TYPE OF REPORT: Geophysical

AUTHOR(S): Angelique Justason

PROPERTY NAME: Fontaine

CLAIM NAME(S) (on which the work was done): Fontaine (1030053)

COMMODITIES SOUGHT: Gold, Nickel, Platinum

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: Cariboo

MINING DIVISION: Cariboo

NTS/BCGS: 093A/13; 93A.92

LATITUDE: 52° 57' 15"

LONGITUDE: 121° 09'

OWNER(S):

Clinton Blaine

PO Box 236, Wells BC V0K2R0

OPERATOR(S) [who paid for the work]:

MAILING ADDRESS:

PO Box 236, Wells BC V0K2R0

PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):

Snowshoe Group, Barkerville Terrane, placer, tertiary, gold, Slide Mountain Terrane, Serpentinite, Crooked Amphibolite, Greenstone

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

16010, 32683, 33273, 34892, 35914, 36360, 37332

Next Page
<table>
<thead>
<tr>
<th>TYPE OF WORK IN THIS REPORT</th>
<th>EXTENT OF WORK (IN METRIC UNITS)</th>
<th>ON WHICH CLAIMS</th>
<th>PROJECT COSTS APPORTIONED (incl. support)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GEOLOGICAL (scale, area)
- Ground, mapping
- Photo interpretation

GEOPHYSICAL (line-kilometres)
- Ground Magnetic
 - Electromagnetic: 0.98Lkm
- Induced Polarization
- Other
- Airborne

GEOCHEMICAL
- (number of samples analysed for...)
 - Soil
 - Rock
 - Other

DRILLING
- (total metres; number of holes, size)
 - Core
 - Non-core

RELATED TECHNICAL
- Sampling/assaying
- Petrographic
- Mineralogic
- Metallurgic

PROSPECTING (scale, area)

PREPARATORY / PHYSICAL
- Line/grid (kilometres)
- Topographic/Photogrammetric (scale, area)
- Other

TOTAL COST: 2234.00
Continued Radem VLF-EM
Geophysical Surveys
at the Fontaine Mineral Claim

Fontaine
Cariboo Mining District

NTS 93A/13
TRIM 093A.091 and 093A.092
Work Centered near 582650E, 5867820N (UTM Nad 83)
Mineral Claim 1030053

Prepared for
Clinton Blaine
(owner/operator)
PO Box 236
Wells, BC V0K2R0

By
Angelique Justason

Tenorex GeoServices
336 Front Street
Quesnel, BC
V2J 2K3

March 2019
Table of Contents

Summary .. 3

Property Description and Access .. 3

Geology ... 4

Exploration History ... 6

2018 Exploration .. 7

Results and Discussion ... 9

Recommendations ... 9

References ... 12

Appendix 1: Data & Maps
Summary

In 2018, exploration was hampered by air quality and fire danger ratings, and work was slowed, chopping up the exploration into two sets of work. The earlier work, recorded up to October 2018 was reported in the previous report, but this report relates to the balance of the road survey which was completed in December 2018. About 975m of line was surveyed and additional conductive zones identified for future investigation. The December survey data is presented with raw values plotted in plan while both raw and filtered data presented in a table along with a profile of the data. Geophysical surveys in future should continue in the early summer along a prepared grid. Follow up and/or concurrent bedrock mapping and geochemical sampling (rock and soil) should also be conducted.

Property Description and Access

The Fontaine mineral claim is located on the eastern margin of the Quesnel Trough of the Interior Plateau. The property straddles Fontaine Creek and is centered near 581600E, 5867000N (UTM Nad 83) on NTS maps sheet 93A/13, approximately 27 kilometers southeast of Cottonwood and 23 kilometers southwest of Barkerville, BC. The single claim is 681.86 hectares in size and overlaps prospective bedrock of the Slide Mountain, Quesnel and Barkerville Terranes.

<table>
<thead>
<tr>
<th>Tenure #</th>
<th>Claim Name</th>
<th>Owner</th>
<th>Tenure Type</th>
<th>NTS Map</th>
<th>Issue Date</th>
<th>Good To Date</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1030053</td>
<td>FONTAINE</td>
<td>137403 (100%)</td>
<td>Mineral Claim</td>
<td>093A</td>
<td>2014/aug/05</td>
<td>2019/mar/15</td>
<td>681.86</td>
</tr>
</tbody>
</table>

The property is generally located on the southern most flank of Campbell Mountain and is in various stages of reforestation throughout with replanted mixture of spruce, pine and fir. With the exception of incised gulches, the property is generally moderately sloped overall with elevations ranging from 3600ft to 4600ft above sea level.

The present day property was presumably first accessed in the 1860s when a pack trail generally running north-south was established between the new mining towns of Quesnelle Forks and Stanley. Currently, between the months of about May to November, access can be easily made to the property by car or truck from Cottonwood, BC by travelling east along Highways 26 for about six kilometers before turning south onto the Swift River Forest Service Road, also locally known as the 1300FSR. The property is located at about the 23km marker along the 1300FSR as well as other road spurs and trails which turn north between approximately the 23 and 28km markers, including the 13K Road which generally runs the length of Fontaine Creek. Active logging is currently in progress in the region and the road is heavily used by logging trucks, forestry workers and other road users. It is best to use VHF radio communications along these corridors: the road channels for the 1300FSR and its branches are Presently RR2 and RR10 as noted at the start of each road junction and on the Quesnel Road Channel Map.
Geology

The Fontaine Gold claim group is underlain by three distinct Terranes; the south west portion of the claim contains rock of the Quesnel Terrane and the north eastern section contains rocks of the Barkerville Terrane with a sliver of the Slide Mountain Terrane existing between the two. Struijk’s 1988 regional geology map has been georeferenced below. At present, no detailed property scale bedrock geology map is known to exist for the claim.

MapPlace shows the Quesnel Terrane to consist mainly of volcanic, volcanioclastic and sedimentary rocks belonging to either the Takla Group (north of latitude 53°N) or the Nicola Group (south of 53°N). In essence the groups represent the same stratigraphic interval; the arbitrary change in name at 53°N is presumably an artifact of mapping in different areas by different geologists. In this report, the Upper Triassic Nicola Group is adopted for this unit following the usage of Struijk et al. (1990). The regional mapping published by Struijk in 1988 notes the western edge of the Fontaine Gold property hosts Karnian and (?) Norian aged metasedimentary rocks with lesser subgreenschist to amphibolite facies greenstone and conglomerate. Volcanic and volcanioclastic rocks of this group are noted regionally and well west of the Fontaine Gold property and not expected to be found at the property, though property scale mapping in future may highlight more detail than previously noted.

The Snowshoe Group of the Barkerville Terrane is represented by tightly folded metasedimentary rocks found on the northeast of the property: schistose quartzite, schist, phyllite, marble, amphibolite, siltite and minor quartzite (Struijk et al., 1990). The Barkerville Terrane is host to various ore bodies which have long been suggested to be the source of placer gold deposits throughout the gold camps of the region and various studies continue to determine the origin(s) of the rich placer deposits which are productive to this day. Mineralization of these hard rock ore bodies are not discussed in this report but may be considered in future technical studies as additional work is conducted and bedrock is mapped at the property.

The Upper Paleozoic Crooked Amphibolite of the Slide Mountain Terrane occurs in discontinuous narrow units along the Eureka thrust fault and is exposed along the glaciated outcrops at the central portion of the claim group as noted in communications with and samples provided by Clinton Blaine and as outlined on regional geology maps. The unit is mapped centrally on the property along a thin, southeast trending, sliver of Terrane which includes serpentine, sheared ultramafic rocks, amphibolite and talc (Struijk et al., 1990 and 1988). Locally, this unit appears to be mineralized with varying amount of sulphides as well as weathering indicative of nickel enrichment.
Exploration History
The placer gold discoveries of the 1860’s first at Keithley Creek and then surrounding areas of the Cariboo (such as Quesnelle Forks, Antler Creek, Barkerville, Lightning Creek) brought a variety of people to the area including thousands of prospectors and proprietors from all over the world. The history of the region is very rich and detailed; and, although the Fontaine Gold claim group is located at a creek where historical production is recorded, relatively little information about the area has been located to date. Exploration and mining history at the property is briefly outlined below, but is not a complete account of all works conducted. As research and cross referencing is ongoing and as historical records are digitized and made public, these details will be added to the database and referenced in future assessment or technical reports on the property.

In September 1861, ‘immense discoveries’ were made near the headwaters of Van Winkle Creek, immediately to the north of Fontaine Creek, but are reported by Fery (1862) to be too late in the season to work.

Between 1876-1880, 398 ounces of gold was produced at Fontaine Creek, then recorded as Fountain Creek (Holland, 1950)

From 1881-1885, 110 ounces placer gold was recorded at the Government Assay Office but with values including production at Swift River between 1883 and 1885 (Holland, 1950).

In 1923, nearby Crown Granted mineral claim 9884 (No.1151/482) with certain other rights were purchased by Frederick Edward Shannon. Crown Grant images and survey maps are located on GeoBC’s Tantalis Gator website and the map clearly outlines some locations of previous mining activities along Fontaine Creek.

The 1935 BC Department of Lands ‘Barkerville-Lightning Creek Mineral Reference Map’ shows the same trail surveyed circa 1923 and is plotted in the map from Stanley to south of the mouth of Porter Creek. The trail is mapped along the east side of Fontaine Creek and is so well established that it can be traced out in part on today’s airphotos.

In 1950, Holland highlights early production records for the property and includes a map which shows the previous mentioned trail is the route from Quesnelle Mouth to Stanley.

IMPORTANT NOTE: Research has indicated that the creeks here have been referred to by various names as follows

- Fontaine Creek of 2014 is also referred to as Fountain Creek in the 1923 and 1935 maps as well as in text (productions records) of Holland’s 1950 Bulletin 28. Holland’s (1950) Figure 4, however, calls it Fontaine Creek.
- Horan Creek is referred to as Fes Creek (previously Black Bear Creek) in Holland’s 1950 report and as Black Bear Creek in the 1923 and 1935 survey maps.
Present day East Creek is named Font Creek in Holland’s 1950 report and North Fork on earlier maps.

The above noted names may be important in further locating additional production records.

In 1986, Adrian Resources Ltd conducted soil sampling at their property which encompasses a small portion of the Blaine’s property. No significant large anomalies were detected although some gold and silver values were noted to be several times background, including 290 ppb gold adjacent the 13K Road (ARIS 16010).

In 1992, Rene Trifaux conducted rock sampling and geologic mapping of bedrock and noted anomalous nickel, cobalt, chromium and rare earth elements.

In 2011, Jason Walter conducted seismic work on his placer claim near the headwaters of Fontaine Creek (ARIS 32683).

In 2012, Williams Creek Gold Ltd conducted remote sensing on their property. Their surveys extend into the western margin of the Fontaine property and they delineated arc shaped pyrite plus minor anglesite signatures which are noted as coincident with the ultramafic unit (ARIS 33273).

In 2014, Clinton Blaine acquired LiDAR data and orthophotos to assist with targeting placer channels and other prospective surficial features on his placer property, which overlies the mineral property related to this report.

In 2016, Clinton Blaine recorded 1.6Lkm ground VLF-EM survey over a prepared grid and an anomalous zone was identified for further investigation.

In 2017, Clinton Blaine continued ground VLF-EM surveys along one of the main roads which crosses several prospective structures across his property.

In 2018, two sets of VLF-EM surveys were continued at the property and the second phase of work is outlined in this report.

2018 Exploration
In 2018, the ground VLF-EM survey to the north of the 2017 survey in two sections with the last 975m of the survey being subject of this report. Additional work was planned but a vehicle accident enroute to the Cariboo saw those plans change and only the 975m was completed. The survey line continued along the road as it crosses almost near perpendicular to the regional geology, portions of which are quite prospective. 0.975 line kilometers of line was surveyed along an upper road spur from the K-Road to just beyond the edge of the property for the purpose of obtaining enough data to complete
the fraser filtered data to the property boundary. Station spacing was 25m as in previous surveys and measured with a hipchain. The survey was completed with a Crone Geophysics VLF-EM Radem instrument with the purpose of highlighting any conductive and possibly mineralized bodies of rock, geologic contacts or fault zones not otherwise visible in the road cuts.

Survey Procedures and Methodology
The Crone VLF Radem is an EM radio receiver utilizing the 12 to 24 kilocycle United States Naval communications broadcast systems. The closest transmitting station to the survey area is located at Jim Creek, Washington (24.8 kHz). The receiver is essentially a specially designed and sensitive transistor radio. It is used to measure the direction of the magnetic component of the VLF (very low frequency) field. The direction of this field is distorted by the presence of a conductor within the earth. This by measuring the dip angles, the presence of a conductor can be detected and its location determined. The normal VLF field is horizontal. The receiver is capable of detecting disseminated sulphide deposits and small sulphide bodies. It is capable of deep penetration but due to the high frequency used it is affected by clay and conductive overburden. This should be considered along with other localized factors during the interpretation of both the raw and filtered data.

While gathering the raw field data, the receiver was pointed south to the Jim Creek transmitter. The raw data is presented in the appendix and on a plan map. Noise was smoothed out with Fraser Filter calculations on each group of four adjacent readings by applying the formula \((f_4 + f_3) - (f_2 + f_1)\). The raw and filtered data are also presented in profile for the two surveyed lines, for reference. The data was not contoured on the map, as additional survey lines are required. The 1025m station is located 25m beyond the last surveyed section which ended at 1000m earlier in 2018. VLF stations were placed approximately 25 meters apart using a hip chain. The coordinates shown in the table were derived by spacing the remaining stations generally equidistant from one another on the map and calculating the GPS coordinate. The author of this report was not present for the VLF portion of the survey but is familiar with the instrument’s use and survey procedure.
Results and Discussion

The December 2018 survey was successful in extending the conductive zone near station 1025, 3 short conductive anomalies and two others up to 100m long as shown on the figures in the appendix. While the survey generally crossed the regional geology at a near perpendicular angle, the conductive zones and are assumed to not be true width until additional field observations can be made or more grided survey data collected. The December 2018 VLF survey data is presented with raw values plotted in plan while both raw and filtered data are presented in a table along with a profile of the data. This data was not tied to the previous surveys but may be in future. The anomalous conductive zones are highlighted in yellow on the map for reference and represents the position of the anomalous Fraser Filtered data. The 100m long anomaly appears to be located near a small meadow or swamp and may be related to a fault zone, but additional field work and mapping is needed in order to determine this for certain or if the 100m long anomaly is related mineralization of bedrock. Additional field work is highly recommended as soon as possible in the spring and should include property scale geologic mapping, rock sampling and a soil sampling program with a budget of at least $20,000 to maintain the property to a decent date while providing the best opportunity to locate new targets. More detailed recommendations are noted hereafter.

Recommendations

Ongoing systematic grassroots exploration and bedrock mapping is recommended at the property. Any mineralized bedrock should be carefully sampled and sent to the lab for multielement analysis. Channel and chip sampling is recommended with grab samples taken as needed for reference. VLF-EM or SP surveys should be completed in a grided fashion, contoured and presented with other exploration results and bedrock geology +/- mapped structures.

MMI soil sampling is highly recommended and especially along the 2017 work area and gossan zones with spacing of no greater than 40 meters but 25-30m preferred, as budgeting allows. All future ground geophysical stations should be no greater than 20 meters apart, with 10m preferred on the Self Potential survey line. All stations should be tightchained rather than hipchained to ensure best accuracy and laid out in conjunction with good compass and GPSing practices. Regional geological mapping and sampling should be conducted throughout the property and, depending on results, a trenching program should be considered, with ample time allotted for permitting to be authorized.
Statement of Costs

For field work conducted December 10, 14 and recorded as Events 5723001 and 5730620

- Ray Blaine and Camille B (4 man days @ $260/day) 1040.00
- VLF-EM (2 days @ $100/day) ... 200.00
- 4x4 truck (50 @ $0.68/km) ... 34.00
- Report: Data entry, GIS / mapping (Tenorex, 16 hrs @ $60/hr) 960.00

$2234.00

CALULATED ASSESSMENT VALUE.. $2234.00

TOTAL ASSESSMENT CREDITS APPLIED................................. $1681.30

PAC requested to be withdrawn from CLINTON TREVOR BLAINE account = $ 552.70
Statement of Qualifications

I, Angelique Justason of Quesnel, British Columbia certify the following:

- I am agent and consultant for Clinton Blaine, owner of the Fontaine mineral claim.
- I am owner of Tenorex GeoServices, a mineral and placer exploration services company based in Quesnel, BC.
- I have successfully completed the BC Mine Supervisor Certification Course (May 2018)
- I have attended geology courses at Camosun College and the University of Victoria.
- I have successfully completed and received certificates for the Advanced Prospecting Course (1992) and Petrology for Prospectors Course (1993).
- I have 4 seasons work experience with the BC Geological Survey and the Geological Survey of Canada.
- I was employed in the Cariboo Region as a junior geologist, geotechnician and mine surveyor for over 9 years and have held a supervisory position, in that capacity, for over 6 years.
- I have been an avid prospector for over 25 years and have spent the last 19 years conducting mineral and placer exploration activities in the Wells/Barkerville/Quesnel area.

Signed,

Angelique Justason
References

Tidd, Morgan (2012). Unpublished powerpoint presentation summarizing works at the Fontaine Gold property

Websites

EMPR Property Files
APPENDIX 1
Data
&
Maps
<table>
<thead>
<tr>
<th>STATION</th>
<th>UTM Easting</th>
<th>UTM Northing</th>
<th>meters from start</th>
<th>DIP ANGLE (degrees)</th>
<th>Fraser Filter position (meters from start)</th>
<th>Fraser Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1025</td>
<td>582380</td>
<td>5867427</td>
<td>0</td>
<td>-4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1050</td>
<td>582391</td>
<td>5867449</td>
<td>25</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1075</td>
<td>582404</td>
<td>5867471</td>
<td>50</td>
<td>4</td>
<td>37.5</td>
<td>10</td>
</tr>
<tr>
<td>1100</td>
<td>582418</td>
<td>5867492</td>
<td>75</td>
<td>4</td>
<td>62.5</td>
<td>0</td>
</tr>
<tr>
<td>1125</td>
<td>582431</td>
<td>5867513</td>
<td>100</td>
<td>2</td>
<td>87.5</td>
<td>-4</td>
</tr>
<tr>
<td>1150</td>
<td>582444</td>
<td>5867534</td>
<td>125</td>
<td>2</td>
<td>112.5</td>
<td>-6</td>
</tr>
<tr>
<td>1175</td>
<td>582459</td>
<td>5867554</td>
<td>150</td>
<td>-2</td>
<td>137.5</td>
<td>-10</td>
</tr>
<tr>
<td>1200</td>
<td>582474</td>
<td>5867574</td>
<td>175</td>
<td>-4</td>
<td>162.5</td>
<td>-8</td>
</tr>
<tr>
<td>1225</td>
<td>582488</td>
<td>5867595</td>
<td>200</td>
<td>-4</td>
<td>187.5</td>
<td>0</td>
</tr>
<tr>
<td>1250</td>
<td>582503</td>
<td>5867615</td>
<td>225</td>
<td>-2</td>
<td>212.5</td>
<td>8</td>
</tr>
<tr>
<td>1275</td>
<td>582517</td>
<td>5867636</td>
<td>250</td>
<td>2</td>
<td>237.5</td>
<td>12</td>
</tr>
<tr>
<td>1300</td>
<td>582531</td>
<td>5867656</td>
<td>275</td>
<td>4</td>
<td>262.5</td>
<td>-2</td>
</tr>
<tr>
<td>1325</td>
<td>582546</td>
<td>5867677</td>
<td>300</td>
<td>-6</td>
<td>287.5</td>
<td>-18</td>
</tr>
<tr>
<td>1350</td>
<td>582560</td>
<td>5867697</td>
<td>325</td>
<td>-6</td>
<td>312.5</td>
<td>-12</td>
</tr>
<tr>
<td>1375</td>
<td>582575</td>
<td>5867717</td>
<td>350</td>
<td>-8</td>
<td>337.5</td>
<td>-2</td>
</tr>
<tr>
<td>1400</td>
<td>582591</td>
<td>5867737</td>
<td>375</td>
<td>-6</td>
<td>362.5</td>
<td>4</td>
</tr>
<tr>
<td>1425</td>
<td>582605</td>
<td>5867757</td>
<td>400</td>
<td>-4</td>
<td>387.5</td>
<td>6</td>
</tr>
<tr>
<td>1450</td>
<td>582620</td>
<td>5867777</td>
<td>425</td>
<td>-4</td>
<td>412.5</td>
<td>4</td>
</tr>
<tr>
<td>1475</td>
<td>582633</td>
<td>5867798</td>
<td>450</td>
<td>-2</td>
<td>437.5</td>
<td>4</td>
</tr>
<tr>
<td>1500</td>
<td>582647</td>
<td>5867819</td>
<td>475</td>
<td>-2</td>
<td>462.5</td>
<td>0</td>
</tr>
<tr>
<td>1525</td>
<td>582661</td>
<td>5867840</td>
<td>500</td>
<td>-4</td>
<td>487.5</td>
<td>-6</td>
</tr>
<tr>
<td>1550</td>
<td>582673</td>
<td>5867862</td>
<td>525</td>
<td>-6</td>
<td>512.5</td>
<td>-8</td>
</tr>
<tr>
<td>1575</td>
<td>582679</td>
<td>5867887</td>
<td>550</td>
<td>-8</td>
<td>537.5</td>
<td>-6</td>
</tr>
<tr>
<td>1600</td>
<td>582678</td>
<td>5867912</td>
<td>575</td>
<td>-8</td>
<td>562.5</td>
<td>0</td>
</tr>
<tr>
<td>1625</td>
<td>582679</td>
<td>5867937</td>
<td>600</td>
<td>-6</td>
<td>587.5</td>
<td>10</td>
</tr>
<tr>
<td>1650</td>
<td>582680</td>
<td>5867962</td>
<td>625</td>
<td>0</td>
<td>612.5</td>
<td>6</td>
</tr>
<tr>
<td>1675</td>
<td>582682</td>
<td>5867987</td>
<td>650</td>
<td>-8</td>
<td>637.5</td>
<td>-8</td>
</tr>
<tr>
<td>1700</td>
<td>582684</td>
<td>5868012</td>
<td>675</td>
<td>-6</td>
<td>662.5</td>
<td>-6</td>
</tr>
<tr>
<td>1725</td>
<td>582687</td>
<td>5868037</td>
<td>700</td>
<td>-8</td>
<td>687.5</td>
<td>0</td>
</tr>
<tr>
<td>1750</td>
<td>582687</td>
<td>5868062</td>
<td>725</td>
<td>-6</td>
<td>712.5</td>
<td>0</td>
</tr>
<tr>
<td>1775</td>
<td>582688</td>
<td>5868087</td>
<td>750</td>
<td>-8</td>
<td>737.5</td>
<td>-2</td>
</tr>
<tr>
<td>1800</td>
<td>582687</td>
<td>5868112</td>
<td>775</td>
<td>-8</td>
<td>762.5</td>
<td>0</td>
</tr>
<tr>
<td>1825</td>
<td>582682</td>
<td>5868136</td>
<td>800</td>
<td>-6</td>
<td>787.5</td>
<td>4</td>
</tr>
<tr>
<td>1850</td>
<td>582673</td>
<td>5868160</td>
<td>825</td>
<td>-6</td>
<td>812.5</td>
<td>4</td>
</tr>
<tr>
<td>1875</td>
<td>582663</td>
<td>5868181</td>
<td>850</td>
<td>-4</td>
<td>837.5</td>
<td>2</td>
</tr>
<tr>
<td>1900</td>
<td>582650</td>
<td>5868203</td>
<td>875</td>
<td>-6</td>
<td>862.5</td>
<td>0</td>
</tr>
<tr>
<td>1925</td>
<td>582629</td>
<td>5868219</td>
<td>900</td>
<td>-4</td>
<td>887.5</td>
<td>4</td>
</tr>
<tr>
<td>1950</td>
<td>582609</td>
<td>5868237</td>
<td>925</td>
<td>-2</td>
<td>912.5</td>
<td>4</td>
</tr>
<tr>
<td>1975</td>
<td>582594</td>
<td>5868254</td>
<td>950</td>
<td>-4</td>
<td>937.5</td>
<td>-2</td>
</tr>
<tr>
<td>2000</td>
<td>582569</td>
<td>5868264</td>
<td>975</td>
<td>-4</td>
<td>962.5</td>
<td>6</td>
</tr>
</tbody>
</table>
VLF RESULTS

Results (raw data, [degrees dip])

Conductive Anomaly from fraser filter

mineral title belonging to C.Blaine

mineral title belonging to C.Blaine

0 m 100 m 200 m 300 m 400 m