT ON 6 SAMPLES FROM WINDY SKARN PROPERTY, BC

SUMMARY:
Of the 6 samples submitted, most appear to be closely related, felsic/intermediate plutonic intrusive rocks of either granite or quartz diorite composition (in the latter partly obscured by weakly developed to significant possible endoskarn alteration), and two samples are well developed skarn, probably related to the intrusives. Samples may be roughly classified as follows:

Granite (1 sample, Windy 1): hypidiomorphic-granular textured biotite (±muscovite, i.e. 2-mica?) granite composed of major Kspar (megacrystic), plagioclase (slightly clay?/sericite altered) and quartz, with minor interstitial partly chloritized biotite, accessory magnetite?-sphene-apatite-allanite?

Quartz diorite grading to endoskarn (3 samples, Windy 2, 19, 20): relict hypidiomorphic-granular textured plagioclase (albitized, or variably altered to clay?/sericite-carbonate), quartz (partly to largely secondary), biotite partly to largely altered to chlorite, muscovite, calcite, spherulite and apatite, associated with variable sulfides (mainly pyrrhotite; trace chalcopyrite, rare pyrite) or local possible trace garnet or danalite (?) or scheelite (?).

Skarn (2 samples, Windy 7, 10A): green clinopyroxene (diopside/hedenbergite?)-variable carbonate (calcite)-quartz (secondary)-plagioclase (relict, calcic?)-fluorite-pyrrhotite (±trace chalcopyrite, molybdenite)-scheelite-possible garnet or danalite (?)--accessory sphene/rutile.

The granite may contain magnetite and may therefore be M-series; indications of 2-mica character are weak. Most sulfide in these samples is pyrrhotite, with only very minor chalcopyrite, rare pyrite and molybdenite noted. Minor scheelite was positively identified in one sample Windy 10A) and is likely present in one other sample (Windy 20). The tentative identification of possible danalite (impossible to distinguish petrographically from garnet) in these samples should be confirmed by comparing to whole rock geochemistry or better by microchemical tests on the actual polished thin section (e.g. Windy 7, 19, and 20, where marked and photographed). Note, however, that minor Be may be present as substitution for Si in many minerals, especially plagioclase, micas and clays.

Capsule descriptions are as follows:

Windy 1: fairly leucocratic, Kspar megacrystic biotite (±muscovite, i.e. two-mica?) granite with accessory magnetite-sphene-apatite-allanite? possibly indicative of M-type affinity, and slight alteration to clay?/sericite and chlorite.

Windy 2: appears to represent an intrusive such as quartz diorite (?) now strongly altered to albite-quartz-chlorite-muscovite-calcite-pyrrhotite, with accessory apatite, rutile and trace chalcopyrite. The only mineral of economic interest would be the traces of chalcopyrite.
Windy 7: fine-grained clinopyroxene-plagioclase?-minor carbonate-accessory sphene skarn, containing coarse blastic aggregates of garnet (or less likely but possibly danalite?), cut by narrow veinlets of carbonate.

Windy 19: skarny altered intermediate intrusive (endoskarn) composed of relict mafic sites (chlorite, remnant biotite, accessory amphibole, sphene), relict plagioclase (partly replaced by sericite, at the margins by quartz and calcite), secondary carbonate, quartz, and significant sulfides (pyrrhotite, trace chalcopyrite, pyrite) plus trace garnet or danalite (?).

Windy 20: weakly skarny altered intermediate intrusive composed of plagioclase (slightly replaced by rare flakes of sericite, and at the margins by quartz), relict mafic sites (chlorite, remnant biotite, accessory sphene, rutile), partly secondary quartz, and significant sulfides (pyrrhotite, trace chalcopyrite) plus trace garnet or danalite (?), possible scheelite (?).

Detailed petrographic description and photomicrograph are appended (by email attachment). If you have any questions regarding the petrography, please do not hesitate to contact me.

Craig H.B. Leitch, Ph.D., P. Eng. (250) 538-1900 dromore61@gmail.com
124 Vesuvius Bay Road, Salt Spring Island, B.C. Canada V8K 1K3
Windy 1: FAIRLY LEUCOCRATIC, KSPAR MEGACRYSTIC BIOTITE (±MUSCOVITE, I.E. TWO-MICA?) GRANITE WITH ACCESSORY MAGNETITE-SPHENE-APATITE-ALLANITE? POSSIBLY INDICATIVE OF M-TYPE AFFINITY, AND SLIGHT ALTERATION TO CLAY?/SERICITE AND CHLORITE

Hand specimen shows pale grey-white, coarse-grained granitic rock, composed of pink semi-megacrystic Kspar (up to ~2 cm long), partly zoned white plagioclase (1.2 cm), grey quartz (7 mm) and relatively minor black mafics (may include biotite and amphibole; colour index about 10?). The rock is distinctly magnetic, shows no reaction to cold dilute HCl, and was not stained for K-feldspar in the offcut. Modal mineralogy (regular thin section only) is approximately:

K-feldspar (somewhat megacrystic, perthitic) 35%
Plagioclase (oligoclase?) 30%
Quartz (mainly primary?) 25%
Biotite (slightly chloritized locally) 5-7%
Clay?/sericite (mostly after plagioclase), minor muscovite 2-3%
Opaque (Fe-Ti oxides such as magnetite, ilmenite?) ~1%
Sphene(accessory, with biotite) ~1%
Chlorite (after biotite) <1%
Apatite (accessory, with biotite) <1%
Allanite (?), partly metamict? <<1%

This sample consists of relatively large (semi-megacrystic) Kspar and lesser, somewhat smaller, plagioclase and quartz, with minor interstitial biotite (slightly chloritized), accessory white mica, opaques, sphene, apatite and possible trace allanite.

K-feldspar forms rounded subhedral megacrystals up to 1.5 cm in diameter, with random orientations. The crystals display perthitic texture (lamellar albite inclusions mostly <0.1 mm thick in orthoclase host?) and contain scattered inclusions of quartz (sub/anhedra, up to 0.5 mm or plagioclase (sub/euhedral, up to 1 mm) plus rare biotite or sphene (mainly at margins).

Plagioclase forms rounded subhedral to rarely euhedral (locally slightly zoned) crystals up to 4 mm long (glomerotic to ~1 cm in hand specimen). Well-defined twinning with generally small (0-10° extinction angle Y°010, and relief close to that of quartz, suggest composition in the oligoclase range (An15-20). The crystals vary from almost fresh (unaltered) to ~5-10% replaced, mainly at cores, by very fine-grained clay?/sericite (randomly oriented subhedral flakes mainly <30 µm), or contain minor inclusions of sericite/muscovite (ragged subhedral flakes to 0.15 mm).

Quartz occurs in rounded aggregates up to 7 mm wide, composed of interlocking sub/anhedra up to 5 mm in diameter, rarely with inclusions of white mica (muscovite) to ~0.5 mm. The crystals are locally fractured but show little strain (very mild undulose extinction, no sub-grain development, and only trace suturing of grain boundaries, mainly near the margins).

Biotite forms sub- to euhedral flakes up to ~2.5 mm in diameter, with random orientations and medium to dark brown pleochroism, locally slightly to partly altered to chlorite as subhedral flakes <0.65 mm with pale green pleochroism and near-zero birefringence suggestive of Fe:Fe+Mg, or F:M, ratio around 0.5 (?). Accessory sphene and opaque closely associated with biotite occur in irregular aggregates up to almost 2 mm across made up of sub/euhedral sphene to 1.3 mm and probable magnetite as euhedra to almost 1 mm. Locally, the biotite contains euhedral prisms of apatite to 0.1 mm, or is associated with traces of possible allanite (?) as dark brown (possibly partly metamict?) subhedra <0.2 mm.

In summary, this is fairly leuocratic, Kspar megacrystic biotite (±muscovite, i.e. two-mica?) granite with accessory magnetite-sphene-apatite-allanite? possibly indicative of M-type affinity, and slight alteration to clay?/sericite and chlorite.
Windy 2: RELICT QUARTZ DIORITE (?) NOW STRONGLY ALTERED TO ALBITE-QUARTZ-CHLORITE-MUSCOVITE-CALCITE-PYRRHOTITE, WITH ACCESSORY APATITE, RUTILE AND TRACE CHALCOPYRITE

Hand specimen shows greenish-grey, medium-grained granitic rock with significant oxidation of sulfides evident in the orange-brown weathered rind; freshest rock in the center of the sample displays colour index about 20-25?). The rock is distinctly magnetic, shows vigorous reaction to cold dilute HCl, and was not stained for K-feldspar in the offcut. Modal mineralogy in polished thin section is approximately:

- Plagioclase (secondary, albitized, partly sericite-carbonate altered) 40%
- Quartz (partly secondary?) 30%
- Chlorite (could be after biotite?) 15%
- Muscovite, minor sericite after plagioclase 15%
- Carbonate (mainly calcite?) 10%
- Pyrrhotite (slightly oxidized at margins to limonite) 4-5%
- Apatite (primary accessory?) <1%
- Rutile <1%
- Chalcopyrite (associated with/around margins of pyrrhotite) <<1%

This sample of intrusive rock is strongly altered to an assemblage of albite-quartz-chlorite-muscovite-calcite-pyrrhotite-apatite-rutile; it appears to have been of different origin than Windy 1, since there is no evidence of relict Kspar, and it is more mafic, possibly suggestive of former quartz diorite?

Plagioclase is relict, forming ragged interlocking sub/anhedral crystals mainly <1.5 mm but commonly in crude aggregates up to ~4 mm (7 mm visible in the offcut). Alteration is to untwinned alkali feldspar with distinct negative relief compared to adjacent quartz (likely secondary albite?) and cloudy character due to minute inclusions of clay?/sericite, plus variable sericite or muscovite as ragged subhedral flakes mainly <0.25 mm, or locally carbonate as ragged sub/anhedra <0.5 mm.

Quartz is abundant, forming sub/anhedra mostly <1.5 mm but typically in irregular aggregates up to 3-4 mm across that appear to partly encroach on or replace adjacent plagioclase, chlorite and possibly muscovite (where it may be associated with sulfides, supporting its secondary identification).

Relict mafic sites with probable original outlines to about 3 mm are now represented by aggregates of chlorite, muscovite and carbonate. Chlorite forms ragged sheave-like flakes or aggregates to ~2 mm, with only very faint greenish colour/virtually no pleochroism, length-fast anomalous greenish-grey first-order birefringence suggestive of somewhat magnesian composition (F:M around 0.4?). Muscovite interleaved with chlorite forms ragged subhedra mainly <1 mm; it is not clear whether it represents replacement of former biotite, or was primary muscovite. Carbonate, likely calcite to judge by the reaction in hand specimen, forms subhedra mainly <1 mm. Apatite forms euhedral prisms up to 0.7 mm long, likely relict primary accessories.

Sulfides typically closely associated with the relict mafic sites and secondary quartz are mostly pyrrhotite, as subhedra <0.7 mm but in irregular aggregates up to 2.5 mm across. Traces of chalcopyrite occur around the margins of the pyrrhotite masses as minute subhedra mainly <0.1 mm. Accessory rutile occurs as acicular sub/euhedra <0.1 mm long but in aggregates to 0.35 mm, likely representing the sites of former ilmenite (?).

In summary, this appears to represent an intrusive such as quartz diorite (?) now strongly altered to albite-quartz-chlorite-muscovite-calcite-pyrrhotite, with accessory apatite, rutile and trace chalcopyrite. The only mineral of economic interest would be the traces of chalcopyrite.
Windy 7: FINE-GRAINED CLINOPYROXENE-PLAGIOCLASE?-MINOR CARBONATE-ACCESORY SPHENE SKARN, CONTAINING COARSE BLASTIC AGGREGATES OF GARNET (OR POSSIBLY DANALITE?), CUT BY NARROW VEINLETS OF CARBONATE

Hand specimen shows pale green, very fine-grained, possibly pyroxene-rich skarn rock with scattered large reddish garnets (?), cut by a network of thin hairline white (carbonate?) veinlets. The rock is not magnetic, shows minor slow pervasive reaction to cold dilute HCl (more rapid in the veinlets), and was not stained for K-feldspar in the offcut. Modal mineralogy (regular thin section only) is approximately:

- Clinopyroxene (diopside- hedenbergite?) 45%
- Plagioclase (calcic?), matrix to pyroxene 35%
- Garnet or danalite (?), with inclusions of pyroxene 15%
- Carbonate (veinlets calcite, pervasive dolomite?) 3-5%
- Sphene (trace inclusions of rutile?) 1-2%

This appears to be a fairly typical pyroxene-garnet skarn, characterized by large glomeratic garnets in a fine-grained matrix of clinopyroxene-plagioclase?-minor carbonate-accessory sphene; carbonate also occurs along narrow veinlets. However, there is a possibility that danalite occurs mixed with (or mistaken for) the garnet. Only microchemical tests could resolve this question.

Large blastic (or locally veinlet-like) garnets (and/or danalite?) are up to about 2.5 cm in maximum dimension (possibly elongated along former bedding?). They consist of interlocking sub-to anhedral crystals up to 0.5 cm that may be distinguished by abrupt changes in zoning, highlighted by anomalous anisotropism up to first-order grey. The colour of the garnet/danalite is faintly yellow-brown in thin section. Inclusions of clinopyroxene as rounded sub- to rarely euhedra up to about 1.5 mm long are common, with pale greenish colour (but no discernible pleochroism) and extinction angle about 43º, suggestive of a member of the diopside-hedenbergite series (?).

In the matrix, fine-grained granular to sucrosic-textured clinopyroxene forms rounded sub- to anhedral crystals mostly <0.15 mm, but locally in aggregate or composite crystals up to about 0.25 mm, with random orientations. Pale green colour and large extinction angle argue for similar pyroxene to that included in the garnets. The pyroxene, and local minor carbonate that is difficult to distinguish from it, are hosted in very fine-grained mineral tentatively identified as probable plagioclase (forming tightly interlocking, randomly oriented sub/anhedral mainly <50 µm, with relatively large extinction angle suggestive of calcic composition?). Carbonate forms sub- to anhedral crystals mainly <0.25 mm that may be dolomite, in contrast to carbonate in veinlets (elongated subhedra up to 0.7 mm long) that may be calcite to judge by the rapid reaction to HCl in hand specimen. Accessory sphene is common throughout the sample, forming pale brownish ragged sub/anhedral crystals mostly <0.1 mm in size, locally apparently concentrated with increased pyroxene as poorly defined darker rims around the larger garnets.

Optical properties of the Be-bearing mineral danalite (characterized by high relief, isotropic character and triangular sections) resemble those of garnet, and (in contrast to helvite) they may display anomalous birefringence such as that of the mineral identified as garnet in this sample. Thus, to resolve this question, this mineral would have to be subjected to either geochemistry or scanning electron microscope (SEM) analysis to confirm or deny the presence of significant beryllium.

In summary, this is fine-grained clinopyroxene-plagioclase?-minor carbonate-accessory sphene skarn, containing coarse blastic aggregates of garnet (or less likely but possibly danalite?), cut by narrow veinlets of carbonate.
Windy 10A: CLINOPYROXENE-QUARTZ-PYRRHOTITE-FLUORITE-CARBONATE-
SCHEELITE-ACCESSORY SPHENE-TRACE CHALCOPYRITE-MOLYBDENITE SKARN

Hand specimen shows dark green, fine-grained, possibly pyroxene-rich skarn rock with minor fine reddish garnet (or limonite stained matrix of quartz-calcite?) and significant fine-grained sulfides. The rock is distinctly magnetic, shows rapid pervasive reaction to cold dilute HCl, and was not stained for K-feldspar in the offcut. A discontinuous band of disseminated scheelite occurs across the center of the sample (UV light). Modal mineralogy (regular thin section only) is approximately:

- Clinopyroxene (diopside- hedenbergite?) 65%
- Quartz (secondary, host to pyroxene) 10%
- Pyrrhotite (slightly oxidized at margins to limonite) 10%
- Fluorite (?), locally as matrix to pyroxene 10%
- Carbonate (mainly calcite; local Fe-stained siderite?) 3-5%
- Scheelite (associated with sulfides) ~1%
- Sphene <1%
- Chalcopyrite (associated/intergrown with pyrrhotite) <1%
- Molybdenite (rare, scattered) <1%

This is a fine-grained pyroxene-pyrrhotite (trace chalcopyrite, molybdenite)-scheelite-sphene skarn, with host matrix varying locally from quartz to carbonate to fluorite; garnet and/or danalite were not identified.

Fine- to locally medium-grained granular clinopyroxene forms rounded sub- to locally euhedral crystals mostly <0.5 mm, but locally up to about 1 mm long, with random orientations. Coarsest grain size appears to be associated with areas of fluorite matrix. Pale green colour and large extinction angle argue for a member of the diopside-hedenbergite series, possibly more likely the latter end member.

Quartz commonly forming the matrix to pyroxene crystals forms interlocking, randomly oriented sub- to anhedral crystals that may be optically continuous for up to about 1.5 mm. The crystals show no indication of strain (lack undulose extinction, sub-grain development, and suturing of grain boundaries) and are likely secondary in origin.

Fluorite occurs as irregular masses up to several mm across composed of sub- to euhedral crystals mostly <1 mm in size, identified by isotropic character, strong negative relief, and local traces of purple stain in otherwise clear, colourless mineral.

Carbonate generally occurs as randomly oriented, sub- to anhedral clear crystals up to 0.7 mm across that are likely mainly calcite to judge by the strong reaction to HCl in hand specimen, but locally are veined by or contain inclusions of dark brown (limonite-stained) possible siderite.

Sulfides are mainly pyrrhotite, forming small subhedra mainly <0.25 mm but in loose aggregates up to several mm across, partly oxidized to FeSx phases at the margins or in places further oxidized to limonite. Minor chalcopyrite locally occurs mixed with the pyrrhotite as ragged sub/anhedral to about 0.25 mm, and rare molybdenite occurs as ragged subedral flakes to almost 1 mm within pyroxene-rich skarn. The limonite tends to spread out from the sulfides and stain the adjacent silicate/carbonate minerals, leading to the reddish areas seen in hand specimen; danalite is not suspected in this sample. However, there is accessory scheelite (rounded subhedra to about 1 mm, identified by uniaxial positive character, relatively low birefringence, and similar reflectance to sphene, which forms subhedra to 0.35 mm but with much higher birefringence and small, positive 2V). This identification is confirmed by blue fluorescence in short-wavelength UV light.

In summary, this is clinopyroxene-quartz-pyrrhotite-fluorite-carbonate-scheelite-accessory sphene-trace chalcopyrite-molybdenite skarn.
Windy 19: SKARNY ALTERED INTERMEDIATE INTRUSIVE (ENDOSKARN): RELICT
MAFIC SITES (CHLORITE, RELICT BIOTITE, ACCESSORY AMPHIBOLE, SPHENE),
RELICT PLAGIOCLASE (PARTLY REPLACED BY SERICITE, AT MARGINS BY QUARTZ
AND CALCITE), SECONDARY CARBONATE, QUARTZ, AND SIGNIFICANT SULFIDES
(PYRRHOTITE, TRACE CHALCOPYRITE, PYRITE) PLUS TRACE GARNET OR DANALITE?

Hand specimen shows coarse-grained, variegated dark green (chlorite?), grey, (quartz) and
brownish (limonite-stained after oxidized sulfides?) skarny altered intrusive rock (?). The rock is
strongly magnetic, shows local strong reaction to cold dilute HCl, and was not stained for K-feldspar
in the offcut. Modal mineralogy in polished thin section is approximately:

- Chlorite (after biotite, some of which remains) 25%
- Plagioclase (calcic?) locally slightly sericitized 20%
- Pyrrhotite (partly oxidized at margins to limonite) 20%
- Carbonate (mainly calcite?) 20%
- Quartz (secondary) 13%
- Sericite (after plagioclase) 1%
- Amphibole (actinolitic) <1%
- Sphene (accessory with chlorite/biotite) <1%
- Chalcopyrite, trace pyrite (inclusions/veinlets in pyrrhotite) <1%
- Garnet or danalite (?) rare, in veinlets in pyrrhotite trace

This sample appears to retain some texture suggestive of derivation from an intermediate intrusive
rock (plagioclase, chloritized biotite) but now consists of a possibly retrograded skarn assemblage
dominated by chlorite, sulfides, carbonate and secondary quartz.

Relict mafic sites making up at least a quarter of the sample consist mainly of chlorite as
somewhat sheaf-like to randomly oriented coarse subhedral flakes up to 2.5 mm diameter, with pale
green pleochroism and grey first-order, length-slow birefringence suggestive of F:M around 0.5 (?).

At the cores of some chlorite, relict biotite with pale washed-out brown pleochroism forms ragged
flakes <1.5 mm. Locally, accessory sphene occurs as skeletal sub/euhedra to 0.5 mm, within or
closely associated with chlorite.

Relict plagioclase sites have subhedral to anhedral ragged outlines mostly <2 mm in size
(partly attacked/replaced by quartz, which appears to be at least partly secondary). Rarely seen
twinning and distinct positive relief against adjacent quartz suggest a calcic composition. Locally,
partial replacement (<5%) occurs by fine sub/euhedral flakes of sericite <0.15 mm in diameter.

Carbonate (likely mainly calcite to judge by the strong, rapid reaction to HCl in hand
specimen) forms extensive, optically continuous subhedra over about 1 cm, intergrown with or
poikilitically enclosing other minerals such as plagioclase, quartz and chlorite/biotite.

Sulfides are mainly pyrrhotite, forming coarse sub- to euhedral crystals up to ~1 cm across, in
irregular aggregates to ~2 cm across, partly oxidized locally at margins to limonite. Very minor
chalcopyrite (subhedra to 0.25mm) and trace pyrite (euhedra <0.1 mm) are rarely included in or
associated with narrow veinlets cutting the pyrrhotite; one such veinlet also contains carbonate and
one euhedral crystal 0.5 mm long of an isotropic, pale yellowish mineral that could be garnet or
danalite. Adjacent to this, dark green pleochroic amphibole (actinolitic?) forming fibrous subhedra to
0.6 mm long is rarely preserved at the contact between pyrrhotite and carbonate.

In summary, this may represent skarny altered intermediate intrusive (endoskarn) composed
of relict mafic sites (chlorite, remnant biotite, accessory amphibole, sphene), relict plagioclase (partly
replaced by sericite, at the margins by quartz and calcite), secondary carbonate, quartz, and
significant sulfides (pyrrhotite, trace chalcopyrite, pyrite) plus trace garnet or danalite (?).
Windy 20: WEAKLY SKARNY ALTERED INTERMEDIATE INTRUSIVE: PLAGIOCLASE (SLIGHTLY REPLACED BY RARE SERICITE, AND AT MARGINS BY QUARTZ), RELICT MAFIC SITES (CHLORITE, REMNANT BIOTITE, ACCESSORY SPHENE, RUTILE), PARTLY SECONDARY QUARTZ, AND SIGNIFICANT SULFIDES (PYRRHOTITE, TRACE CHALCOPYRITE) PLUS TRACE GARNET OR DANALITE (?), POSSIBLE SCHEELITE (?).

Hand specimen shows coarse-grained, variegated dark green (chlorite?), grey, (quartz) and brownish (limonite-stained after oxidized sulfides?) skarny altered intrusive rock with colour index ~30; traces of possible scheelite detected in hand sample by scanning with UV lamp (but not seen in offcut or thin section). The rock is strongly magnetic, shows no reaction to cold dilute HCl, and was not stained for K-feldspar in the offcut. Modal mineralogy in polished thin section is approximately:

- Plagioclase (intermediate?), locally slightly sericitized 60%
- Biotite (partly to largely chloritized) 10%
- Chlorite (after biotite, some of which remains) 10%
- Pyrrhotite (partly oxidized at margins to limonite) 10%
- Quartz (partly secondary) 7-8%
- Sphene (mainly fine-grained, in relict biotite/chlorite) <1%
- Rutile (peripheral to pyrrhotite, with sphene ±limonite) <1%
- Garnet or danalite (?) rare, euhedral <1%
- Chalcopyrite (with or peripheral to pyrrhotite) <1%

This sample retains texture of an intermediate intrusive rock (abundant plagioclase, chloritized biotite) partly altered to a possible retrograded skarn assemblage dominated by chlorite and sulfides, minor secondary quartz, trace possible garnet or danalite (?).

Relict mafic sites making up at least a quarter of the sample consist mainly of either chlorite as somewhat sheaf-like to randomly oriented coarse subhedral flakes up to 2 mm diameter, with pale green pleochroism and grey first-order, length-slow birefringence suggestive of F:M around 0.5 (?), or relict biotite with pale washed-out brown pleochroism forming ragged flakes <1.5 mm. Locally, accessory sphene occurs as skeletal sub/euhedra to 0.5 mm, within or closely associated with chlorite.

Plagioclase forms subhedral to euhedral crystals up to ~3 mm in size (rarely slightly veined or replaced by quartz, which although mostly interstitial and continuous over about 1.5 mm, thus appears to be at least partly secondary). Common twinning with extinction on 010 around 15º and slight positive relief against adjacent quartz suggest an intermediate composition around An₃₀ (oligoclase-andesine boundary). Locally, slight replacement (1-2%) occurs by fine sub/euhedral flakes of sericite <50 µm in diameter.

Sulfides are mainly pyrrhotite, forming coarse sub- to euhedral crystals up to ~0.5 cm across, in loose irregular aggregates to 1.2 cm across, slightly oxidized locally at margins to limonite. Very minor chalcopyrite (subhedra to 0.2mm) is rarely included in or associated with/peripheral to pyrrhotite. Locally, acicular rutile to 0.15 mm and euhedral sphene to 0.1 mm are also associated with or peripheral to pyrrhotite masses. One euhedral crystal 1.0 mm in diameter of an isotropic, pale yellowish mineral that could be garnet (or danalite?) occurs with quartz and chloritized biotite. No scheelite was detected in the thin section, but it appeared to be present on the cut surface of the hand sample as crystals <1.5 mm long in a central vein-like zone.

In summary, this is weakly skarny altered intermediate intrusive composed of plagioclase (slightly replaced by rare flakes of sericite, and at the margins by quartz), relict mafic sites (chlorite, remnant biotite, accessory sphene, rutile), partly secondary quartz, and significant sulfides (pyrrhotite, trace chalcopyrite) plus trace garnet or danalite (?), possible scheelite (?).
Windy 1: granite composed of perthitic, somewhat megacrystic Kspar (KF), plagioclase (pl), quartz (qz), and minor biotite (bi) associated with accessory sphene (sp) and opaque (likely magnetite, mt?). Transmitted light, crossed polars, field of view ~3 mm wide.

Windy 2: strongly altered relict intrusive rock now composed of relict plagioclase (albitized, clay?/sericite altered), quartz (partly secondary), chlorite (ch), muscovite (ms) and calcite (ca), accessory apatite (ap) and rutile (opaque, ru). Transmitted light, crossed polars, field of view ~3 mm wide.
Windy 2R: pyrrhotite (po) with traces of very fine-grained chalcopyrite (cp) adjacent to it, associated with secondary quartz (qz), relict plagioclase (pl) and relict mafic site altered to chlorite, muscovite and accessory calcite and rutile. Reflected light, uncrossed polars, field of view ~3 mm wide.

Windy 7: coarse blastic aggregate of garnet (or possibly danalite?) with variable anomalous anisotropism, containing inclusions of clinopyroxene (cpx) and cut by thin veinlets with carbonate (likely calcite, ca). Only geochemical or microchemical tests could determine if it is garnet or danalite. Transmitted light, crossed polars, field of view ~3 mm wide.
Windy 10A: granular pale green (hedenbergite?) clinopyroxene - fluorite (clear, fl)-minor scheelite (high relief, sch)-pyrrhotite (opaque, partly oxidized to limonite at margins) skarn. Transmitted plane light, field of view ~3 mm wide.

Windy 10AR: irregular aggregates of sulfide, mostly pyrrhotite but with minor chalcopyrite, interstitial to granular clinopyroxene crystals in skarn; note incipient oxidation at margins of pyrrhotite crystals. Reflected light, uncrossed polars, field of view ~3 mm wide.
Windy 19: possible retrograde skarn altered intermediate intrusive rock, altered to chlorite (pale brown relict biotite at cores, local sphene, sp), probable calcic plagioclase (partly replaced by secondary quartz, calcite, trace sericite). Transmitted plane light, field of view ~3 mm wide.

Windy 19R: coarse pyrrhotite with inclusions/minor veinlets of chalcopyrite, rare pyrite and trace possible garnet or danalite (da?). Note actinolitic amphibole (am) encased in calcite at margin of pyrrhotite. Reflected light, uncrossed polars, field of view ~3 mm wide.
Windy 20: weakly endoskarn altered intermediate intrusive rock composed of plagioclase, relict mafic sites (biotite, chlorite) and minor interstitial or partly secondary quartz, locally associated with euhedral crystal of isotropic garnet or possibly danalite (?). Transmitted light, crossed polars, field of view ~3 mm wide.

Windy 20R: coarse pyrrhotite with minor chalcopyrite and peripheral rutile/sphene, hosted in plagioclase, but adjacent to chloritized biotite (ch/bi) and minor secondary quartz. Reflected light, uncrossed polars, field of view ~3 mm wide.
Overview of thin sections (blue semi-circle marks photomicrograph location) and offcuts.
APPENDIX D

PHOTOGRAPHS

Field Photographs

Sample Photographs
Photograph 1: Windy 1 Biotite Granite – Lamb Mtn Stock (old drill site)

Photograph 2: Windy 2 Quartz Diorite (Union Carbide 1979 drill site 9-W2)
Photograph 3: Windy 3 Diorite

Photograph 4: Windy 3 Diorite (note primary layering)
Photograph 5: Windy 4 Amphibolite

Photograph 6: Windy 5 Limestone / marble bedding 014/80 E
Photograph 7: Windy 6 Union Carbide 1979 baseline 00 / marker

Photograph 8: Windy 6 marble [looking east] - baseline marker (see Photograph 7)
Photograph 9: Windy 7 Skarn

Photograph 10: Windy 8 Hornfels
Photograph 11: Windy 10 Skarn – gossan (note contact with limestone/marble)

Photograph 12: Windy 14 AQ core (Fort Reliance DDH 1960-61)
Photograph 13: Windy 17 BQ core (Union Carbide DDH – 1979)

Photograph 14: Windy 20 Quartz Diorite – gossan (trench)
Photograph 15 Windy 14 granite with molybdenum rosettes AQ core

Photograph 16 Windy 15 skarn AQ core (magnetite – black)
Photograph 17 Windy 16 skarn AQ core

Photograph 18 Windy 17 skarn AQ core
Photograph 19 Windy 18 skarn BQ core

Photograph Windy 18 skarn BQ core note banding
Photograph 21 Windy 19 skarn BQ core

Photograph 22 Windy 20 skarn BQ core
APPENDIX E

GEOCHEMICAL PLOTS

Al vs Si

Figure 4: Plot Al2O3 vs SiO2

Fe vs Al

Figure 5: Plot Fe2O3 vs Al2O3 note: two populations
Figure 6: Plot Na vs Al\textsubscript{2}O\textsubscript{3} note: two populations

Figure 7: Plot Zr vs Al\textsubscript{2}O\textsubscript{3} note: two populations
Figure 8: Plot Fe2O3 vs SiO2 note: linear trend

Figure 9: Plot Zr vs TiO2
Figure 10: Plot Ga vs Be note: curvilinear trend
APPENDIX E

GEOCHEMICAL RESULTS
CLIENT JOB INFORMATION

<table>
<thead>
<tr>
<th>Project:</th>
<th>None Given</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipment ID:</td>
<td></td>
</tr>
<tr>
<td>P.O. Number</td>
<td></td>
</tr>
<tr>
<td>Number of Samples</td>
<td>12</td>
</tr>
</tbody>
</table>

SAMPLE DISPOSAL

- RTRN-PLP: Return After 90 days
- RTRN-RJT: Return After 60 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>Procedure Code</th>
<th>Number of Samples</th>
<th>Code Description</th>
<th>Test Wgt (g)</th>
<th>Report Status</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT01</td>
<td>1</td>
<td>Batch charge of <20 samples</td>
<td></td>
<td></td>
<td>VAN</td>
</tr>
<tr>
<td>PRP70-250</td>
<td>12</td>
<td>Crush, split and pulverize 250 g rock to 200 mesh</td>
<td></td>
<td></td>
<td>VAN</td>
</tr>
<tr>
<td>LF202</td>
<td>12</td>
<td>Total Whole Rock Characterization with AQ200</td>
<td>0.2</td>
<td>Completed</td>
<td>VAN</td>
</tr>
</tbody>
</table>

ADDITIONAL COMMENTS

Major oxides do not sum to 100% due to possible incomplete fusion of some minerals or other element oxides may be present.

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted.

** Asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.
CERTIFICATE OF ANALYSIS

VAN18002441.1

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Unit</th>
<th>Wght</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>MgO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>TiO2</th>
<th>P2O5</th>
<th>MnO</th>
<th>Cr2O3</th>
<th>Ba</th>
<th>Ni</th>
<th>Sc</th>
<th>LOI</th>
<th>Sum</th>
<th>Be</th>
<th>Co</th>
<th>Cs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>kg</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Windy 2</td>
<td>Rock</td>
<td></td>
<td>0.93</td>
<td>64.61</td>
<td>15.43</td>
<td>6.14</td>
<td>1.42</td>
<td>2.87</td>
<td>3.34</td>
<td>2.23</td>
<td>0.24</td>
<td>0.12</td>
<td>0.08</td>
<td><0.002</td>
<td>171</td>
<td><20</td>
<td>6</td>
<td>3.2</td>
<td>99.75</td>
<td>44</td>
<td>6.8</td>
<td>20.8</td>
</tr>
<tr>
<td>Windy 7</td>
<td>Rock</td>
<td></td>
<td>1.88</td>
<td>46.89</td>
<td>17.02</td>
<td>6.29</td>
<td>3.87</td>
<td>21.09</td>
<td>1.56</td>
<td>0.35</td>
<td>0.08</td>
<td>0.64</td>
<td>0.015</td>
<td>40</td>
<td><20</td>
<td>15</td>
<td>1.2</td>
<td>99.73</td>
<td>6</td>
<td>9.3</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Windy 10</td>
<td>Rock</td>
<td></td>
<td>1.29</td>
<td>26.47</td>
<td>10.46</td>
<td>38.88</td>
<td>0.52</td>
<td>7.69</td>
<td>2.34</td>
<td>0.31</td>
<td><0.01</td>
<td>0.14</td>
<td><0.002</td>
<td>10</td>
<td><20</td>
<td>5</td>
<td>11.9</td>
<td>98.77</td>
<td>40</td>
<td>107.0</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>windy 10A</td>
<td>Rock</td>
<td></td>
<td>1.24</td>
<td>42.40</td>
<td>1.70</td>
<td>17.74</td>
<td>4.55</td>
<td>26.86</td>
<td>0.24</td>
<td>0.09</td>
<td>0.06</td>
<td>0.02</td>
<td>1.15</td>
<td>0.003</td>
<td>10</td>
<td><20</td>
<td>2</td>
<td>5.0</td>
<td>99.82</td>
<td>7</td>
<td>18.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Windy 14</td>
<td>Drill Core</td>
<td></td>
<td>0.31</td>
<td>66.24</td>
<td>15.80</td>
<td>4.68</td>
<td>1.12</td>
<td>4.94</td>
<td>3.60</td>
<td>1.00</td>
<td>0.27</td>
<td>0.14</td>
<td><0.002</td>
<td>60</td>
<td><20</td>
<td>4</td>
<td>1.3</td>
<td>99.17</td>
<td>20</td>
<td>4.6</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>Windy 15</td>
<td>Drill Core</td>
<td></td>
<td>0.29</td>
<td>37.78</td>
<td>0.36</td>
<td>17.46</td>
<td>33.22</td>
<td>6.27</td>
<td>0.03</td>
<td>0.20</td>
<td><0.01</td>
<td><0.002</td>
<td>0.51</td>
<td><0.002</td>
<td>7</td>
<td><20</td>
<td>2</td>
<td>3.5</td>
<td>99.38</td>
<td>5</td>
<td>35.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Windy 16</td>
<td>Drill Core</td>
<td></td>
<td>0.30</td>
<td>56.95</td>
<td>16.43</td>
<td>4.96</td>
<td>4.03</td>
<td>11.35</td>
<td>1.06</td>
<td>3.49</td>
<td>0.63</td>
<td>0.06</td>
<td>0.013</td>
<td>1129</td>
<td>27</td>
<td>13</td>
<td>0.6</td>
<td>99.80</td>
<td><1</td>
<td>12.2</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>Windy 17</td>
<td>Drill Core</td>
<td></td>
<td>0.39</td>
<td>39.13</td>
<td>6.06</td>
<td>27.88</td>
<td>2.14</td>
<td>21.31</td>
<td>0.37</td>
<td>0.16</td>
<td>0.11</td>
<td>0.03</td>
<td>1.12</td>
<td>0.002</td>
<td>9</td>
<td><20</td>
<td>1</td>
<td>1.8</td>
<td>99.87</td>
<td>14</td>
<td>27.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Windy 18</td>
<td>Drill Core</td>
<td></td>
<td>0.63</td>
<td>39.52</td>
<td>7.90</td>
<td>12.27</td>
<td>3.23</td>
<td>28.67</td>
<td>0.54</td>
<td>0.13</td>
<td>0.27</td>
<td>0.06</td>
<td>1.11</td>
<td>0.008</td>
<td>4</td>
<td><20</td>
<td>7</td>
<td>6.2</td>
<td>99.86</td>
<td>3</td>
<td>15.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Windy 19</td>
<td>Drill Core</td>
<td></td>
<td>0.29</td>
<td>31.37</td>
<td>6.43</td>
<td>28.72</td>
<td>2.42</td>
<td>15.36</td>
<td>1.21</td>
<td>0.28</td>
<td>0.10</td>
<td><0.01</td>
<td>0.56</td>
<td>0.002</td>
<td>6</td>
<td><20</td>
<td>2</td>
<td>1.5</td>
<td>87.97</td>
<td>38</td>
<td>25.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Windy 20</td>
<td>Rock</td>
<td></td>
<td>1.44</td>
<td>54.49</td>
<td>19.46</td>
<td>10.02</td>
<td>1.26</td>
<td>5.17</td>
<td>4.15</td>
<td>1.24</td>
<td>0.11</td>
<td>0.05</td>
<td><0.002</td>
<td>63</td>
<td><20</td>
<td>4</td>
<td>3.7</td>
<td>99.76</td>
<td>133</td>
<td>10.2</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Windy 21</td>
<td>Drill Core</td>
<td></td>
<td>0.64</td>
<td>47.86</td>
<td>4.19</td>
<td>18.69</td>
<td>3.98</td>
<td>21.50</td>
<td>0.14</td>
<td>0.07</td>
<td>0.08</td>
<td>0.05</td>
<td>1.33</td>
<td>0.003</td>
<td><1</td>
<td><20</td>
<td>3</td>
<td>2.0</td>
<td>99.86</td>
<td>9</td>
<td>18.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.
<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Unit</th>
<th>MDL</th>
<th>LF200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td>Windy 2</td>
<td>Rock</td>
<td>44.6</td>
<td>5.3</td>
<td>92.5</td>
<td>325.1</td>
<td>14</td>
<td>249.0</td>
<td>7.3</td>
<td>66.8</td>
<td>22.0</td>
<td>22</td>
<td>362.7</td>
<td>161.0</td>
<td>19.9</td>
<td>27.2</td>
<td>59.6</td>
<td>7.28</td>
<td>25.0</td>
</tr>
<tr>
<td>Windy 7</td>
<td>Rock</td>
<td>27.8</td>
<td>3.9</td>
<td>17.1</td>
<td>33.1</td>
<td>89</td>
<td>353.9</td>
<td>1.0</td>
<td>16.6</td>
<td>6.6</td>
<td>73</td>
<td>419.6</td>
<td>144.8</td>
<td>17.5</td>
<td>72.6</td>
<td>131.2</td>
<td>14.00</td>
<td>46.4</td>
</tr>
<tr>
<td>Windy 10</td>
<td>Rock</td>
<td>21.4</td>
<td>0.3</td>
<td>15.3</td>
<td>9.3</td>
<td>11</td>
<td>117.7</td>
<td>0.1</td>
<td>0.3</td>
<td>11.6</td>
<td><8</td>
<td>7681.4</td>
<td>13.8</td>
<td>14.7</td>
<td>3.3</td>
<td>6.0</td>
<td>3.7</td>
<td>0.60</td>
</tr>
<tr>
<td>Windy 10A</td>
<td>Rock</td>
<td>8.7</td>
<td>0.3</td>
<td>7.1</td>
<td>7.5</td>
<td>21</td>
<td>40.8</td>
<td><0.1</td>
<td>3.9</td>
<td>9.1</td>
<td>20</td>
<td>98.7</td>
<td>11.0</td>
<td>11.0</td>
<td>50.7</td>
<td>97.5</td>
<td>12.67</td>
<td>52.6</td>
</tr>
<tr>
<td>Windy 14</td>
<td>Drill Core</td>
<td>33.3</td>
<td>5.3</td>
<td>77.7</td>
<td>240.0</td>
<td>22</td>
<td>424.4</td>
<td>7.0</td>
<td>27.2</td>
<td>8.5</td>
<td>13</td>
<td>74.2</td>
<td>156.7</td>
<td>11.3</td>
<td>7.7</td>
<td>20.9</td>
<td>2.87</td>
<td>10.9</td>
</tr>
<tr>
<td>Windy 15</td>
<td>Drill Core</td>
<td>10.1</td>
<td>0.1</td>
<td>18.2</td>
<td>39.1</td>
<td>14</td>
<td>11.3</td>
<td>0.3</td>
<td>0.7</td>
<td>10.9</td>
<td>14</td>
<td>29.9</td>
<td>5.3</td>
<td>6.1</td>
<td>1.2</td>
<td>2.9</td>
<td>0.48</td>
<td>2.4</td>
</tr>
<tr>
<td>Windy 16</td>
<td>Drill Core</td>
<td>20.6</td>
<td>3.6</td>
<td>13.0</td>
<td>139.5</td>
<td>3</td>
<td>422.0</td>
<td>0.9</td>
<td>15.1</td>
<td>2.8</td>
<td>91</td>
<td>13.7</td>
<td>129.7</td>
<td>17.1</td>
<td>45.9</td>
<td>79.0</td>
<td>9.22</td>
<td>31.9</td>
</tr>
<tr>
<td>Windy 17</td>
<td>Drill Core</td>
<td>22.7</td>
<td>0.6</td>
<td>17.3</td>
<td>12.5</td>
<td>144</td>
<td>37.2</td>
<td>0.3</td>
<td>0.3</td>
<td>3.3</td>
<td>25</td>
<td>72.9</td>
<td>18.8</td>
<td>23.7</td>
<td>1.2</td>
<td>3.1</td>
<td>0.73</td>
<td>4.9</td>
</tr>
<tr>
<td>Windy 18</td>
<td>Drill Core</td>
<td>20.9</td>
<td>1.3</td>
<td>6.1</td>
<td>6.4</td>
<td>121</td>
<td>116.4</td>
<td>0.4</td>
<td>3.4</td>
<td>3.4</td>
<td>31</td>
<td>3.4</td>
<td>48.2</td>
<td>26.7</td>
<td>8.8</td>
<td>16.8</td>
<td>2.55</td>
<td>14.3</td>
</tr>
<tr>
<td>Windy 19</td>
<td>Drill Core</td>
<td>42.3</td>
<td>0.3</td>
<td>13.0</td>
<td>37.9</td>
<td>34</td>
<td>67.2</td>
<td>0.4</td>
<td><0.2</td>
<td>1.8</td>
<td>34</td>
<td>13.1</td>
<td>8.3</td>
<td>20.5</td>
<td>2.5</td>
<td>2.1</td>
<td>0.33</td>
<td>2.2</td>
</tr>
<tr>
<td>Windy 20</td>
<td>Rock</td>
<td>51.7</td>
<td>4.9</td>
<td>65.6</td>
<td>245.3</td>
<td>12</td>
<td>217.1</td>
<td>5.5</td>
<td>21.0</td>
<td>14.5</td>
<td>26</td>
<td>285.6</td>
<td>114.1</td>
<td>19.1</td>
<td>13.0</td>
<td>23.5</td>
<td>2.52</td>
<td>8.9</td>
</tr>
<tr>
<td>Windy 21</td>
<td>Drill Core</td>
<td>15.8</td>
<td>0.6</td>
<td>6.4</td>
<td>2.8</td>
<td>51</td>
<td>33.5</td>
<td>0.2</td>
<td>1.0</td>
<td>3.9</td>
<td>13</td>
<td>51.5</td>
<td>21.8</td>
<td>8.4</td>
<td>3.1</td>
<td>5.8</td>
<td>0.70</td>
<td>3.4</td>
</tr>
</tbody>
</table>

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.
CERTIFICATE OF ANALYSIS

VAN18002441.1

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Unit</th>
<th>MDL</th>
<th>LF200</th>
<th>LF200</th>
<th>LF200</th>
<th>LF200</th>
<th>LF200</th>
<th>LF200</th>
<th>TC000</th>
<th>TC000</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td>Windy 2</td>
<td>Rock</td>
<td></td>
<td></td>
<td>0.52</td>
<td>2.94</td>
<td>0.58</td>
<td>1.76</td>
<td>0.30</td>
<td>2.23</td>
<td>0.35</td>
<td>0.21</td>
<td>1.09</td>
<td>139.6</td>
<td>99.2</td>
<td>3.9</td>
<td>47</td>
<td>1.5</td>
<td>0.6</td>
<td><0.1</td>
</tr>
<tr>
<td>Windy 7</td>
<td>Rock</td>
<td></td>
<td></td>
<td>0.63</td>
<td>3.39</td>
<td>0.63</td>
<td>2.09</td>
<td>0.32</td>
<td>2.19</td>
<td>0.35</td>
<td>0.20</td>
<td>0.04</td>
<td>8.3</td>
<td>7.8</td>
<td>3.4</td>
<td>29</td>
<td>5.0</td>
<td>0.8</td>
<td><0.1</td>
</tr>
<tr>
<td>Windy 10</td>
<td>Rock</td>
<td></td>
<td></td>
<td>0.37</td>
<td>2.22</td>
<td>0.49</td>
<td>1.39</td>
<td>0.20</td>
<td>1.16</td>
<td>0.15</td>
<td>0.37</td>
<td>16.42</td>
<td>77.7</td>
<td>1094.4</td>
<td>5.3</td>
<td>42</td>
<td>14.1</td>
<td><0.5</td>
<td><0.1</td>
</tr>
<tr>
<td>windy 10A</td>
<td>Rock</td>
<td></td>
<td></td>
<td>0.38</td>
<td>1.67</td>
<td>0.28</td>
<td>0.90</td>
<td>0.15</td>
<td>1.59</td>
<td>0.34</td>
<td>0.45</td>
<td>0.87</td>
<td>20.4</td>
<td>60.3</td>
<td>1.9</td>
<td>172</td>
<td>8.1</td>
<td>0.5</td>
<td><0.1</td>
</tr>
<tr>
<td>Windy 14</td>
<td>Drill Core</td>
<td></td>
<td></td>
<td>0.28</td>
<td>1.52</td>
<td>0.31</td>
<td>0.99</td>
<td>0.16</td>
<td>1.26</td>
<td>0.22</td>
<td>0.04</td>
<td>1.43</td>
<td>>2000</td>
<td>86.0</td>
<td>1.5</td>
<td>58</td>
<td>1.7</td>
<td><0.5</td>
<td>5.4</td>
</tr>
<tr>
<td>Windy 15</td>
<td>Drill Core</td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.75</td>
<td>0.14</td>
<td>0.69</td>
<td>0.15</td>
<td>2.10</td>
<td>0.64</td>
<td>0.55</td>
<td>1.85</td>
<td>2.7</td>
<td>190.3</td>
<td>2.5</td>
<td>213</td>
<td>3.8</td>
<td>0.7</td>
<td><0.1</td>
</tr>
<tr>
<td>Windy 16</td>
<td>Drill Core</td>
<td></td>
<td></td>
<td>0.58</td>
<td>3.24</td>
<td>0.62</td>
<td>1.86</td>
<td>0.26</td>
<td>1.71</td>
<td>0.25</td>
<td>0.03</td>
<td>0.51</td>
<td>3.0</td>
<td>23.2</td>
<td>5.2</td>
<td>25</td>
<td>23.8</td>
<td><0.5</td>
<td><0.1</td>
</tr>
<tr>
<td>Windy 17</td>
<td>Drill Core</td>
<td></td>
<td></td>
<td>0.49</td>
<td>3.04</td>
<td>0.66</td>
<td>2.06</td>
<td>0.35</td>
<td>2.36</td>
<td>0.36</td>
<td>1.07</td>
<td>6.90</td>
<td>1.3</td>
<td>196.5</td>
<td>1.8</td>
<td>56</td>
<td>3.0</td>
<td><0.5</td>
<td><0.1</td>
</tr>
<tr>
<td>Windy 18</td>
<td>Drill Core</td>
<td></td>
<td></td>
<td>0.67</td>
<td>4.26</td>
<td>0.94</td>
<td>2.75</td>
<td>0.38</td>
<td>2.35</td>
<td>0.33</td>
<td>1.99</td>
<td>0.50</td>
<td>0.3</td>
<td>39.1</td>
<td>3.4</td>
<td>25</td>
<td>5.7</td>
<td><0.5</td>
<td><0.1</td>
</tr>
<tr>
<td>Windy 19</td>
<td>Drill Core</td>
<td></td>
<td></td>
<td>0.30</td>
<td>2.30</td>
<td>0.60</td>
<td>2.29</td>
<td>0.42</td>
<td>3.49</td>
<td>0.52</td>
<td>2.76</td>
<td>9.36</td>
<td>0.3</td>
<td>354.1</td>
<td>2.1</td>
<td>66</td>
<td>21.5</td>
<td>1.5</td>
<td><0.1</td>
</tr>
<tr>
<td>Windy 20</td>
<td>Rock</td>
<td></td>
<td></td>
<td>0.41</td>
<td>2.78</td>
<td>0.59</td>
<td>2.13</td>
<td>0.34</td>
<td>2.67</td>
<td>0.45</td>
<td>0.03</td>
<td>3.16</td>
<td>4.5</td>
<td>332.5</td>
<td>2.5</td>
<td>59</td>
<td>1.9</td>
<td>1.0</td>
<td><0.1</td>
</tr>
<tr>
<td>Windy 21</td>
<td>Drill Core</td>
<td></td>
<td></td>
<td>0.21</td>
<td>1.26</td>
<td>0.28</td>
<td>0.88</td>
<td>0.13</td>
<td>1.02</td>
<td>0.18</td>
<td>1.01</td>
<td>1.46</td>
<td>5.8</td>
<td>71.9</td>
<td>3.5</td>
<td>113</td>
<td>7.5</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.
<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Unit</th>
<th>AQ200 Hg ppm</th>
<th>AQ200 Tl ppm</th>
<th>AQ200 Se ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windy 2</td>
<td>Rock</td>
<td></td>
<td><0.01</td>
<td>0.7</td>
<td><0.5</td>
</tr>
<tr>
<td>Windy 7</td>
<td>Rock</td>
<td></td>
<td><0.01</td>
<td>0.1</td>
<td><0.5</td>
</tr>
<tr>
<td>Windy 10</td>
<td>Rock</td>
<td></td>
<td><0.01</td>
<td><0.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Windy 10A</td>
<td>Rock</td>
<td></td>
<td><0.01</td>
<td><0.1</td>
<td><0.5</td>
</tr>
<tr>
<td>Windy 14</td>
<td>Drill Core</td>
<td></td>
<td><0.01</td>
<td>1.2</td>
<td><0.5</td>
</tr>
<tr>
<td>Windy 15</td>
<td>Drill Core</td>
<td></td>
<td><0.01</td>
<td>0.1</td>
<td><0.5</td>
</tr>
<tr>
<td>Windy 16</td>
<td>Drill Core</td>
<td></td>
<td><0.01</td>
<td>0.6</td>
<td><0.5</td>
</tr>
<tr>
<td>Windy 17</td>
<td>Drill Core</td>
<td></td>
<td><0.01</td>
<td><0.1</td>
<td><0.5</td>
</tr>
<tr>
<td>Windy 18</td>
<td>Drill Core</td>
<td></td>
<td><0.01</td>
<td><0.1</td>
<td><0.5</td>
</tr>
<tr>
<td>Windy 19</td>
<td>Drill Core</td>
<td></td>
<td><0.01</td>
<td><0.1</td>
<td><0.5</td>
</tr>
<tr>
<td>Windy 20</td>
<td>Rock</td>
<td></td>
<td><0.01</td>
<td>0.6</td>
<td><0.5</td>
</tr>
<tr>
<td>Windy 21</td>
<td>Drill Core</td>
<td></td>
<td><0.01</td>
<td>0.1</td>
<td><0.5</td>
</tr>
</tbody>
</table>

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.
QUALITY CONTROL REPORT

Client: Downing, Bruce
20200 Grade Crescent
Langley British Columbia V3A 4J6 Canada

Project: None Given
Report Date: October 17, 2018

Page: 1 of 1
Part: 1 of 4

Bureau Veritas Commodities Canada Ltd.
9050 Shaughnessy St
Vancouver British Columbia V6E 6E5 Canada
PHONE (604) 253-3158

```markdown
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDL</td>
<td></td>
</tr>
<tr>
<td>Windy 19</td>
<td>Drill Core</td>
<td>Wgt</td>
<td>0.29</td>
<td>31.37</td>
<td>6.43</td>
<td>28.72</td>
<td>2.42</td>
<td>15.36</td>
<td>1.21</td>
<td>0.28</td>
<td>0.10</td>
<td>&lt;0.01</td>
<td>0.56</td>
<td>0.002</td>
<td>6</td>
<td>&lt;20</td>
<td>2</td>
<td>1.5</td>
<td>87.97</td>
<td>38</td>
</tr>
<tr>
<td>Pulp Duplicates</td>
<td></td>
</tr>
<tr>
<td>Windy 7</td>
<td>Rock</td>
<td>Wgt</td>
<td>1.88</td>
<td>46.89</td>
<td>17.02</td>
<td>6.29</td>
<td>3.87</td>
<td>21.09</td>
<td>1.56</td>
<td>0.35</td>
<td>0.77</td>
<td>0.08</td>
<td>0.64</td>
<td>0.015</td>
<td>40</td>
<td>&lt;20</td>
<td>15</td>
<td>1.2</td>
<td>99.73</td>
<td>6</td>
</tr>
<tr>
<td>REP Windy 7</td>
<td>QC</td>
<td></td>
</tr>
<tr>
<td>Windy 18</td>
<td>Drill Core</td>
<td>Wgt</td>
<td>0.63</td>
<td>39.52</td>
<td>7.90</td>
<td>12.27</td>
<td>3.23</td>
<td>28.67</td>
<td>0.54</td>
<td>0.13</td>
<td>0.27</td>
<td>0.06</td>
<td>1.11</td>
<td>0.008</td>
<td>4</td>
<td>&lt;20</td>
<td>7</td>
<td>6.2</td>
<td>99.86</td>
<td>3</td>
</tr>
<tr>
<td>REP Windy 18</td>
<td>QC</td>
<td></td>
</tr>
</tbody>
</table>

**Reference Materials**

- STD DS11: Standard
- STD GS311-1: Standard
- STD GS910-4: Standard
- STD OREAS45EA: Standard
- STD SO-19: Expected
- STD GS311-1 Expected
- STD GS910-4 Expected
- STD OREAS45EA Expected

**Prep Wash**

- ROCK-VAN: Prep Blank
  - Wgt: 71.06  
  - Fe2O3: 14.08  
  - Al2O3: 3.02  
  - SiO2: 0.86  
  - MgO: 2.38  
  - CaO: 4.53  
  - Na2O: 2.11  
  - K2O: 0.36  
  - TiO2: 0.10  
  - P2O5: 0.08  
  - MnO: 0.002  
  - Cr2O3: 824  
  - Ba: 7  
  - Ni: 1.3  
  - Sc: 99.93  
  - LOI: 2  
  - Sum: 4.2  
  - Be: 0.3  
  - Co: 3  
  - Cu: 0.3

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.
**QUALITY CONTROL REPORT**

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Unit</th>
<th>ML</th>
<th>LF200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ga</td>
<td>Hf</td>
<td>Nb</td>
<td>Rb</td>
<td>Sn</td>
<td>Sr</td>
<td>Ta</td>
<td>Th</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>Zr</td>
<td>Y</td>
<td>La</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td>Windy 19</td>
<td>Drill Core</td>
<td>42.3</td>
<td>0.3</td>
<td>13.0</td>
<td>37.9</td>
<td>34</td>
<td>67.2</td>
<td>0.4</td>
<td>&lt;0.2</td>
<td>1.8</td>
<td>34</td>
<td>13.1</td>
<td>8.3</td>
<td>20.5</td>
<td>2.5</td>
<td>2.1</td>
<td>0.33</td>
</tr>
<tr>
<td>Pulp Duplicates</td>
<td></td>
</tr>
<tr>
<td>Windy 7</td>
<td>Rock</td>
<td>27.8</td>
<td>3.9</td>
<td>17.1</td>
<td>33.1</td>
<td>89</td>
<td>353.9</td>
<td>1.0</td>
<td>16.6</td>
<td>6.6</td>
<td>73</td>
<td>419.6</td>
<td>144.8</td>
<td>17.5</td>
<td>72.6</td>
<td>131.2</td>
<td>14.0</td>
</tr>
<tr>
<td>REP Windy 7</td>
<td>QC</td>
<td></td>
</tr>
<tr>
<td>Windy 18</td>
<td>Drill Core</td>
<td>20.9</td>
<td>1.3</td>
<td>6.1</td>
<td>6.4</td>
<td>121</td>
<td>116.4</td>
<td>0.4</td>
<td>3.4</td>
<td>3.4</td>
<td>31</td>
<td>3.4</td>
<td>48.2</td>
<td>26.7</td>
<td>8.8</td>
<td>16.8</td>
<td>2.55</td>
</tr>
<tr>
<td>REP Windy 18</td>
<td>QC</td>
<td></td>
</tr>
<tr>
<td>Reference Materials</td>
<td></td>
</tr>
<tr>
<td>STD DS11</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>STD GS311-1</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>STD GS910-4</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>STD ORESA45EA</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>STD SO-19</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>STD SO-19</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>STD SO-19</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>STD SO-19</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>STD GS311-1 Expected</td>
<td></td>
</tr>
<tr>
<td>STD GS910-4 Expected</td>
<td></td>
</tr>
<tr>
<td>STD ORESA45EA Expected</td>
<td></td>
</tr>
<tr>
<td>STD SO-19 Expected</td>
<td></td>
</tr>
<tr>
<td>BLK</td>
<td>Blank</td>
<td>17.5</td>
<td>3.1</td>
<td>68.5</td>
<td>19.5</td>
<td>19</td>
<td>317.1</td>
<td>4.9</td>
<td>13</td>
<td>19.4</td>
<td>165</td>
<td>9.8</td>
<td>112</td>
<td>71.3</td>
<td>161</td>
<td>19.4</td>
<td>75.7</td>
</tr>
<tr>
<td>BLK</td>
<td>Blank</td>
<td>&lt;0.5</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>&lt;1</td>
<td>&lt;0.5</td>
<td>&lt;0.1</td>
<td>&lt;0.2</td>
<td>&lt;0.1</td>
<td>&lt;8</td>
<td>1.1</td>
<td>0.3</td>
<td>0.2</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>&lt;0.02</td>
</tr>
<tr>
<td>BLK</td>
<td>Blank</td>
<td>&lt;0.5</td>
<td>&lt;0.1</td>
<td>0.3</td>
<td>&lt;0.1</td>
<td>&lt;1</td>
<td>&lt;0.5</td>
<td>&lt;0.1</td>
<td>&lt;0.2</td>
<td>&lt;0.1</td>
<td>&lt;8</td>
<td>&lt;0.5</td>
<td>0.6</td>
<td>0.2</td>
<td>0.4</td>
<td>&lt;0.2</td>
<td>&lt;0.02</td>
</tr>
<tr>
<td>Prep Wash</td>
<td></td>
</tr>
<tr>
<td>ROCK-VAN</td>
<td>Prep Blank</td>
<td>14.6</td>
<td>3.3</td>
<td>5.9</td>
<td>37.3</td>
<td>&lt;1</td>
<td>204.6</td>
<td>0.5</td>
<td>3.2</td>
<td>1.5</td>
<td>38</td>
<td>&lt;0.5</td>
<td>136.2</td>
<td>17.3</td>
<td>15.3</td>
<td>26.9</td>
<td>3.19</td>
</tr>
<tr>
<td>ROCK-VAN</td>
<td>Prep Blank</td>
<td>14.4</td>
<td>3.4</td>
<td>6.1</td>
<td>36.7</td>
<td>1</td>
<td>209.4</td>
<td>0.4</td>
<td>3.0</td>
<td>1.5</td>
<td>37</td>
<td>&lt;0.5</td>
<td>134.5</td>
<td>17.8</td>
<td>15.8</td>
<td>28.1</td>
<td>3.29</td>
</tr>
</tbody>
</table>

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.
## QUALITY CONTROL REPORT

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte Unit</th>
<th>MDL</th>
<th>LF200</th>
<th>LF200</th>
<th>LF200</th>
<th>LF200</th>
<th>LF200</th>
<th>LF200</th>
<th>TC200</th>
<th>TC200</th>
<th>TC200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
<th>AQ200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Windy 19</td>
<td>Drill Core</td>
<td></td>
<td>0.30</td>
<td>2.30</td>
<td>0.60</td>
<td>2.29</td>
<td>0.42</td>
<td>3.49</td>
<td>0.52</td>
<td>2.76</td>
<td>9.36</td>
<td>0.3</td>
<td>354.1</td>
<td>2.1</td>
<td>66</td>
<td>21.5</td>
<td>1.5</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>35.9</td>
</tr>
<tr>
<td>Pulp Duplicates</td>
<td></td>
</tr>
<tr>
<td>Windy 7</td>
<td>Rock</td>
<td></td>
<td>0.63</td>
<td>3.39</td>
<td>0.63</td>
<td>2.09</td>
<td>0.32</td>
<td>2.19</td>
<td>0.35</td>
<td>0.20</td>
<td>0.04</td>
<td>8.3</td>
<td>7.8</td>
<td>3.4</td>
<td>29</td>
<td>5.0</td>
<td>0.8</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>REP Windy 7</td>
<td>QC</td>
<td></td>
<td>8.0</td>
<td>8.3</td>
<td>3.5</td>
<td>31</td>
<td>5.2</td>
<td>0.7</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>0.2</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>0.2</td>
<td>&lt;0.1</td>
<td>0.2</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
</tr>
<tr>
<td>Windy 18</td>
<td>Drill Core</td>
<td></td>
<td>0.67</td>
<td>4.26</td>
<td>0.94</td>
<td>2.75</td>
<td>0.38</td>
<td>2.35</td>
<td>0.33</td>
<td>1.99</td>
<td>0.50</td>
<td>0.3</td>
<td>39.1</td>
<td>3.4</td>
<td>25</td>
<td>5.7</td>
<td>&lt;0.5</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>REP Windy 18</td>
<td>QC</td>
<td></td>
<td>1.99</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Reference Materials</td>
<td></td>
</tr>
<tr>
<td>STD DS11</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>STD GS311-1</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>STD GS910-4</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>STD OREA45SEA</td>
<td>Standard</td>
<td></td>
<td>1.6</td>
<td>748.6</td>
<td>14.6</td>
<td>30</td>
<td>414.5</td>
<td>11.4</td>
<td>&lt;0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>54.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD SC19</td>
<td>Standard</td>
<td></td>
<td>1.40</td>
<td>7.34</td>
<td>1.35</td>
<td>3.81</td>
<td>0.53</td>
<td>3.42</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>STD SC19</td>
<td>Standard</td>
<td></td>
<td>1.37</td>
<td>7.08</td>
<td>1.38</td>
<td>3.79</td>
<td>0.53</td>
<td>3.42</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>STD SC19</td>
<td>Standard</td>
<td></td>
<td>1.38</td>
<td>7.03</td>
<td>1.35</td>
<td>3.84</td>
<td>0.49</td>
<td>3.51</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>STD SC19</td>
<td>Standard</td>
<td></td>
<td>1.35</td>
<td>6.95</td>
<td>1.43</td>
<td>3.86</td>
<td>0.52</td>
<td>3.58</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>STD GS311-1</td>
<td>Expected</td>
<td></td>
</tr>
<tr>
<td>STD GS910-4</td>
<td>Expected</td>
<td></td>
<td>1.02</td>
<td>2.35</td>
<td></td>
</tr>
<tr>
<td>STD OREA45SEA</td>
<td>Expected</td>
<td></td>
<td>2.65</td>
<td>8.27</td>
<td></td>
</tr>
<tr>
<td>STD DS11</td>
<td>Expected</td>
<td></td>
<td>1.6</td>
<td>709</td>
<td>14.3</td>
<td>31.4</td>
<td>381</td>
<td>11.4</td>
<td>0.03</td>
<td>0.32</td>
<td>0.26</td>
<td>0.26</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD SC19</td>
<td>Expected</td>
<td></td>
<td>1.41</td>
<td>7.5</td>
<td>1.39</td>
<td>3.78</td>
<td>0.55</td>
<td>3.55</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>BLK</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>&lt;0.02</td>
<td>&lt;0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLK</td>
<td>Blank</td>
<td></td>
<td>&lt;0.01</td>
<td>&lt;0.05</td>
<td>&lt;0.02</td>
<td>&lt;0.03</td>
<td>&lt;0.01</td>
<td>&lt;0.05</td>
<td>&lt;0.01</td>
<td></td>
</tr>
<tr>
<td>BLK</td>
<td>Blank</td>
<td></td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>&lt;1</td>
<td>&lt;0.1</td>
<td>&lt;0.5</td>
<td>&lt;0.1</td>
</tr>
<tr>
<td>BLK</td>
<td>Blank</td>
<td></td>
<td>&lt;0.01</td>
<td>&lt;0.05</td>
<td>&lt;0.02</td>
<td>&lt;0.03</td>
<td>&lt;0.01</td>
<td>&lt;0.05</td>
<td>&lt;0.01</td>
<td></td>
</tr>
<tr>
<td>Prep Wash</td>
<td></td>
</tr>
<tr>
<td>ROCK-VAN</td>
<td>Prep Blank</td>
<td></td>
<td>0.45</td>
<td>2.86</td>
<td>0.64</td>
<td>2.05</td>
<td>0.31</td>
<td>2.24</td>
<td>0.37</td>
<td>0.07</td>
<td>&lt;0.02</td>
<td>1.0</td>
<td>3.5</td>
<td>1.0</td>
<td>31</td>
<td>0.9</td>
<td>1.1</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
</tr>
<tr>
<td>ROCK-VAN</td>
<td>Prep Blank</td>
<td></td>
<td>0.45</td>
<td>2.91</td>
<td>0.62</td>
<td>2.02</td>
<td>0.32</td>
<td>2.18</td>
<td>0.37</td>
<td>0.06</td>
<td>&lt;0.02</td>
<td>0.6</td>
<td>3.0</td>
<td>0.9</td>
<td>26</td>
<td>0.7</td>
<td>1.0</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
<td>&lt;0.1</td>
</tr>
</tbody>
</table>

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.
### QUALITY CONTROL REPORT

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>MDL Unit</th>
<th>AQ200 Hg ppm</th>
<th>AQ200 Ti ppm</th>
<th>AQ200 Se ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windy 19</td>
<td>Drill Core</td>
<td></td>
<td>&lt;0.01</td>
<td>&lt;0.1</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>Pulp Duplicates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windy 7</td>
<td>Rock</td>
<td></td>
<td>&lt;0.01</td>
<td>0.1</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>REP Windy 7</td>
<td>QC</td>
<td></td>
<td>&lt;0.01</td>
<td>0.1</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>Windy 18</td>
<td>Drill Core</td>
<td></td>
<td>&lt;0.01</td>
<td>&lt;0.1</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>REP Windy 18</td>
<td>QC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD DS11</td>
<td>Standard</td>
<td></td>
<td>0.27</td>
<td>5.2</td>
<td>2.5</td>
</tr>
<tr>
<td>STD GS311-1</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD GS910-4</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD OREAS45EA</td>
<td>Standard</td>
<td></td>
<td>0.02</td>
<td>&lt;0.1</td>
<td>1.6</td>
</tr>
<tr>
<td>STD SC-19</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD SC-19</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD SC-19</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD SC-19</td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD GS311-1 Expected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD GS910-4 Expected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD OREAS45EA Expected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD DS11 Expected</td>
<td></td>
<td></td>
<td>0.072</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>STD SO-19 Expected</td>
<td></td>
<td></td>
<td>0.26</td>
<td>4.9</td>
<td>2.2</td>
</tr>
<tr>
<td>BLK</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLK</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLK</td>
<td>Blank</td>
<td></td>
<td>&lt;0.01</td>
<td>&lt;0.1</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>BLK</td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep Wash</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCK-VAN</td>
<td>Prep Blank</td>
<td></td>
<td>0.01</td>
<td>&lt;0.1</td>
<td>&lt;0.5</td>
</tr>
<tr>
<td>ROCK-VAN</td>
<td>Prep Blank</td>
<td></td>
<td>&lt;0.01</td>
<td>&lt;0.1</td>
<td>&lt;0.5</td>
</tr>
</tbody>
</table>

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.